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Editorial on the Research Topic

Endocytic and trafficking events in acute lung injury and
pulmonary inflammation
Lung inflammation and injury remain a major focus of research since the beginning of

the coronavirus disease 2019 (COVID-19) pandemic. Various endocytic and intracellular

trafficking events play a pivotal role in the integrity and physiological functions of the air-

blood barrier but also in the invasion of pathogens, such as, e.g. respiratory viruses. Hence,

disturbances in endocytosis and trafficking across and within alveolar epithelial and

endothelial cells are important drivers of alveolar-capillary barrier dysfunction during

respiratory inflammation and failure. Moreover, interfering with these endocytic/trafficking

processes may serve as rescue measures in life-threatening sequels of lung damage in the

context of acute respiratory distress syndrome (ARDS). Of note, several recent studies have

focused on better understanding of lung cell-specific signaling patterns and endocytic

events, utilizing novel technological advances in complex model systems. This Research

Topic consists of original research manuscripts that enhance our knowledge on the

mechanisms regulating the endocytic machinery during infection, inflammation and

damage of the lung, as well as review articles that summarize most recent advances on

the field.

The review article of Kryvenko and Vadász covers the six major endocytic pathways (1),

namely clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored

protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis and the

subsequent trafficking events that are involved in alveolar-capillary barrier (dys)function

during acute lung injury (ALI) and ARDS. In particular, the role of these internalization

events in viral and bacterial infections of the respiratory tract and in the regulation of

various transporters and junctional molecules during formation and clearance of protein-

rich alveolar edema is described in detail. This manuscript also focuses on major

technological advances, which have facilitated better understanding of intracellular
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trafficking events after endocytosis in various models and phases of

ALI and describes potential novel therapeutic means, targeting

these specific molecular events for patients with ARDS.

Most frequently, ARDS is a consequence of severe viral and/or

bacterial pneumonia (2). Recently, the mechanisms of endocytosis

of influenza A virus (IAV) and severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) by epithelial, and in particular by

alveolar cells, have been intensively studied. An excellent review

article in this Research Topic contributed by Hook and

Bhattacharya covers important determinants of IAV deposition

into the alveolar space, as well as the relevance of alveolar

structure in the internalization process of IAV virions. The article

also describes recent advances regarding the role of the alveolar

glycocalyx and of the epithelial lining fluid (ELF) in IAV attachment

and how post-endocytic events lead to failure of the alveolar-

epithelial barrier. Clearly, further research will be necessary to

assess the potential therapeutic role of interfering with cellular

IAV attachment during initial infection and viral spread.

A key function of the alveolar-capillary barrier is providing

adequate gas exchange that requires a relatively “dry” alveolar

compartment where the epithelium is covered by a thin ELF layer

(3). In contrast, during ARDS the alveolar space is flooded by

protein-rich edema fluid, persistence of which is associated with

worse outcomes (2). The research article of Alberro-Brage et al.

describes a novel mechanism by which IAV in cultured epithelial

cells and in three-dimensional precision cut lung slices impairs

alveolar uptake and thus averts removal of excess protein content

from the alveolar space in vivo. The authors establish the central

involvement of matrix metalloprotease-14 as a negative regulator of

megalin, a major receptor for albumin internalization in the alveolar

epithelium (4, 5), which promotes shedding of the megalin

ectodomain from the cell surface (6), thereby impairing its

function. Therefore, inhibition of metalloprotease-14 may rescue

alveolar protein clearance in the setting of ALI/ARDS.

In case of SARS-CoV-2, infection occurs when the spike protein

of the virus that contains the receptor binding domain (RBD) binds

to the host cell receptor angiotensin-converting enzyme 2 (ACE2)

(7). Of note, patients with chronic lung diseases are more

susceptible for cellular SARS-CoV-2 entry (8) in part as a

consequence of elevated ACE2 expression levels (9). The original

article of Chen et al. demonstrates that hypercapnia (an elevated

level of CO2 in blood and tissues), which is often observed in

patients with chronic lung diseases, increases ACE2 protein

expression and viral infection in cultured human bronchial

epithelial cells and in murine airway epithelium. Of note, similar

effects were observed when bronchial epithelial cells were exposed

to extracts of cigarette smoke, the most common cause of chronic

lung disease. Moreover, both hypercapnia and cigarette smoke

extract increased total cellular and lipid raft-associated

cholesterol, which was found to be relevant for viral entry and

assembly. Further to this notion, inhibition of cholesterol synthesis

and depletion of cellular cholesterol reduced ACE2 expression and

SARS-CoV-2 infection, revealing a novel and pharmacologically

targetable mechanism that may contribute to the poor clinical

outcomes of smokers and patients with advanced lung disease

with hypercapnia upon COVID-19.
Frontiers in Immunology 02
As compared to other etiologies of viral pneumonia, COVID-19

presents with higher levels of vasculopathy, which may lead to an

array of complications including thrombotic events and pulmonary

edema due to loss of alveolar-capillary barrier function (10, 11).

Romero et al. characterized the pathways that are involved in SARS-

CoV-2-triggered vasculopathy and identified a potential novel

therapeutic strategy to ameliorate endothelial dysfunction during

and post COVID-19. The authors found that activity of the

epithelial sodium channel (ENaC), which is also expressed in the

endothelium (12), is markedly inhibited by SARS-CoV-2 RBD.

RBD also increased oxidative stress and production of tissue factor,

causing barrier dysfunction and coagulopathy. Importantly, these

effects could be restored by a TNF-derived peptide, called TIP that

directly binds ENaC. TIP also limited pneumococcal infection,

which was stimulated by SARS-CoV-2. Thus, TIP might represent

a potent therapeutic mean, as it appears to stabilize/activate ENaC

in both the alveolar endothelium and epithelium (13, 14) and may

limit bacterial infections secondary to COVID-19.

Air-blood barrier integrity is also critically dependent on

pulmonary surfactant (PS) that covers the alveolar epithelium,

thereby reducing surface tension, and also plays an important role

in innate immunity of the lung (15). PS is synthetized in the

lamellar bodies (LB) of alveolar type 2 (AT2) cells and consists of

phospholipids, cholesterol and four specific proteins, whereas some

of the lipids that are not synthesized in the LB are transported to it

via the Golgi apparatus (16, 17). While it is clear that PS alterations

are associated with impaired barrier function (18, 19), the

mechanisms that are at play remain less understood. Novel

bioimaging techniques, described in detail in the review article by

Garcia et al., which combine microscopy and spectroscopy, enable

precise temporo-spatial depiction of LB structure and function

during maturation, PS secretion and recycling in two- and three-

dimensional cell culture systems. This is particularly remarkable, as

better understanding of the implicated impairments e.g., during

synthesis and transport to the alveolar surface may lead to

therapeutic options in PS alterations associated with lung diseases.

During the inflammatory phase of ARDS and mechanical

ventilation, an extracellular release of adenosine triphosphate

(ATP) is observed that drives alveolar-capillary barrier

dysfunction and thus, lung edema formation, in part through

activation of purinergic, G-protein-coupled P2Y receptors (20,

21). In their manuscript, Kargarpour et al. convincingly

demonstrate that in the setting of lipopolysaccharide (LPS)-

induced ALI in mice, which triggers an acute recruitment of

neutrophils to the lung; the purinergic P2Y2 receptors drive

inflammation. Furthermore, neutralizing extracellular ATP,

blocking P2Y2 and genetically deleting the receptor in neutrophils

reduced neutrophil recruitment and rescued the inflammatory

phenotype, which may open new avenues for therapy in the

treatment of ARDS.

Endogenous glucocorticoids limit inflammation in ARDS,

however systemic inflammation-associated glucocorticoid

resistance may lessen these effects (22). Mahida et al. study the

role of 11b-hydroxysteroid dehydrogenase type-1 (HSD-1), which

converts inactive cortisone to active cortisol, in both alveolar

macrophages in broncho-alveolar lavage samples from patients
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with sepsis-associated ARDS, in mice in LPS-induced ALI, as well as

in a murine polymicrobial sepsis model (cecal ligation and

puncture). The work establishes that HSD-1 activity of alveolar

macrophages is markedly reduced in these scenarios, leading to

decreased macrophage efferocytosis (phagocytosis of apoptotic

cells), which may contribute to worse outcomes and thus,

identifies HSD-1 as a potential therapeutic target in patients with

sepsis and sepsis-associated ARDS.

Collectively, the articles published in this Research Topic

highlight the pivotal role of alveolar-capillary endocytic and

trafficking events in the pathogenesis and potential therapy of

pulmonary inflammation and injury. Further studies to explore

the therapeutic potential of these pathways are warranted.
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