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Introduction: Scoliosis is a pathological spine structure deformation,
predominantly classified as “idiopathic” due to its unknown etiology. However,
it has been suggested that scoliosis may be linked to polygenic backgrounds. It is
crucial to identify potential Adolescent Idiopathic Scoliosis (AIS)-related genetic
backgrounds before scoliosis onset.

Methods: The present study was designed to intelligently parse, decompose and
predict AIS-related variants in ClinVar database. Possible AIS-related variant
records downloaded from ClinVar were parsed for various labels,
decomposed for Dinucleotide Compositional Representation (DCR) and other
traits, screened for high-risk genes with statistical analysis, and then learned
intelligently with deep learning to predict high-risk AIS genotypes.

Results: Results demonstrated that the present framework is composed of all
technical sections of data parsing, scoliosis genotyping, genome encoding,
machine learning (ML)/deep learning (DL) and scoliosis genotype predicting.
58,000 scoliosis-related records were automatically parsed and statistically
analyzed for high-risk genes and genotypes, such as FBN1, LAMA2 and SPG11.
All variant genes were decomposed for DCR and other traits. Unsupervised ML
indicated marked inter-group separation and intra-group clustering of the DCR
of FBN1, LAMA2 or SPG11 for the five types of variants (Pathogenic,
Pathogeniclikely, Benign, Benignlikely and Uncertain). A FBN1 DCR-based
Convolutional Neural Network (CNN) was trained for Pathogenic and Benign/
Benignlikely variants performed accurately on validation data and predicted 179
high-risk scoliosis variants. The trained predictor was interpretable for the similar
distribution of variant types and variant locations within 2D structure units in the
predicted 3D structure of FBN1.
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Discussion: In summary, scoliosis risk is predictable by deep learning based on
genomic decomposed features of DCR. DCR-based classifier has predicted more
scoliosis risk FBN1 variants in ClinVar database. DCR-based models would be
promising for genotype-to-phenotype prediction for more disease types.
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1 Introduction

Scoliosis is a three-dimensional structural spine deformation,
characterized by a lateral deviation of at least 10° with a rotation of
the vertebra and usually associated with a reduction of normal
kyphotic curvature of the spine (Choudhry et al., 2016). As much
as 80% of all scoliosis is termed “idiopathic” or of unknown etiology.
AIS is diagnosed when the deformity Cobb angle goes above 10° in
children and adolescents after the age of 10 and until skeletal maturity
(Perez-Machado et al., 2020). The prevalence of AIS ranged from 2% to
5.2% in various countries (Cilli et al., 2009; Konieczny et al., 2013;
Soucacos et al., 1997;Wong et al., 2005), commonly with a female/male
ratio of 1.5:1 to 3:1, respectively (Konieczny et al., 2013), and with a
90% presentation of right-sided thoracic curve (Cheng et al., 2015).
Numerous hypotheses have been proposed regarding the effects of a
variety of biomedical abnormalities on AIS, including neurologic
development, spinal growth, bone metabolism, metabolic pathways,
endocrine factors, and sex hormones (Kulis et al., 2015; Raczkowski,
2007). However, AIS cannot be attributed to clear causes for 80% of
cases, but it has been suggested that it may be genetically related, to a
polygenic background or to a quantitative trait locus, which may vary
from several different genetic loci (Kikanloo et al., 2019). One fourth of
AIS patients have a relative with the condition, but the inheritance
pattern is variable (Choudhry et al., 2016). Considering the significant
physical and psychological suffering and the economic burden of
medical intervention post AIS onset, it is crucial to identify and
predict potential AIS-related genetic and epigenetic variants before
the scoliosis onset.

Emerging evidence indicates a correlation between genomic
variation and the risk of AIS, facilitated by the analysis of genomic
sequencing data obtained through next-generation sequencing (NGS)
and third-generation sequencing technologies. Bibliometric analysis
based on the reports about AIS risk found that high frequent
polymorphism in fibrillin (FBN) gene, estrogen receptor gene,
calmodulin, collagen gene and Ladybird Homeobox 1 (LBX1)
might involve in physiological or (and) pathological processes,
such as menarche, Bone formation, disc degeneration, melatonin
signaling dysfunction, and cerebrospinal fluid flow in AIS (Jiang S.
et al., 2023). And most of these research was analyzed by traditional
link analysis (Duance et al., 1998) or more popular tool of Genome-
wide association studies (GWAS) (Kou et al., 2013; Ogura et al., 2015;
Sharma et al., 2011; 2015; Takahashi et al., 2011; Ushiki et al., 2024). A
GWAS comprising 79,211 subjects revealed a fine-tune deregulation
of Cobb angle by 187,633 Single Nucleotide Polymorphisms (SNP)s in
multiple genes, with a r2 of 0.7 (Otomo et al., 2021). More GWAS
studies identifiedAIS-associated genes, like FBN1 (Buchan et al., 2014;
Sheng et al., 2019), LBX1 (Takahashi et al., 2011), G protein-coupled
receptor (GPR126) (Kou et al., 2013), adherents junction associated
protein 1 (AJAP1) (Zhu et al., 2015), basonuclin 2(BNC2) (Ogura

et al., 2015), paired box 1 (PAX1) (Sharma et al., 2015) and so on.
However, most of these cohort-based studies were limited to one or
several specific population(s), lacking a landscaping view of AIS
genetic backgrounds.

Disease variant prediction is based on the public archive of
interpretations of clinically relevant variants (ClinVar) (Landrum
et al., 2016) and the Human Gene Mutation Database (HGMD)
(Stenson et al., 2003). ClinVar integrates and updates all freely
available reported medically important variants and phenotypes,
including scoliosis (Landrum et al., 2018; Landrum et al., 2014), and
has been widely taken as a critical resource for advanced variant
interpretation. And several studies based on the ClinVar resources
have recognizedmore genetic variants possibly associated with vertebral
malformations, such as a chromosome 1q22 microdeletion of ASH1L
(Xi et al., 2020), series of SNPs in KIAA1217 (Al et al., 2020), and the 3′
UTR of KLHL40 (Dofash et al., 2023). However, a comprehensive
analysis of AIS-associated genetic variants is not available up to now.
The complicated associations between genotypes and phenotypes are
easier to identify with ML or DL approaches. A DL tool of
AlphaMissense designed by DeepMind predicted accurately the
effect of proteome-wide missense variant for various types of
diseases (Cheng et al., 2023; Minton, 2023). More and more DL or
ML tools predicted intelligently disease-associated phenotypes based on
genotypes (Jo et al., 2023; Kotlarz et al., 2024). Similarly, our previously
developed multiple tools performed well in predicting the adaptation
phenotypes of viruses based on their genotypes in either coding region
(Bei-Guang et al., 2022; Jiang X. et al., 2023; Li et al., 2023; Li et al., 2022)
or UTR (Sun et al., 2014).

In the present study, we have analyzed the scoliosis-related
genotypes in the ClinVar database with multiple ML approaches
to screen top scoliosis-associated genes, and then built DL predictor
for scoliosis-associated genotypes. The present study provided the
most recent analysis on the scoliosis-related genetic variants in
ClinVar database, and found several novel genes and genotypes
which are associated to scoliosis.

2 Materials and methods

2.1 Preparation of scoliosis-related data and
genome decomposing

Scoliosis-related variants and their annotations were
downloaded from ClinVar database (https://www.ncbi.nlm.nih.
gov/clinvar/); Data was cleaned to remove those variant samples
with variant in intron, and was parsed for annotations, such as gene
name, gene ID, variant type and others for each sample. The full
coding DNA sequence (CDS) for each variant was generated based
on the CDS of gene ID and its variant annotation, and variant CDS
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traits of dinuleotide (DNT), DCR, codon usage, codonpair and
amino acid (AA) were decomposed with a reported decomposer
(Li et al., 2022), respectively producing vectors with dimension of 48
(DNT), 1,536 (DCR), 64 (codon usage), 3,721 (codonpair) and 20
(AA) for each sample. The algorithm for counting DNT (Li et al.,
2020), DCR (Li et al., 2022), codon, codonpair and AA (Jiang S. et al.,
2023) were designed according to Formula 1-5 respectively.
Statistical description of variants was performed based on sample
annotation information.

freq xnym( ) � ∑xnym/∑
16

i�1
xnym

, (x, y � T, C, A orG,m

� n + 1form≤ 3, m � n − 2form � 4, n

� codon nt position 1, 2, or 3 (1)

freq wixjykzl( ) � ∑wixjykzl/∑
256

i�1
wixjykzl

,

(w, x, y, z � T, C, A or G, j
∣∣∣∣k � i + 1 i + 2, j

∣∣∣∣ ∣∣∣∣ k
� j k if j

∣∣∣∣ ∣∣∣∣ k≤ 3, else j k � j − 3
∣∣∣∣ ∣∣∣∣ k

− 3, k

� k + 1, l � l if l≤ 3 else l � 3, i

� codon nt position 1, 2, or 3

(2)
Freq Codon( ) � count Codon( ) × 64 ×

3
CDS length

, codon

� each of the 64 types of codons (3)
Freq codonpair( ) � count codon pair( ) × 3721 ×

3
CDS length

,

codon pair � each pair of the 64 types of codons (4)
Freq AA( ) � count AA( ) × 20 ×

3
CDS length

, AA

� each of the 20 types of amino acids (5)

2.2 Unsupervised machine learning of the
genomic composition of scoliosis-
related genes

To learn the association of genome information with the scoliosis
phenotype, in the gene of FBN1, LAMA2 and SPG11, the clustering
and separation of the variant samples were analyzed based on the
DCR and other features of these genes. The composition feature
vector of DNT, DCR, codon usage, codonpair and AA respectively
with a dimension of 48, 1,536, 64, 3,721 and 20 was reduced to two
main components with Uniform Manifold Approximation and
Projection (UMAP) and were scattered with sample label of
“Pathogenic”, “Pathogeniclikely”, “Benign”, “Benignlikely” and
“Uncertain”. Hierarchical clustering of these samples was also
performed with a python package of sns. clustermap, based on the
Euclidean distance of the above-mentioned five types of features with
each sample labelled. The components reduced from the
compositional features were normalized with the following formula 6.

Xnormalized � X −Xmin( )/ Xmax −Xmin( ) (6)

2.3 Training of a Convolutional Neural
Network (CNN) classifier for
scoliosis genotypes

A CNN classifier was designed to predict scoliosis genotypes of
FBN1 based on genomic compositional features with the variants
labelled as “Pathogenic” as positive samples and with the variants
labelled as “Benign” or “Benignlikely” as negative samples. A
random downsampling was performed to guarantee a sample
balance between the two types of data. DCR with
1,536 dimensions were selected to train the classifier with a
network structure of CNN. DCR data was then randomly split
into training dataset and validation dataset with a 5-fold cross-
validation method, then was reshaped into an array with the size of
(6, 16, 16) and finally was input into the three-layer 3D-CNNmodel.
The CNN models were set with a convolution kernel with size of (1,
3, 3), with a pooling layer of (1, 2, 2) via average pooling, and with a
padding layer of (0, 1, 1), and with a stride of (1, 1, 1). The batch size,
learning rate, and training epochs were optimized respectively. 768-
dimensioned output from two rounds of convolution of the 1536-
dimensioned DCR was linearly transformed for two times, firstly
into 192-dimensioned and secondly into 2-dimensioned output,
which was finally calculated with Softmax function (formula 7) to
output the probability for each of the two scoliosis risks (positive and
negative). Detailed parameters are epoch_num = 100, split_size =
0.2 (for training and validation dataset), lr = 0.005 and batch_size =
20. The classification performance of the models was evaluated by
with receiver operating characteristic curve (ROC) and the area
under curve (AUC), confusion matrix.

Softmax: f xi( ) � exi/∑
J

j�1
exj (7)

2.4 Prediction and analysis of
scoliosis genotypes

The variants labelled with “Pathogeniclikely” or “Uncertain”,
from ClinVar database were assessed for their scoliosis risk with the
trained CNN classifier based on their DCR features. The DCR of
FBN1 CDS was reshaped into a dimension of (6, 16, 16), and then
were transformed into a tensor, then was input into the loaded
model of “DCR-based 3D-CNN for scoliosis. txt”. The prediction of
1 for high scoliosis risk and 0 for low scoliosis risk and the
probabilities for the two risk results were finally output. The
scoliosis risk was further analyzed in more details by statistically
describing distribution of these samples on various variant labels.

2.5 Structure prediction of truncated
FBN1 with Alphafold2

To landscape the distribution of scoliosis variants on the 3D
structure of FBN1, a reference FBN1 protein (NM_000138.5, NP_
000129.3) with truncated N-terminal of 1,100 amino acids, where
most of the amino acid variants were located, was utilized to predict
its 3D structure. The structure prediction was performed with
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AlphaFold2 of offline version (Jumper et al., 2021). A virtual
environment was first activated with the command “conda
activate alphafold” under the same path as the FBN1 fasta file.
Then the prediction was performed with the command “python/
docker/run_ docker. py--fasta paths = Reference_NM_000138.5_
FBN1. fasta--max_template_data = 2020-05–14”. The ranked0_.pdb
was taken as the most optimized result and was visualized with
PyMOL (version 2.5.7). All variants amino acids were manually
labelled in red for the variants in the Pathogenic group, in purple for
predicted risk variants in the Pathogeniclike group, and in violet for
risk variants in the Uncertain group.

2.6 Statistics

Significance was evaluated with paired t-test for the Principal
Component Analysis (PCA)-reduced PCA1 or PCA2 value of the
full-connected layer between Pathogenic and Benign groups, and for
the probability values of label 1 and label 0 either for negative or
positive variants. GraphPad Prism (version 9.0.0) was utilized for
statistical analysis and figure plotting. A p-value threshold of
0.05 was taken as statistical significance.

3 Results

3.1 Deep learning framework to predict
scoliosis genotypes

The workflow of this study was set to parse, decompose and predict
the genotype with high scoliosis risk, with six successive models. Firstly,
full data of variant samples associating with scoliosis or not were
downloaded from NCBI and were parsed for their genotypes and
annotations (Figure 1A). The distribution of these data on various types
of annotation labels was statistically analyzed and the full CDS were
generated based on their variant annotations (Figure 1B). Secondly, the
genomic compositional traits, such as dinucleotides (DNTs), DCR, and
others, for each scoliosis-related gene were calculated based on our
previously reported algorithm (Figure 1C), and then were analyzed with
unsupervised machine learning methods (Figure 1D). Finally, a
Convolutional Neural Network (CNN) classifier based on DCR
features of FBN1 was trained with two labels: high and low risk for
scoliosis (Figure 1E). It was used to predict the scoliosis risk of variants
with unclear risk and was interpreted by optimizing significant amino
acids on the 3D structure of FBN1 (Figure 1F).

3.2 High frequent variations of FBN1 and
other genes associated with scoliosis

The distribution of scoliosis-related variants was analyzed. Most
of these variants whether with high scoliosis risk (Pathogenic or
Pathogeniclikely), with low scoliosis risk (Benign or Benignlikely) or
with unknown risk (Uncertain) are located within exon/cDNA,
rather than within intron (almost similar value for Total and
cDNA, Figure 2A). Most of the variants in cDNA were not
synonymous, causing variants in protein level for scoliosis-
pathogenic samples (Synonymous/Protein = 0.16 or 0.25 for the

samples labelled with pathogenic or pathogeniclikely cDNA,
Figure 2A). Counting of scoliosis-related genes indicated that
NF1, FBN1, LAMA2 and SPG11 led the top list of genes
concerned with scoliosis (Figure 2B). And single nucleotide
polymorphism (SNP) dominated the variant type list for most
scoliosis-related genes (Figure 2C). Most variant types for these
SNPs were the base transition of C > T, G > A and G > T for
pathogenic variants (Figure 2D).

3.3 DCR-based clustering and separation of
FBN1 and other genes for scoliosis

To overview the distribution of scoliosis-related variants based
on genome decomposition traits, decomposed genome data of DCR
and other traits was plotted with scoliosis risk labelled (high scoliosis
risk: Pathogenic or Pathogeniclikely), low scoliosis risk: Benign or
Benignlikely), post dimension reduction with Uniform Manifold
Approximation and Projection (UMAP). A marked clustering of the
samples with the same risk label and a long-distance separation of
the samples with different labels were observed for DCR features of
FBN1 for the two main components of UMAP1 and UMAP2
(Figure 3A). Whereas these samples with the four labels were
mixed in the distribution of UMAP1 and UMAP2, either for the
trait of DNT (Figure 3B), codon (Figure 3C), codonpair (Figure 3D)
or AA (Figure 3E) of FBN1. The intra-risk type clustering and inter-
risk type separation were repeatedly observed on the DCR features of
LAMA2 and SPG11 (Figures 3F, G), rather than on the AA features
of the two genes (Figures 3H, I). The relatively hierarchical
clustering (high scoliosis risk of Pathogenic vs. Benign and
Benignlikely) was also indicated by DCR of FBN1 (Figure 3J).
However, such clustering was not significantly binary on the raw
DCR data of FBN1, implying an incapability of the raw DCR data for
a binary classification for the two scoliosis risk types and a need of
feature optimization of DCR by deep learning.

3.4 Deep learning prediction of scoliosis
genotypes of FBN1

In light of the high association between high-dimensional DCR
features and scoliosis risk, however their nonlinear distribution
depending on scoliosis type, a deep learning predictor based on
the 1,536-dimension DCR trait was trained for scoliosis risk
classification for the leading gene of scoliosis risk, FBN1. A CNN
network (Li et al., 2023; Li et al., 2022) was utilized for the binary
classification based on randomly sampled FBN1 data. Firstly, a binary
classifier of Convolutional Neural Networks (CNN) with labels of
high risk (Pathogenic) and low risk (Benign or Benignlikely) was built
based on DCR of FBN1. The 1536-dimension DCR were sequentially
subject to two rounds of convolution, two times of linear
transformation, and one-time Softmax transformation, and then
outputted two classification labels of 1 (high) and 0 (low). The
CNN classifier was quickly converged with optimized parameters,
indicating an early decrease and following long micro-movement of
training loss (Figure 4A). The fully connected layer of 768 dimensions
was reduced with Principal Component Analysis (PCA) to visualize
the concentration of key information of DCR by deep learning. It was
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indicated that the key difference between high and low risk data
concentrated on the first component, showing a significant difference
of PCA1 (p < 0.001, Figure 4B), whereas the insignificant difference of
PCA2 (Figure 4C), between the two groups. Then the prediction

performance was evaluated with an independent validation dataset
with a confusion matrix and Receiver Operating Characteristic
Curve_Area under Curve (ROC_AUC). A right angle-like ROC
and an AUC value of more than 0.92 (Figure 4D) and a confusion

FIGURE 1
Workflow to decompose scoliosis-related genome and to predict scoliosis-related genotypes. The present workflow was designed for the parsing
and cleaning of ClinVar data (A), statistical analysis and screening for scoliosis-related genotypes (B), decomposing scoliosis-related genes (C),
unsupervised learning analysis of compositional features of scoliosis-related genes (D), deep learning network structure for predicting scoliosis
genotypes (E), and scoliosis genotype prediction (F).
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FIGURE 2
Statistical description of scoliosis-related genes and genomic mutations. (A) Counting and statistical analysis of the gene types (cDNA,
nonsynonymous (could affecting protein), synonymous) for scoliosis risk types (Benign, Benignlikely, Pathogenic, Pathogeniclikely and Uncertain). (B, C)
Heatmap of the counting results of genes for various scoliosis risk types (B) and for various mutation types (C). (D) Heatmap of the counting various
mutation types of scoliosis risk types (Benign, Benignlikely, Pathogenic and Pathogeniclikely).
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matrix with 100%of accuracy for low risk data and 92.72%of accuracy
for high risk data were obtained on independent training data
(Figure 4E). Thus, DCR of FBN1 was classifiable and predictable
for high or low scoliosis risk, post convolutional transformation.

The trained CNN classifier was utilized to predict the scoliosis
risk of the variant labelled with “Pathogeniclikely” or “Uncertain”
from the ClinVar database. 179 variants (Supplementary Table S1)
were predicted as high risk (label 1) and the other 2044 variants were
low risk (label 0) based on their genomic DCR (indicated as positive
and negative respectively, Figure 5A), with significant probability
difference (p < 0.001 between label 0 and 1, respectively for both
positive and negative groups, Figure 5B). There were 118 variants
with false stop in FBN1 CDS and 61 variants without false stop
(Figure 5C). Deletion and duplication were the main variant types
for the scoliosis risk variants (Figure 5D). In more detail, the
frequency of various SNP types for all scoliosis risk variants and
for predicted scoliosis risk variants were compared.

3.5 Interpretation of the CNN predictor: the
scoliosis risk high frequency of N-terminal
variation responsible for scoliosis

Interestingly, there were relatively high levels of SNP types of
C > T, C > A, G > T and T > A were observed in either the

Pathogenic group from the ClinVar database (Figure 5E) or the
predicted scoliosis risk group (Figure 5F). Moreover, the frequency
vector for these SNP types were highly similar between the two
groups, indicating a linear correlation with high slope signification
(Figure 5G). Such linear correlation was also observed for low
scoliosis risk prediction in the frequency vector for these SNP
types between the two groups (Figure 5H). Detailed percentages
for high (label 1) and low (label 0) scoliosis risk variants for all five
groups (Uncertain, Pathogeniclikely, Pathogenic, Benignlikely and
Benign) were plotted (Figure 5I). Therefore, the DCR embedding of
FBN1 and the trained CNN classifier worked well in predicting
scoliosis-risk variants, based on the interpretability of the high
similarity in variant between pathogenic variants and
predicted variants.

We further interpreted the dependence of the predictor on
protein sequence or structure. Firstly, the frequency of variants
for all variants in each of the four groups was analyzed. It indicated a
marked biased variant distribution on the FBN1 sequence, with most
of the pathogenic variants located in the N-terminal, followed by
pathogeniclikely variant, with benign and uncertain variants in the
C-terminal (Figure 6A). The variant distribution within the 2D
structures of FBN1 was also analyzed. The 3D structure of the
human FBN1 protein with Alphafold2 andmutated amino acid with
the 2D structure of loop, helix and sheet was counted. It was shown
that most of these variants were within the loop structure of FBN1,

FIGURE 3
Significant clustering and separation of scoliosis-related genes and mutations on genomic DCR features. (A–E) Scatter plot of UMAP-reduced
compositional features of DCR, DNT, codon, codonpair of randomly sampled FBN1 variants. (F, G) Scatter plot of UMAP-reduced DCR of LAMA2 and
SPG11. (H, I) Scatter plot of UMAP-reduced AA of LAMA2 and SPG11. Sample label types of Pathogenic, Pathogeniclikely, Benign, Benignlikely, and
Uncertain were respectively annotated as 1-5. (J)Hierarchical of FBN1DCR features of the variants labelled with “Pathogenic” and “Pathogeniclikely”
as red, “Benign” and “Benignlikely” as blue.
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without marked differences among the four groups (Figure 6B). The
full view of the 3D structure of full-length FBN1 was visualized in a
cartoon (Figure 6C) and surface form (Figure 6D), indicating regular
repeated units of beta-sheet and loop/alpha-helix. A truncated

FBN1 with the 1,100 amino acids in the N-terminal indicated the
repeated sheet-loop/helix units in more detail (Figure 6E). All the
amino acid variants in FBN1 for the Pathogenic (Figure 6F), the
Pathogeniclikely (Figure 6G) and the Uncertain group (Figure 6H)

FIGURE 4
Performance of a DCR-based Convolutional Neural Network (CNN) classifier for predicting scoliosis-associated genotypes of Fibrillin-1 (FBN1). (A)
Training loss per training epoch was plotted as a boxplot for all loss values per epoch, with the average value per epoch curved. (B, C) Comparison of the
PCA1 (B) and PCA2 (B) reduced from the fully connected layer of the trained CNN classifier. ROC_AUC (D), Confusion matrix (E) by the trained CNN
classifier based on independently sampled variants. Benign: low scoliosis risk, Pathogenic: high scoliosis risk. ****p < 0.0001, ns: no significance.
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distributed uniformly, without any dependence on 2D structure.
Taken together, the DCR-based CNN predictor for scoliosis-risk
prediction was not dependent on the protein sequence or protein
structure of FBN1.

4 Discussion

The exploring genome sequencing data by NGS and third
generation sequencing poses a challenge to the widely utilized
analysis tools for the association of genomic variation with disease

risk. In response to the challenge, we presently designed an
intelligent framework to explore the scoliosis-associated genes
and their variants, based on all available genomic variant data
about scoliosis. The framework was composed of all technical
sections such as data parsing, scoliosis genotyping, genome
encoding, machine/deep learning and scoliosis genotype
predicting, implying a promising potential for digging the
genotypes for any disease with potential genetics association.
The data parsing section parsed all scoliosis associated data
automatically and efficiently on a mobile workstation on more
than 58, 000 records from ClinVar database, including various

FIGURE 5
Analysis of CNN-predicted FBN1 variant samples with high scoliosis risk. Numbers (A) and probability (B) of the predicted FBN1 variants with the high
(positive) or low scoliosis risk (negative) for the variants, labelled with Pathogeniclikely or Uncertain, by the trained CNN classifier. The number of the
predicted scoliosis-risk FBN1 variants with (Yes) or without (No) false stop in coding region (C), withmutation type of deletion, SNP, duplication, deletion_
insertion or insertion (D). Percentage of FBN1 variants with various SNP mutation types, in both high risk (positive) or low risk (negative) for total
scoliosis groups (E) or predicted scoliosis groups (F). Correlation of the vector of percentage values for various SNP mutation types of high risk (positive)
(G) or low risk (negative) (H) FBN1 variants between total and predicted samples. The percentages of SNP mutation types in each of the five groups of
variants were plotted (I).
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types of disease-related annotations. Moreover, the section was
qualified to parse full-length gene sequences from the recorded
variant annotation. Secondly, the high-risk genes and variants for
scoliosis were easily screened based on statistical analysis by the
genotyping section. Only the top second to fourth genes of FBN1,
LAMA2 and SPG11 were analyzed in detail, given the consensus of
the contribution of NF1 to an autosomal dominant disorder of
Type I neurofibromatosis, which was usually complicated with
scoliosis (Jett and Friedman, 2010), regardless of ranking first gene
of Neurofibromatosis 1 (NF1) for scoliosis high-risk genes. A high
association of FBN1 and the other two genes was observed
with scoliosis.

Gene embedding is one of the key techniques for intelligent
learning of disease-associated genes. Our reported genome

embedding method, DCR was biologically interpretable in
decomposing virus genes (Jiang X. et al., 2023; Li et al., 2023;
Telenti et al., 2022; Zhang et al., 2024), and was competent in
parsing the genes with varied sequence length. Thus, the three
scoliosis-associated genes were decomposed with DCR, given the
various sequence lengths of each of them, caused by varied variant
types, such as insertion, deletion, duplication or deletion/insertion.
Interestingly, the two reduced components of the 1536-
dimensioned DCR features of either gene clustered within the
same and separated among group(s) of Pathogenic,
Pathogeniclikely, Benign, Benignlikely, and Uncertain variants,
implying the potential of DCR to efficiently represent the
genotype-phenotype association of scoliosis. In light of the
representation significance of DCR, we built a DCR-based deep

FIGURE 6
Distribution of scoliosis risk mutations in 1D sequence, 2D and 3D structures of FBN1 protein. Mutations within a sliding window of FBN1 protein
sequence, with a sliding step of 10 AA, for Benign, Benignlikely, Pathogenic, Pathogeniclikely or Uncertain group (A). Percentage of mutations in the 2D
structure (Loop, Sheet, or Helix) of the alphafold2-predicted 3D structure of FBN1 (B). The alphafold2-predicted 3D structure of full-length FBN1,
showing AA form as a carton (C) or sphere (D). The alphafold2-predicted 3D structure of the N-terminal (1-1100 AA) of FBN1, showing AA form as a
carton (E). The location with a mutation frequency of more than 5 times for Pathogenic (F), Pathogeniclikely (G) or Uncertain (H) group.
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learning classifier to predict high-risk variants for scoliosis to
assess the risk potential of the FBN1 variant labelled with
Pathogeniclikely or Uncertain in the ClinVar database. A high
prediction performance was observed for the classifier trained with
randomly sampled samples of two groups of Pathogenic and
Benign/Benignlikely FBN1 variants. The classifier predicted
179 scoliosis-associated variants which were labeled with
Pathogeniclikely or Uncertain.

Since no gold standard for identifying the association of these
predicted variants with scoliosis and no available tools to predict
such association, more effort was paid to interpret or evaluate the
reliability of the prediction by our deep learning classifier.
Surprisingly, an extremely high similarity in variant types at
cDNA level was observed in the scoliosis-associated variant
difference between the group of recorded data (Pathogenic/
Benign) and the group of predicted data (Positive/Negative),
with an extreme correlation of variant types between the true
and predicted variants. However, the high-frequent variant
distributed differently in FBN1 protein sequence, between the
group of recorded Pathogenic variants (N-terminal) and the
group of predicted scoliosis risk variants (C-terminal).
Interestingly, the predicted 3D structure of FBN1 indicated
regular repeated units of beta-sheet and loop/alpha-helix in
FBN1, and a similar distribution of mutated amino acids in the
three 2D-structure types. Taking together the similar variant
distribution at both mRNA and 2D-structure protein levels for
recorded and predicted variants, the trained CNN classifier in the
present study was reliable in predicting scoliosis risk genotypes,
based on genomic DCR. In recent years, multiple machine/deep
learning predictors have been built to predict various types of
disease phenotypes, based on their genotypes (Gaeta et al., 2024;
Huang et al., 2024; Liu et al., 2024; Schuetz et al., 2024; Shen et al.,
2024). However, it is challenging to predict the phenotype based on
its genotypes, which are significantly different in variant
distribution from the variants in training data with exact
phenotype labels, because most of these models required similar
variant distribution in protein or cDNA sequence. Additionally,
genes are highly similar to time-series data, implying a high
applicability of Recurrent Neural Network, like Long Short
Term Mermory network (LSTM). However, a LSTM classifer
was not learnable, without a descent in gradient, for the
scoliosis high- and low-risk samples, probably due to the small
sample number. Therefore, we transformed genotic information of
FBN1 sequences into a DCR space, with less discreteness. Thus,
DCR-based models would be promising for such type of genotype-
to-phenotype prediction.

5 Conclusion

In summary, scoliosis risk is predictable by deep learning based
on genomic decomposed features of DCR. DCR-based classifier has
predicted more scoliosis risk FBN1 variants in ClinVar database.
DCR-based models would be promising for genotype-to-phenotype
prediction for more disease types.
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