Skip to main content
. 2024 Oct 22;11:1419551. doi: 10.3389/fcvm.2024.1419551

Table 3.

The results of hyperparameters tunning in LGBC-based hybrid models development.

Prediction scenarios Model Hyperparameter
num_leaves max_depth learning_rate n_estimators max_bin
Scenario 1 LGAG 321 285 0.168 317 681,000
LGBE 131 148 0.361 119 289,000
LGGJ 792 45 0.747 796 844,000
LGPO 613 999 0.504 999 1,000
Scenario 2 LGAG 654 213 0.566 813 685,100
LGBE 999 648 0.736 889 753,000
LGGJ 981 539 0.746 822 788,114
LGPO 274 921 0.497 867 66,000
Scenario 3 LGAG 213 286 0.126 681 385,140
LGBE 140 411 0.651 214 293,000
LGGJ 442 845 0.740 226 922,419
LGPO 299 633 0.771 77 253,000