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Low temperature chilling is one of themajor abiotic stresses affecting growth and
yield of Triticum aestivum L. With global climate change, the risk of cold damage
inwheat production has increased. In recent years, with the extensive research on
wheat chilling resistance, especially the development of genetic engineering
technology, the research on wheat chilling resistance has made great progress.
This paper describes the mechanism of wheat cold damage, including cell
membrane injury, cytoplasmic concentration increased as well as the
imbalance of the ROS system. Mechanisms of cold resistance in wheat are
summarised, including hormone signalling, transcription factor regulation, and
the role of protective enzymes of the ROS system in cold resistanc. Functions of
cloned wheat cold resistance genes are summarised, which will provide a
reference for researchers to further understand and make use of cold
resistance related genes in wheat. The current cold resistant breeding of
wheat relies on the agronomic traits and observable indicators, molecular
methods are lacked. A strategy for wheat cold-resistant breeding based on
QTLs and gene technologies is proposed, with a view to breeding more cold-
resistant varieties of wheat with the deepening of the research.
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1 Introduction

Wheat (Triticum aestivum L.) is one of the world’s top three grain crops. According to
the FAO, around 200 million hectares of wheat will be planted globally with a production of
about 787 million tonnes in 2023. Wheat is the calorie source for one-fifth of the global
population (Pang et al., 2021), therefore, high and stable wheat production plays a crucial
role in global food security. In recent decades, the likelihood of extreme weather on Earth
has increased dramatically as greenhouse gases continue to be emitted (Jiang et al., 2022),
low-temperature freezes occur from time to time, posing a significant threat to wheat
production (Sutka, 2001; Vij and Tyagi, 2007). It occurs not only in the main temperate
wheat-producing regions, but also in subtropical and Mediterranean climatic regions,
covering the main wheat-producing countries such as China, the United States, Canada,
Australia and some parts of South America. In the 25 years since 1990, the frequent
occurrence of wheat freezes has caused severe losses over large areas in the main wheat-
producing regions of central China, with the most severe reductions in yields of up to 30%
(Yang and Yuan, 2014). In the central regions of the United States, statistics from 1955 to

OPEN ACCESS

EDITED BY

Yang Yang,
Shanxi Agricultural University, China

REVIEWED BY

Qinghua Yang,
Northwest A & F University Hospital, China
Hui Zhang,
Shanxi Agricultural University, China

*CORRESPONDENCE

Binjie Gan,
ganbinjie@163.com

RECEIVED 31 July 2024
ACCEPTED 10 October 2024
PUBLISHED 22 October 2024

CITATION

Ma S, Huang X, Zhao X, Liu L, Zhang L and Gan B
(2024) Current status for utilization of cold
resistance genes and strategies in wheat
breeding program.
Front. Genet. 15:1473717.
doi: 10.3389/fgene.2024.1473717

COPYRIGHT

© 2024 Ma, Huang, Zhao, Liu, Zhang and Gan.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Review
PUBLISHED 22 October 2024
DOI 10.3389/fgene.2024.1473717

https://www.frontiersin.org/articles/10.3389/fgene.2024.1473717/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1473717/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1473717/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1473717/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1473717&domain=pdf&date_stamp=2024-10-22
mailto:ganbinjie@163.com
mailto:ganbinjie@163.com
https://doi.org/10.3389/fgene.2024.1473717
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1473717


2010 show that the yield of wheat is reduced by 210 kg per hectare
due to low-temperature frosts (Holman et al., 2011). In the UK and
eastern Australia, there has also been a marked increase in recorded
frosts since the 1950s, causing some damage to wheat production
(Whaley et al., 2004; Zheng et al., 2015). The incidence of frost
damage results in millions of tonnes of food production being lost
each year, with direct economic losses in excess of tens of billions of
dollars. Wheat growth and development will be subjected to more
cold stresses as the global climate continues to change, so improving
varietal cold tolerance is very important in wheat breeding (Pang
et al., 2021).

Wheat is a winter-habituated crop that must experience low
temperatures to complete vernalisation (Fowler and Carles, 1979;
Fowler et al., 1996), during inter-annual growth, they are exposed to
the effects of multiple cold stress. The wheat is in the seedling stage
before the winter, it will appear leaves dry, root damage or even dead
seedlings phenomenon in case of a sudden drop in temperature and
the yields will be also affected. After winter, if wheat is weakly
resistant to cold the low-temperatures can damage plant tissues and
inhibit growth and development (Subedi et al., 1998; Barton et al.,
2014). During the period from nodulation to tasseling, wheat is in a
period of parallel nutritive and reproductive growth, spikes can
become hollow or underdeveloped as a result of frost or “spring
cold” (Limin and Fowler, 2006), which will have a disastrous effect
on wheat production. In summary, wheat is often exposed to low
temperatures at critical stages of growth and development, and data
shows that nearly 85% of the world’s wheat area is affected by spring
cold each year (Ferrante et al., 2021), it also shows the practical
importance of research on cold resistance in wheat for production.
The research on the function of plant cold resistance genes has been
widely carried out with the deepening of research on the mechanism
of plant cold resistance and plant genetic engineering. In this review,
we will summarise the achievements in the mining and utilisation of
cold-resistant genes in wheat and clarify the physiological and
molecular mechanisms of cold resistance, and strategies for
wheat cold resistance breeding will be provided.

2 Research progress of cold resistance
mechanism in wheat

Low temperature affect the physiological and biochemical
responses of plant cells seriously. Numerous studies have shown
that the cold resistance of wheat is closely related to the mobility of
cell membrane, reactive oxygen system and cellular osmoregulation.
The mechanism of damages in wheat under cold stress is shown in
Figure 1. The response to low-temperature involves multiple levels
of regulation in wheat, including transcriptional regulation,
hormonal regulation and signal transmission. These regulatory
processes are quite complex and involve a large number of genes
related to cold resistance.

2.1 Physiological mechanism of cold
resistance in wheat

After suffering from cold damage, wheat cell tissues can be
damaged or even die, mainly due to the destruction of cell

membrane structures (Lyons, 1973). The stability of cell
membranes is determined by the composition of membrane lipid
fatty acids. The stability of cell membrane is determined by the fatty
acid composition of membrane lipids. Generally, a higher content of
unsaturated fatty acids in membrane lipids correlates with an
enhanced plant cold resistance. Therefore, fatty acid desaturase
(FAD)plays a certain role in plant cold resistance (Ishizaki-
Nishizawa et al., 1996; Kodama et al., 1995). The cell membrane
also serves as a sensor and conduit for low-temperature signals,
encompassing calcium signals, protein kinases, phosphatases, and
transcription factors, all of which participate in the cold stress
signaling pathway (Soleimani et al., 2022). Researchers indicated
that the electrical conductivity method for determining the
permeability of cell membranes of winter wheat leaves under
indoor cold stress showed a significant positive correlation with
the cold resistance of wheat in the field (Ju et al., 2012).

The reactive oxygen species (ROS) accumulation and scavenging
system in plants is crucial for maintaining the normal cellular
functions. Generally, the accumulation and scavenging of ROS in
this system is in dynamic balance. Persistent low temperatures can
disrupt this balance, accelerating ROS accumulation and producing
a large amount of free radicals, which in turn cause physiological
disorders within cells (Zeng et al., 2011; Bhattacharjee, 2005). SOD,
per-Oxidase (POD), CAT, and ascorbate per-Oxidase (APX) are
important protective enzymes in wheat (Türkan et al., 2005). They
can scavenge excess ROS and free radicals generated during cold
stress, maintaining the normal growth of wheat (Demiral and
Türkan, 2004).

When encountering low temperature cold damage, the loss of
water molecules in plant cells increases the concentration of cell
fluid, causing damage to the cells themselves. In order to avoid this
kind of damage, the body will actively accumulate some soluble
substances to increase the cell’s ability to absorb water and maintain
normal metabolic functions (Lalk and Dorffling, 1985). The soluble
sugar content of wheat is positively correlated with cold resistance,
and sucrose and fructose play an important role in the cold
resistance of wheat (Kamata and Uemura, 2004; Zeng et al.,
2011). The content of proline (Pro) is positively correlated with

FIGURE 1
Mechanism of damages in wheat under cold stress. ↑ represent
upward; ↓ represent down.
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the cold resistance of wheat. Many results show that when the
temperature is low, the proline content in the wheat body rises,
more water is aggregated on the protein, preventing the protein from
deforming due to dehydration at low temperatures, thereby protecting
wheat cells from damage (Bao et al., 2021; Chen et al., 2007).

2.2 Molecular mechanism of cold resistance
in wheat

Plant cells can respond to low temperature stress by precisely
regulating the expression of transcription factors and effector genes.
These signaling pathways consist of transcription, translation, and
post-transcriptional and post-translational regulatory factors that
induce the expression of functional genes in response to cold
temperatures. Within one of the signaling pathways is a cis-
element known as the C-repeat element/dehydration-responsive
element (CRT/DRE), to which C-repeat binding factors (CBF)
can bind. This pathway is referred to as the CBF-COR signaling
pathway. Studies on a variety of plants have shown that this pathway
makes plants have cold resistance by regulating the expression of
downstream cold-resistant proteins (Ding et al., 2019). CBF
homologous genes in wheat and barley have also been identified
(Mohseni et al., 2012; Skinner et al., 2005). ICE1 (CBF expression
inducer) is a MYC-type bHLH transcription factor and is the most
characteristic transcription activator of CBF genes so far
(Chinnusamy et al., 2003; Lee et al., 2005). Overexpression of
ICE1 can increase the expression of CBFs (Fursova et al., 2009;

Agarwal et al., 2006; Juan et al., 2015). The expression of ICE1 gene
TaICE41 in wheat is induced by cold stress (Badawi et al., 2008; Guo
et al., 2019). The ICE-CBF-COR pathway plays an important
regulatory role in the cold resistance pathway of wheat (Gong
et al., 2020; Caccialupi et al., 2024) and is considered to be the
main cold signal transduction pathway in wheat (Figure 2).

Plant hormones are crucial regulators in perceiving and
transmitting various environmental signals and defense
responses. Abscisic acid (ABA) and jasmonic acid (JA) are the
most studied plant hormones in relation to wheat cold resistance.
Lower temperatures can increase endogenous ABA levels in plants,
participating in cold stress signal transduction and activating the
expression of cold-resistance genes (Zhang et al., 2020; An et al.,
2021; Liu et al., 2013). For instance, the cor gene family members
such as cor6.6, cor15a, cor47, and cor78 are highly expressed due to
increased ABA levels, thereby enhancing plant freeze tolerance
(Hajela et al., 1990). Studies on wheat have found that
endogenous ABA content increases during cold acclimation in
winter wheat, with a rapid rise in ABA levels inducing the
expression of stress-responsive genes and improving freeze
resistance (Liu et al., 2013). Another plant hormone, JA, has also
been recently discovered to play a regulatory role in plant cold stress
responses. Cold stress activates the expression of JA biosynthesis-
related genes (AOC, AOS1, AOS2, and LOX2), increasing JA
content (Hu et al., 2017; Du et al., 2013). Accumulated JA
conjugates with isoleucine to form the active JA-Ile, which is
perceived by the COI1-JAZ co-receptor and promotes the
ubiquitination and degradation of the repressor protein JAZ via

FIGURE 2
Gene mechanism of ICE-CBF-COR pathway in wheat under cold stress.
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the 26S proteasome, thereby activating the ICE-CBF pathway and
inducing the expression of certain cold-responsive genes, enhancing
plant cold tolerance (Hu et al., 2013).

Excessive ROS production in plant cells under stress conditions is
highly reactive and toxic to proteins, lipids, and nucleic acids. ROS in
plants primarily exists in the form of free radicals and non-radicals,
including hydrogen peroxide (H2O2), superoxide anion (O2·-),
hydroxyl radical (OH·-), and singlet oxygen (1O2), etc. Elevated
ROS levels lead to various harmful cytological effects (Nadarajah,
2020), ultimately resulting in cell damage and death (Gill and Tuteja,
2010). On the other hand, the increase in ROS during stress periods is
also considered a signal for the activation of stress response pathways
(Baxter et al., 2014). ROS can also function as a signalingmolecule, the
overaccumulation of ROS at the initial stage of cold stress promotes
the activation of antioxidant enzyme genes such as SOD, CAT, and
APX to eliminate ROS toxicity. Notably, studies in wheat have
demonstrated that the overexpression of the wheat TaCAT gene,
which eliminates excessive H2O2, improves the freeze tolerance of
transgenic plants (Matsumura et al., 2010).

While calcium (Ca2+) is known to enhance stress tolerance
(Malko et al., 2023). In plants, low temperatures induce the
accumulation of intracellular Ca2+ (Yang et al., 2010), and the
calcium/calcineurin (Ca2+/CaM) regulated receptor kinase
CLRK1/2 acts as a sensor for Ca2+/CaM under low temperatures.
It interacts with and phosphorylates MEKK1, triggering the
activation of downstream MPK4/6 and thereby positively
regulating the cold response (Furuya et al., 2013). Cold stress
activates MKK2, which in turn activates MPK4 and MPK6
(Ichimura et al., 2000). Additionally, cold stress activates protein
kinases MPK3 and MPK6, phosphorylates ICE1 protein, and
decreases its protein stability and transcriptional activity, thus
negatively regulating the expression of CBF and the cold
tolerance of plants (Li et al., 2017). Studies in wheat have shown
that Ca2+ induces cold-responsive genes (WCOR413, WCOR410,
WCOR14, and Wrab17) enhanced cold stress tolerance through
maintained cellular redox homeostasis (Malko et al., 2023).
Transformation with the Ta MPK6 gene significantly enhances
the expression of the ICE-CBF-COR pathway genes in
Arabidopsis, improving the plant’s cold tolerance (Yu et al., 2023).

MicroRNA (miRNA) is a class of non-coding small RNA
molecules derived from the genomes of eukaryotic organisms,
mostly ranging from 21 to 25 nt in length. Their main mode of
action is post-transcriptional regulation of target gene expression,
which also plays an important role in plant stress response (Naya et al.,
2014; Tiwari et al., 2020). Using deep sequencing and bioinformatics
prediction methods, miRNAs responding to cold stress have been
identified in various crops andmodel species (Lv et al., 2010; Cao et al.,
2014; Sun et al., 2015). In wheat, overexpression of miR399 can
positively regulate the protein levels of ICE1 and the expression of key
genes CORs in the CBF signaling pathway of plants (Peng et al., 2021).

3 Application of cold resistant genes
and germplasm innovation in
wheat breeding

At present, many studies have explained the physiological and
molecular mechanisms of cold resistance in wheat from different

perspectives, and the research on the genes related to cold resistance
in wheat has also progressed rapidly. Cold resistant genes are a class
of induced genes that can be activated and expressed in large
quantities to produce corresponding cold-resistant substances
only at specific periods and conditions. Cold resistance is a
complex trait involving many physiological mechanisms, which is
the result of the combined action of multiple genes. With the rapid
development of molecular biology technology and its wide
application in the field of plant breeding, several quantitative
trait loci (QTL) related to cold resistance have been mapped by
linkage analysis.

Many studies have confirmed that due to the huge genetic
background of wheat, wheat cold resistance is controlled and
played a role by multiple minor genes. Researchers have
mapped allelic loci related to wheat cold resistance on more
than 10 pairs of chromosomes such as 1B, 1D, 2B, 2D, 4D, 5A,
5D, and 7A of wheat. The DH population of wheat was used to map
QTL for the semi lethal temperature, an index related to cold
resistance traits of wheat, and found a total of five major QTL loci
controlling the semi lethal temperature, which were distributed on
chromosomes 2A, 5A, 1D and 6D of wheat (Båga et al., 2007).
Some studies have also found that there are some alleles on
chromosomes 5A and 5D that regulate the cold resistance of
wheat. At present, QTL mapping loci cover almost all wheat
chromosomes, among which 5A and 5D chromosomes are most
closely related to cold resistance in wheat (Sutka, 1994; Limin
et al.,. 1997), As well as a major-effect QTL related to frost
tolerance was reported located on chromosomes 4A recently
(Bolouri et al., 2023). The vrnl FRL segment of 5A chromosome
in wheat regulates cold resistance in wheat. In common wheat, the
major loci controlling cold resistance (FR-1 and FR-2) have been
mapped to the long arm of chromosome 5 (Galiba et al., 1995; Tóth
et al., 2003). FR-2 coincides with the CBFs gene cluster in wheat
and barley (Miller et al., 2006; Francia et al., 2007) and directly
induces downstream cor/lea gene expression during cold
adaptation (Takumi et al., 2008). A large number of deletions
in the CBF cluster of fr-b2 significantly reduced the cold tolerance
of tetraploid and hexaploid wheat (Pearce et al., 2013). A recent
study reported that two genes named Wcr-3 and Wcr-4 control
cold resistance in wheat, loci on 2B and 2D chromosomes (Lei
et al., 2023).

In order to further explore the molecular mechanism of
winter wheat response to low temperature stress, several cold
resistance genes in wheat were transferred into model plants and
proved to affect its cold tolerance. Genes with cold resistance
function were cloned from wheat as shown in Table 1. Studies
have shown that overexpression of TabZIP1 reduces the MDA
content and electrical conductivity of Arabidopsis at 4°C, and
improves the cold tolerance of Arabidopsis (Lv et al., 2018);
Overexpression of TaMYB56-B transgenic Arabidopsis has a
higher survival rate at 4°C, and the expression of CBF3 and
COR15a was strongly induced (Zhang et al., 2012). A recent
study showed that overexpression of TaMYB4 enhanced the
freezing tolerance of transgenic Arabidopsis, AtCBF1, AtCBF2,
AtCBF3, AtCOR15A, AtCOR47, AtKIN1 and AtRD29A in
transgenc lines was significantly upregulated (Tian et al.,
2023). TabZIP6 was found as a negative regulator of cold
resistance in wheat. The cold tolerance of Arabidopsis thaliana
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overexpressing TabZIP6 at 4 °C was significantly decreased, and
the expression of multiple genes in the CBF-COR cold signaling
pathway was downregulated (Cai et al., 2018). Wheat TaICE41
and TaICE87 are homologous to Arabidopsis AtICE1 genes
(Badawi et al., 2008). TaCBF14 and TaCBF15 play a role in
cold tolerance of spring barley, and transgenic TaCBF14 and
TaCBF15 genes improve the cold tolerance of spring barley
(Soltész et al., 2013). Researchers found that TaMYC2
interacted with TaICE41, activated the downstream CBF-COR
signaling pathway, and positively regulated the freezing
resistance of Arabidopsis thaliana (Wang et al., 2022).
TaMPK3 is also involved in regulating the ICE-CBF-COR cold
resistance module through its interaction with TaICE41,
improving freezing tolerance in wheat (Wang et al., 2024).
TaFAD2.8 genes high expression in response to temperature
stress (Hajiahmadi et al., 2020). Transgenic TaMPK6 gene
significantly reduced the production and accumulation ofROS
in Arabidopsis plants. The expression levels of genes encoding
superoxide dismutase (SOD) and catalase (CAT) and the enzyme
activities of SOD and CAT were significantly increased. The CAT
genes were upregulated by cold stress (Ghorbel et al., 2023).
Overexpression of TaCAT increased the CAT activity of
transgenic rice, eliminated excessive accumulation of H2O2,
and improved the cold resistance of transgenic rice
(Matsumura et al., 2010). The soluble sugar content of winter

wheat seedlings was significantly accumulated (Yu et al., 2008),
and the expression of genes encoding key enzymes in glucose
metabolism was significantly upregulated. The ectopic expression
of wheat TaFBA-A10 gene was showed in Arabidopsis thaliana
could increase the content of soluble sugar by affecting the rate of
glycolysis and Calvin cycle, thereby improving the cold resistance
of Arabidopsis thaliana (Zeng et al., 2011); ectopic expression of
TaTPS11, a gene encoding wheat trehalose-6-phosphate
synthase, in Arabidopsis can increase the frost resistance of
Arabidopsis by catalyzing the expression level of SnRK1 in
sucrose (Peng et al., 2022), and downregulates the expression
of this gene with significantly lower cold resistance than
Arabidopsis wild-types (Lu et al., 2024). Overexpressing the
key enzyme genes TaG6PDH and Ta6PGDH in the PPP
pathway of wheat could improve its cold resistance by
scavenging ROS generated at low temperature (Liu et al., 2019;
Tian et al., 2021). The mechanism of action of some cold-resistant
genes in wheat depends on hormone signal transduction. Lv
found that exogenous MeJA treatment can significantly
increase the expression of transcription factors (TabZIP1,
TaWABI5, TaMYB80, TaNAC2, TaWRKY80) in winter wheat
under low temperature stress, thereby regulating the CBF
signaling pathway to improve cold resistance (Lv et al., 2017;
Lv et al., 2018). Chu identified a SA methyltransferase, TaSAMT1
that converts SA to methyl SA (MeSA) and confers cold tolerance

TABLE 1 Summary of cold resistance genes in wheat.

Resistance
mechanism

Protein types Cloned genes References

Increase cell membrane fluidity FAD (fatty acid desaturase) TaFAD2.8,TaFAB2.15 Hajiahmadi et al. (2020)

Eliminate effects of ROS CAT catalase TaCAT Matsumura et al. (2010), Ghorbel
et al. (2023)

Glucose-6-phosphate
dehydrogenase

TaG6PDH Liu et al. (2019)

6-phosphogluconate dehydrogenase Ta6PGDH Liu et al. (2019)

Increase the content of soluble
sugar

FBA (Fructose-1, 6-bisphosphate
aldolase)

Ta FBA-A10 Zeng et al. (2011)

TPS (trehalose 6-phosphate
synthase)

TaTPS11 Peng et al. (2022), Lu et al. (2024)

Transcription factor MYB TaMYB56-B, TaMYB4 Zhang et al. (2012), Tian et al. (2023)

MYC TaMYC2 Wang et al. (2022)

bZIP TabZIP1, TabZIP6 Lv et al. (2018), Cai et al. (2018)

NAC TaNAC2a,TANAC4a,TaNAC6,TaNAC7,TaNAC13,TaNTL5 Lv et al. (2018)

Cold regulated gene LEA (late embriogenesis abundant
protein)

Wap27,Pvlea218,Wrab17 Takumi et al. (2008)

Cor protein Wcr3,Wcr4,Wcr719,Wcor80,Wcor14, Wcor72 Soltész et al. (2013), Lei et al. (2023)

Wheat cold acclimation protien WCS120, WCS19 Limin et al. (1997)

ICE TaICE41 Badawi et al. (2008)

Hormone regulation SAMT (salicylic acid
methyltransferase)

TaSAMT1 Chu et al. (2024)

Others MAPK (Mitogen-activated protein
kinase)

TaMPK3, TaMPK6 Yu et al. (2023), Wang et al. (2024)
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in wheat (Chu et al., 2024). For another example, under low
temperature, exogenous ABA increased the expression of bZIP1,
NAC2 and several key enzyme genes of sugar metabolism in
wheat (Lv et al., 2018; Liu et al., 2013).

4 Breeding strategies for cold
resistant wheat

Breeding cold-resistant wheat varieties to protect wheat from
low-temperature damage and maintain high and stable yields is of
significant importance in production. However, breeding for cold
resistance in wheat is still at the level of phenotypic selection, the
cloned genes were also only functionally characterized in model
plants. To make more rational and effective use of cold resistance
genes, the following cold resistance breeding strategies for wheat are
proposed (Figure 3).

4.1 Screening for suitable wheat resources
based on cold tolerance traits

Agronomic traits are key factors in wheat cultivars breeding
(Tshikunde et al., 2019). Try harder to collect, identify, and study the
cold resistance of various germplasm resources (commercial
varieties, breeding lines, local varieties, wild relatives, and distant
species) is very necessary, and clarify their genetic characteristics
and traits of resistance. Only by collecting enough germplasm
resources can we explore new diversity of cold resistance genes
for cloning, functional verification and aggregation.

There are a number of methods for evaluating and
characterising cold resistance criteria in wheat (Valluru et al.,
2012; Ou and Wang, 2019). To develop an accurate, fast and
scalable method for identifying cold resistance indexes of wheat,
so as to judge the cold resistance of breeding materials and
germplasm resources through relevant indexes in the field.

FIGURE 3
Strategies used for breeding wheat with cold resistance.
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4.2 QTLs associated with cold resistance

QTLs have great potential for accelerating traditional breeding
processes (Jha et al., 2017). Fine mapping and cloning of cold
resistance genes/QTLs, studying the mechanism of cold resistance
in wheat, and analyzing the regulatory network. Effectively use the
existing cold-resistant genes with identification functions, use
polymerization hybridization and backcross breeding, combined
with molecular marker-assisted selection and generation-adding
breeding techniques, accumulate different cold-resistant genes to
high-yield varieties with excellent comprehensive traits, and create
new materials for high-yield and multi-resistance breeding. On this
basis, different hybrid combinations were combined by conventional
breeding methods to cultivate new varieties with high yield and
durable multi-resistance. Construct various genetic populations and
natural populations, and use current wheat genome sequencing and
molecular marker chips to carry out the mapping of cold resistance
gene QTLs. Develop simple, accurate, and reliable molecular
markers and detection technology systems that can be applied in
practical breeding.

4.3 Functional gene research and new
technology applications

In-depth study of key functional genes is a method to improve
the yield and quality of crops such as wheat. Genome editing
methods, such as CRISPR/Cas9, allowed to manipulate wheat
genome to improve agronomic traits (Kim et al., 2018).
Transgenic and genome editing was carried out to directly create
new varieties of high-yield and high-quality cold-resistant wheat on
the basis of the original excellent large varieties. Some technologies
in non-biological fields also canbe applied to cold resistance in
wheat, such as nanotechnology (Venzhik et al., 2024).
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