
npj | systems biology and applications Article
Published in partnership with the Systems Biology Institute

https://doi.org/10.1038/s41540-024-00455-0

Multi-bioinformatics revealed potential
biomarkers and repurposed drugs for
gastric adenocarcinoma-related gastric
intestinal metaplasia

Check for updates

Gøran Troseth Andersen1,2,3, Aleksandr Ianevski1, Mathilde Resell1, Naris Pojskic4, Hanne-Line Rabben1,
Synne Geithus1, Yosuke Kodama1, Tomita Hiroyuki5, Denis Kainov 1, Jon Erik Grønbech1,2,
Yoku Hayakawa6, Timothy C. Wang7, Chun-Mei Zhao 1 & Duan Chen 1

Biomarkers associated with the progression from gastric intestinal metaplasia (GIM) to gastric
adenocarcinoma (GA), i.e., GA-related GIM, could provide valuable insights into identifying patients
with increased risk for GA. The aim of this study was to utilize multi-bioinformatics to reveal potential
biomarkers for the GA-related GIM and predict potential drug repurposing for GA prevention in
patients. The multi-bioinformatics included gene expression matrix (GEM) by microarray gene
expression (MGE), ScType (a fully automated and ultra-fast cell-type identification based solely on a
given scRNA-seq data), Ingenuity Pathway Analysis, PageRank centrality, GO and MSigDB
enrichments, Cytoscape, Human Protein Atlas and molecular docking analysis in combination with
immunohistochemistry. To identify GA-related GIM, paired surgical biopsies were collected from 16
GIM-GA patients who underwent gastrectomy, yielding 64 samples (4 biopsies per stomach x 16
patients) for MGE. Co-analysis was performed by including scRNAseq and immunohistochemistry
datasets of endoscopic biopsies of 37 patients. The results of the present study showed potential
biomarkers for GA-related GIM, including GEM of individual patients, individual genes (such as RBP2
and CD44), signaling pathways, network of molecules, and network of signaling pathways with key
topological nodes. Accordingly, potential treatment targets with repurposed drugs were identified
including epidermal growth factor receptor, proto-oncogene tyrosine-protein kinase Src, paxillin,
transcription factor Jun, breast cancer type 1 susceptibility protein, cellular tumor antigen p53, mouse
double minute 2, and CD44.

The prevalence of gastric intestinal metaplasia (GIM) is approximately 15%
in those undergoing routine endoscopy in Europe1,2. GIM can be found in
approximately 50% of patients with gastric ulcers and almost 100% of
patients with intestinal type gastric adenocarcinoma (GA), the major sub-
type of gastric cancer3. According to Correa’s cascade4, the progression rate
fromGIMtoGA varies from0.25% to 42%during a course of 5 years5,6, and
this malignant conversion can occur even after H. pylori eradication7,8.

Nevertheless, it remains unclearwhetherGIMglands candirectly transform
intoGAor share a clonal origin9–11, despiteGIMbeing susceptible to somatic
mutations and copy number aberrations commonly found in GA12.

Currently, the American Gastroenterological Association (AGA), the
European Society of Gastrointestinal Endoscopy and the British Society of
Gastroenterology recommend no further intervention against GIM, except
for the eradication ofH. pylori13–15. Of note, in patients with GIM, the AGA
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suggests against routine use of endoscopic surveillance and routine repeat
short-interval endoscopy with biopsies for the purpose of risk stratification.
Based on H&E staining, histological classification of GIM has been sug-
gested, as incomplete GIM (goblet cells without a brush border) was asso-
ciated with a greater risk of progression to GA in comparison to complete
GIM(with thebrushborder), butmore investigationon thepotential benefit
of implementing this routine pathological characterization is needed13,16–19.
Thus, routine endoscopic surveillance with 3- and 5-year intervals is con-
ditionally recommended in patients diagnosed with incomplete GIM or if
there are any additional risk factors, i.e., family history and extensive GIM.
On the other hand, in countries with a high risk of gastric cancer such as
Japan or South Korea, annual endoscopic surveillance is recommended.
Observational studies suggest that advancedGIMand long-term use of acid
suppression are associated with higher risk of GA development after H.
pylori eradication7,20–22.

Biomarkers associated with the progression from GIM to GA could
provide valuable insights into identifying patients with increased risk for
GA. This information could help in the targeted selection of individuals
who would benefit the most from screening and surveillance endoscopy.
While biomarkers such as pepsinogen (I and II) levels are commonly used
in Asian countries, their studies and applications in the United States and
Europe remain limited13. CD10, a brush border protein specific to normal
small intestinal mucosa and absent in the colon23, contrasts with Das1, a
monoclonal antibody that binds colonic epithelial protein24. CD10 and
Das1 have been suggested as potential candidate biomarkers to distin-
guish complete and incomplete GIM based on gene expression data and
immunohistochemistry24. Somatic mutations in GA can be found in
adjacent GIM25. Currently, the discovery of effective cancer biomarkers
poses a challenge due to considerations of predictive efficacy and clinical
application. Rarely can gastric tumorigenesis be attributed solely to an
individual molecule, such as a gene or protein, as GA progression is
believed to arise from the collective interactions of multiple molecules.
Thus, bioinformatics advancements could show promise; for instance,
reports on progression gene signatures for lung cancer and glioblastoma
have emerged from single-cell RNA sequencing (scRNA-seq) and other
transcriptomic analyses26. Single-cell atlases based on scRNA-seq are
increasingly accessible for a variety of tissues, organs, and organisms,
offering new prospects from data mining to gaining biological insights27.
Such single-cell atlases are available for GA and GIM28,29. Nevertheless,
various sets of genes specific toGAhavebeen suggested.Thedifferences in
GA biomarker proposals in these separate studies could be attributed to
several potential reasons, including distinct methods for clinical tissue

sampling, diverse annotation approaches for cell clusters, and disparate
data mining techniques28,29.

In the present study, we aimed to utilize the multi-bioinformatics to
reveal potential biomarkers for a subset of patients with progression from
GIM to GA and to identify the drug targets and accordingly repurposed
drugs. Thus, we compared the microarray gene expression (MGE) of GIM,
GA and normal tissues within the individual patients, enabling to identify
GA-related GIM.We utilized the newly developed computational platform
ScType for cell-type identification based on given scRNA-seq data along
with a comprehensive cell marker database as background information30.
We then created heatmaps of the individual patients and of the pathological
diagnosis with sub-classifications by gastric histological activity (inflam-
mation, epithelial defects, mucosal atrophy, hyperplasia, pseudopyloric
metaplasia, and dysplasia or neoplasia), locations (antrum, cardia, corpus
ventriculi, major and minor curvatures), and cell types (e.g. goblet cells,
metaplastic stem-like cells, chief cells, and cancer cells). Furthermore, we
used bioinformatics including Ingenuity Pathway Analysis (IPA), pagerank
centrality, GO andMSigDB enrichments, HumanProteinAtlas, Cytoscape,
ScType and molecular docking analysis. We found a network consisting of
865 RNAmarkers that might be associated with the progression fromGIM
to GA. Some of these RNAs encode proteins in the network could serve as
potential targets for drug repurposing as well as drug development for the
prevention of the progression from GIM to GA.

Results
GIM and GA displayed convoluted gene expression
matrixes (GEM)
GEM was created according to histology, gastric histologic activity index
(GHAI), and location of lesions (antrum, cardia, corpus, major and minor
curvature) in combination of single cell atlas (including various cell types,
such as goblet cells, chief cells, pit mucosa cells, stem-like cells and immune
cells). It showed convoluted profiles in individual patients and in compar-
isons between GIM, GA and normal tissues (Fig. 1a, b).

GIM displayed higher levels of gene expression than GA
Co-analysis using ScType visualized nine cell types, including cancer cells
and tumor microenvironment-related cells, such as vascular endothelial
cells, smoothmuscle cells, CD8+NKT-like cells, B cells, myeloid dendritic
cells,mast cells, squamous epithelial cells and neuroendocrine cells (Fig. 2a).
Furthermore, it annotated the cell type-related gene expression according to
five pathological appearances, including chronic atrophic gastritis (CAG),
early gastric cancer (EGA), severe intestinal metaplasia (IMS), mild

Fig. 1 | GEM.Of note, the gene expression heatmaps annotated according to histology, GHAI and location of lesions as well as single cell atlas in individual patients (a) and in
GIM, normal and GA (b). Patient numbers (1-16, except 6) and sample numbers below heatmaps were included.
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intestinal metaplasia (IMM), and nonatrophic gastritis (NAG) (Fig. 2b, c).
EGA displayed the lowest gene expression in relation to cancer cells, vas-
cular endothelial cells, smooth muscle cells, myeloid dendritic cells, B cells,
CD8+NKT-like cells, and mast cells among the five pathological appear-
ances.GIM, includingboth IMMandIMS,displayed similar distributionsof
cell-type gene expression in comparison with NAG or CAG. Differential
expression analysis between GIM and GA showed gene profiles and iden-
tified genes that were uniquely expressed in cancer cells, particularly RBP2
expression not in GA but in GIM (Fig. 2d, e).

GIM exhibited different signaling pathways than GA and dis-
played GA-related molecular network
Pathway analysis showed 110 canonical pathways that were either activated
or inactivated in GIM or GA (Fig. 3a, b and supplementary Table S1). It
shouldbenoticed that therewas anegative (albeitweak) correlationbetween
GIM and GA (Fig. 3c). In particular, activated pathways in both GIM and
GA were regulation of cellular mechanics by calpain protease, neuregulin
signaling, IL-22 signaling, Rac signaling, MIF regulation of innate immu-
nity, Fcγ receptor-mediated phagocytosis in macrophages and monocytes,
regulation of elF4 and p7056K signaling, salvage pathway of pyrimidine
ribonucleotides, HGF signaling, ERK/MAPK signaling, Wnt/β-catenin
signaling, p38 mark signaling, role of BRCA1 in DNA damage response,
sirtuin signaling pathway, NRF2-mediated oxidative stress response,
γ-glutamyl cycle, CDK5 signaling, D-myo-inositol-5-phosphate metabo-
lism, glycogen degradation, ephrin receptor signaling, mTOR signaling, IL-
8 signaling, and apelin liver signaling pathway. HIPPO, p53 toll-like
receptor signaling, aryl hydrocarbon receptor signaling, LPS/IL-1-mediated
inhibition of RXR function, EIF2 signaling, and the NER pathway were
inactivated in GIM but activated in GA, whereas fatty acid β-oxidation,
nicotine degradation II and III, estrogen biosynthesis, melatonin degrada-
tion I, the superpathway of melatonin degradation and serotonin degra-
dation were activated in GIM but inactivated in GA.

Microarray gene expression (MGE) revealed 19,223 out of 20,918 gene
IDs and scRNAseq mapped 17,921 out of 22,910 gene IDs. A core analysis

was run on each dataset with the criteria of adjusted p-value < 0.05 and an
absolute log2FoldChange of 1.Co-analysis ofMGEand scRNAseqwas used
to filter the genes in scRNAseq dataset and showed that 1,158 genes were
expressed in both datasets (excluding the genes that were present in more
than one cell cluster). Furthermore, 865 out of 1158 genes had equivalent
IDs in IPA (Table S2).

Pathway enrichment analysis using a combination of three databases,
i.e., Protein-Protein Interaction Networks Functional Enrichment Analysis
(https://string-db.org/), Protein, Genetic and Chemical Interactions
(https://thebiogrid.org/) and IntAct Molecular Interaction Database
(https://www.ebi.ac.uk/intact/home) was performed. A biomarker network
of the 865 genes in connection with the genes/proteins andmetabolites was
created (Fig. 4). Of note, this analysis reveals not only protein-protein
interactions but also genetic and chemical interactions (e.g. elaidicelaidic
acid andD-glocose). Themost influential node wasWnt signaling pathway
which has directly connections with HIPPO signaling, hepatocyte growth
factor (HGF) signaling, CDK5 (pro-apoptotic signaling), Rac signaling, and
EpCAM signaling and indirectly connections with other signaling and
metabolic pathways (Fig. 4).

Furthermore, functional enrichment analysis of the 865 genes using
Cytoscape (including NetworkAnalyzer) was performed. It revealed a
comprehensive network of signaling pathways or terms (Fig. 5, Table S3)
and topological coefficient (Table 1 and Table S4). Of note, there are
overlaps, to a large extent, between the significant pathway and the gene
ontology term. The Cytoscape analysis confirmed (with p < 0.01) the
involvements of Wnt and Wnt-related signaling (Wnt signaling in cancer,
Wnt target genes, Wnt5A-dependent internalization of FZD4, Wnt medi-
ated activation of DVL, Hippo, Yap1, RUNX3 regules Wnt signaling,
catenin Beta 1 (CTNNB1) and biding if TCF/LEF: CTNNB1 to target gene
promoters). It was noticed that ‘lactose synthesis’was nearly 100% involved
(Table S3).

The stability of network in resisting to external interference and attacks
depends on key nodes31. The network topological analysis revealedpotential
key nodes. Of note, cytochrome c-mediated apoptosis, COPI-mediated
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Fig. 2 | UMAP plots.Of note, cell type clusters (a) and annotations according to the
pathological appearances (b, c) and low expression of the RBP2 gene in GA (d) but
high expression in GIM (e). CAG chronic atrophic gastritis, EGA early gastric

adenocarcinoma, IMS severe intestinal metaplasia, IMMmild intestinal metaplasia,
and NAG non-atrophic gastritis.
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anterograde transport, membrane trafficking, vesicle-mediated transport,
laminin interactions and apoptosis were among the top key nodes. Other
key nodes included disorders of nervous system development and axon
guidance, Rasmutation andRAF signaling (Table 1). (for a completed list of
pathways/terms, see Table S4).

Computational predictions of potential drug targets and drug
repurposing
Protein‒protein interactions (PPI) analysis using IPAshowed330out of 865
GIM-related proteins having PPI > 3were identified, particularly, including
epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein
kinase (SRC), paxillin (PXN), Junproto-oncogene (JUN), breast cancer type
1 susceptibility protein (BRCA1), tumor protein P53 (TP53 or p53), mouse
double minute 2 homolog (MDM2) (also known as E3 ubiquitin-protein
ligase MDM2), and CTNNB1 (catenin β1) and CD44 (Fig. 6, Table 2 and
Table S5). It should be pointed out that CD44was selected because CD44 is
an important biomarker of stem cells, particularly in connection with Wnt
signaling32–36. It has been known that Wnt/β-catenin pathway and mucins
play important roles in regulating neoplastic transformation andmalignant
growth, including GA33,37,38. In GIM, CD44 had PPIs with MMP2, MMP7,
MMP9, IFNϒ, SLC9A and CSPGs (Fig. 6). IPA drug repurposing of
approved and investigational drugs/compounds (e.g., existing at www.
clinicaltrial.gov) showed the following targeted drugs: dasatinib with or
without erlotnib, nilotinib, afatinib on SRC, SM1-71 on SRC, JNJ-26483327
on EGFR, Afatinib on EGFR, and ingenol mebutate on protein kinase C
(PKC) family (Fig. 6).

Utilization of the Human Protein Atlas (v23.proteinatlas.org/)39 con-
firmed that the expression of the 8 out 9 proteins (except CD44) in both
normal/GIM and GA tissue samples (Fig. 7a). Apparently, quantity of
immunostaining was higher inGA ( < 75%) thanGIM ( < 25%or 25–75%).
Of note, tissue microarray data at the Human Protein Atlas didn’t show
CD44 (Fig. 7a, Table S6). Thus, our immunohistochemistry showed that the
expression of CD44was expanded frombasal part ofmucosa of normal and
GIM stomachs to upper part of mucosa of GA stomach (Fig. 7b).

The gene expression of these 9 proteins showed that PXN and CD44
were up-regulated in both GIM and GA (q < 0.001, n = 15), SRC and
CTNNB1 were upregulated in GA but not in GIM (q < 0.001 for SRC and
q = 0.05 forCTNNB1,n = 15), and JUNwas upregulated inGIMbut down-
regulated in GA (q < 0.001, n = 15) in comparison with the normal tissues
from the same stomachs (Table S6). Furthermore, scRNAseq showed these
proteins (except BRCA1) were expressed in goblet cells in addition to other
cell types (Table S6).

The molecular docking studies on FDA-approved compounds against
EGFR, SRC, PXN, JUN, BRCA1, p53 (monomer and dimer), MDM2,
CTNNB1 and CD44 demonstrated high binding affinities of these com-
pounds to the respective proteins. After initial analysis, 15 compounds were
selected for each protein based on their binding affinities followed by a
structural analysis of the interaction between the protein of interest and
selected components, including the biding affinity and interacting residues
(length, number and type of bonds). Accordingly, top five compounds per
target protein were chosen based on their binding affinity to further analyze
their interactions and the nature of the bonds formed. PyMOL provided
excellent visualization of these interactions, revealing a detailed and
extensive array of bonds between the selected compounds and the amino
acids of the target proteins (Table 3). Out of 1453 compounds, the five
highest binding affinities for EGFR were obtained for E155, gliquidone,
gossypol, troglitazone, ZINC3830383. In regard to SRC, the highest binding
affinity was noticed in cases of ZINC3830342, ZINC3830343,
ZINC3830371, ZINC3830384, and ZINC3830386. For PAX, accolate, def-
ferin, troglitazone, ZINC1612996 and ZINC3830342 were found. For the
case of Jun the highest binding affinities were obtained for differin, E155,
ZINC3830369, rolapitant and ZINC1612996. In regard to BRCA1 the
highest binding affinities were noticed for ZINC3830342, ZINC3830343,
ZINC3830384, E155 and differin. The highest binding affinity in case of p53
dimer were obtained for E155, E155, ZINC607700, ZINC1612996,
ZINC3830342 and ZINC3830384. When it comes to MDM2 the highest
binding affinities were acquired for rolapitan, risperdal, accolate,
ZINC3830371 and ZINC3830372. The highest binding affinity for
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CTNNB1 was obtained for ZINC3830383, E155, ZINC3830369,
ZINC3830385 and ZINC3830386. For CD44 the highest binding affinities
were acquired in cases of these molecules E155, ZINC3830342,
ZINC3830383, and ZINC3830430 (Table 3). It should be noticed that
ZINC3830342 and ZINC3830343 are relatively identical compounds with
the same molecular characteristics, but with a slight difference in the
structural formula, and therefore identical results are obtained (Table 3).
Considering that it was a blind docking analysis, the active/binding sites
were not taken into account when creating the gridbox. The listed com-
pounds (E155, rolapitant, ZINC1612996 and ZINC3830369) bound and
showed the highest binding affinity for a specific region, although interac-
tions with similar residues were achieved, the number and length of
hydrogen bonds were different.

Discussion
Biomarkers are needed in risk assessment, screening, differential diagnosis,
determination of prognosis, prediction of response to treatment, and
monitoring of progression from GIM to GA40,41. Particularly, the bio-
markers specifically tailored forGA-relatedGIMcould serve as an ideal tool
in establishing personalized endoscopic surveillance programs and
treatments.

It has been proposed that the incomplete GIM by pathological eva-
luation might be useful as a biomarker for GA-related GIM, as there is an
association between the incomplete GIM and GA in comparison with the
complete GIM. Some facilities (particularly in Japan) have recently

attempted to perform Endoscopic Grading of Gastric Intestinal Metaplasia
such as the Operative Link on Gastric Intestinal Metaplasia Assessment
(OLGIM)42–44. However, it is practically a challenge due to economic con-
cern, invasiveness to the patients and complex task against clinical daily task
flow. The literature also shows high activities in identified potential bio-
markers of incomplete GIM45,46. In the present study, our aim was not to
identify biomarkers for complete vs incomplete GIM rather than to identify
biomarkers of GA-related GIM. Accordingly, the study subjects were GA
patients and the study samples of GIM and GA were collected within the
same stomachs of GA patients.

By creating GEM based on pathological diagnosis and single cell atlas,
wewere able to show ‘the gene expression profile’ for the individual patients
or subgroups of patients. However, it was difficult to visualize specific
clusters of genes forGIM-relatedGAwithin theuser’s knowledgedomain. It
would be possible in the future if powerful visual analytics can be developed,
e.g. on linking a reordered GEM heatmap and dual 2D projections of its
rows and columns, which can be recomputed conditioned by subsets of
genes and/or samples selected by the user during the analysis47.

We further utilized our computational platform ScType (developed by
AI et al. 30) to create UMAP plot and found that the gene expression by
“cancer cells” and immune cells (such as dendritic cells, B cells,
CD8+NKT-like cells and mast cells) appeared to be lowest in GA than
non-dysplastic lesions including chronic atrophic gastritis, GIM and non-
atrophic gastritis. Presumably, the inflammation in the tumor micro-
environment suppressed the gene expression by the cancer cells, particularly

Fig. 4 | Network of molecules highlighting 23 proteins/genes/metabolites characteristic to GA-related GIM, particularly in connection to stem cell-related Wnt-HIPPO
genes. Note: sizes of nodes and genes reflect numbers of interactions.
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at the early stage. It was unexpected, as it has been well documented that
inflammation predisposes to the development of cancer and promotes all
stages of tumorigenesis48. It was also unexpected, as it is known that chronic
inflammation facilitates tumor progression, whereas acute inflammatory

may stimulate the maturation of dendritic cells and antigen presentation,
leading to anti-tumor immune responses49, and the tumor-promoting
inflammation may be regarded as the host’s defense against malignancy50.

Furthermore, we found RBP2 expression in GIM but not in GA.
Retinoblastoma binding protein 2 (RBP2), also known as cellular RBP2
(CRBP2), belongs to the family of intracellular lipid-binding proteins
known as fatty acid-binding proteins (FABPs). Several reports showed that
RBP2 stimulated various processes such as HIF-1α–VEGF-induced
angiogenesis in non-small cell lung cancer through the Akt pathway51,
malignant progression of GA through the TGF-β1-(p-Smad3)-RBP2-E-
cadherin-Smad3 feedback circuit52, induction of stem-like cancer cells by
promoting epithelial-mesenchymal transition in renal cell carcinoma53, and
initiation of ER and IGF1R-ErbB signaling in tamoxifen resistance in breast
cancer54. However, it should be kept inmind that attributing a single gene as
a biomarkerwould be risky, considering thatGA is neither amonogenic nor
a polygenic malignancy.

By concentrating on pathways as potential biomarkers for GA-related
GIM, we used Ingenuity Pathways Analysis (IPA) to create the bar graphs
consisting of 110 canonical signaling pathways. We found that while the
activated signaling pathways in GIMmight be deemed biomarkers for GA,
some of these pathways were inactivated in GAwhen compared with GIM.
Thus, more attention should be given to the dynamic changes in the pro-
gression from GIM to GA. Furthermore, we found that it was a moderate
negative correlationbetweenGIMandGA,whichwasunexpected asGIM is
believed to be the primary precancerous lesion in GA tumorigenesis. As
shown in the literature, only some GIM, but not all, is considered to be the
precursor of gastric cancer55. In the present study, more samples and
patients are needed for establishing the topologic association and more
importantly the causality between GIM and GA in the future.

It should be kept inmind that association should not be confused with
causality; if GIM causes GA, then the two are associated (dependent).
However, associations can arise between variables in the presence (i.e., GIM

Fig. 5 | Network of signaling pathway characterized as ‘Team’ for GA-related GIM.Note: sizes of nodes reflect percentages of team-related genes per pathway and links
presents the connections between pathways (a); percentages of gene/team (b) (for detailed percentages of each team, see Table S3).

Table 1 | Selected key nodes with topological coefficients

Term Tn p-Value* UNIQUER_ID

Cytochrome c-mediated apoptotic
response

1.0 0.0307 HSA:111461

COPI-mediated anterograde transport 1.0 0.0323 HSA:6807878

Membrane Trafficking 0.95 0.0171 HSA:199991

Vesicle-mediated transport 0.95 0.0099 HSA:5653656

Laminin interactions 0.93 0.0298 HSA:3000157

Apoptosis 0.92 0.0322 HSA:109581

Programmed Cell Death 0.92 0.0487 HSA:5357801

Disorders of Nervous SystemDevelopment 0.87 0.0330 HSA:9697154

Asparagine N-linked glycosylation 0.84 0.0281 HSA:446203

Intrinsic Pathway for Apoptosis 0.75 0.0364 HSA:109606

Apoptotic factor-mediated response 0.75 0.0281 HSA:111471

Signaling by RAS mutants 0.52 0.0459 HSA:6802949

Paradoxical activation of RAF signaling by
kinase inactive BRAF

0.52 0.0459 HSA:6802955

Signaling downstream of RAS mutants 0.52 0.0459 HSA:9649948

Signaling by RAF1 mutants 0.52 0.0351 HSA:9656223

Axon guidance 0.50 0.0167 HSA:422475

Tn: topological coefficient (Tn = avg (J(n,m)) / kn.).
*p Value: Corrected with Benjamini-Hochberg.
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causes GA) and absence (i.e., they have a common cause) of a causal
relationship56. By performing the functional enrichment analysis whichwas
based on our data in combination with public available databases, we have
created the biomarker network and the network of signaling pathways of
GA-related GIM. We foundWnt/β-catenin pathway to be one of the most
important biomarkers for GA-related GIM. This was in line with the lit-
erature of Wnt signaling in regulating neoplastic transformation and
malignant growth, including GA33,37,38. By additional functional annotation
and validation analysis (e.g. immunohistochemistry), we found gastric stem
cell marker CD44 as GA-related GIM. These findings may support the
notion thatGIM is the primary precancerous lesion inGA tumorigenesis, as
both share the “cause” (i.e., hyperactivity ofWnt signaling and the presence
of tissue-resident stem cells)32–34. Wnt signaling is often implicated in stem

cell control as a proliferative and self-renewal signal. Mutations in Wnt
genes or Wnt pathway components lead to specific developmental defects,
while various diseases, including cancers, are caused by abnormal Wnt
signaling57. Although molecular targeting of the Wnt signaling system has
been proposed and trialed for the treatment of various cancer types without
significant success yet58,59, Wnt signaling, particular CD44, should be
potential target in the future.

In addition to drug targeting on individual hub/key genes and proteins
that are highly expressed in GA-related GIM, we should consider the key
nodes that keep the stability of network as potential targets. By topological
analysis, we found several potential nodes for GA-related GIM, e.g., apop-
tosis (such as cytochrome c-mediated apoptosis and laminin interactions
and apoptosis) and intracellular trafficking (such as COPI-mediated ante-
rograde transport, membrane trafficking, vesicle-mediated transport).
Indeed, dysregulation of apoptosis has beenwell recognized as a hallmark of
cancer cells due to mutations in the extrinsic, intrinsic, p53, and the related
signaling pathways. Accordingly, current efforts have beenmade to develop
agents that target apoptotic pathways either directly or indirectly60. Tar-
geting membrane trafficking particularly in connection withWnt signaling
has also been proposed as a strategy for cancer treatment61.

The results of the present study by the topological analysis revealed the
nervous system development and axon guidance as potential key node in
GA-related GIM, which was in line with our previous studies that
demonstrated the role of vagal nerve in gastric tumorigenesis33,62. Another
key node was RAS/RAF/MAPK pathway. Indeed, RAF inhibitors (RAFi)
combined with MEK blockers have been taken as an FDA-approved ther-
apeutic strategy for numerous RAF-mutant cancers, including melanoma,
non-small cell lung carcinoma, and thyroid cancer63. It would be of interest
to include GA-related GIM as a prevention strategy.

We utilized IPA analysis of PPI and identified the hub proteins
including EGFR, SRC, PXN, Jun, BRCA1, TP53, MDM2 and CTNNB1.
CD44was included not because of its PPI but the biological importance in
GIM-related GA as forementioned. The hub proteins were initially
identified by deploying the Causal Network Analysis, enabling us to

Fig. 6 | Protein-protein interactions. Note: Hub proteins in GIM-GA “niche” (indicated in dashed line) and links with the repurposed drugs (Rx, indicated in orange)
revealed by IPA analysis.

Table 2 | Hub proteins with drug-repurposing targets

Protein name Degree Drugs

EGFR 92 JNJ-26483327, Dasatinib, dasatinib/erlotinib,
afatinib/dasatinib, dasatino/nilotinib,

SRC 124 Dasatinib, dasatinib/erlotinib, dasatino/nilotinib,
afatinib/dasatinib, SM1-71, ingenol mebutate
(via STAT3)

PXN 48 SM1-71

JUN 30

BRCA1 66

P53 119

MDM2 77

CTNNB1 83

CD44 13

Multi-proteins Ingenol mebutate

The hub proteins are ranked by their degree of connectivity within the network.
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identify master regulators (hubs) that act directly upon other dataset
molecules, or through one ormore intermediate upstream regulators. The
analysis was performed using data from gene expression profiling and
then validated by tissue microarray (i.e., immunohistochemistry) that are
publicly available at the Human Protein Atlas and immunofluorescence
for CD44. Furthermore, by performing drug-hub protein targeting
interactions, we identified the following potential repurposed drugs for
treatments of GA-related GIM.

Dasatinib is a tyrosine kinase inhibitor (Sprycel; Bristol-Myers
Squibb) and has been used for the treatment of chronicmyeloid leukemia
and Philadelphia-chromosome-positive acute lymphoblastic leukemia64.
Recent studies suggest an alternative mechanism of action for dasatinib,
which involves augmenting the population of functionally active CAR
Tcells65. SM1-71 is amultitargetedkinase inhibitor that includesMKNK2,
MAP2K1/2/3/4/6/7, GAK, AAK1, BMP2K, MAP3K7, MAPKAPK5,
GSK3A/B, MAPK1/3, SRC, YES1, FGFR1, ZAK (MLTK), MAP3K1,
LIMK1, and RSK266. JNJ-26483327 is a multitarget tyrosine kinase
inhibitor67. Adapalene, also known as CD271 and differin, belongs to the
3rd generation of retinoids that were approved by the Food and Drug
Administration (FDA) in 1996 to treat acne vulgaris. A recent study using
in silico, in vitro, and in vivo models suggested that adapalene could be
used for treatment of multiple myeloma and Leukemia68. Irinotecan
liposome has been approved by FDA on Feb. 13, 2024 as first-line treat-
ment of metastatic pancreatic adenocarcinoma (https://www.fda.gov/
drugs/resources-information-approved-drugs/fda-approves-irinotecan-
liposome-first-line-treatment-metastatic-pancreatic-adenocarcinoma).
Gliquidone has been widely used for the treatment of type 2 diabetes.
There was no report yet for treatment of cancer but possibly for neu-
roinflammatory disease69, which may share some common features with
GIM as shown in this study. Gossypol, also called AT-101, has been tested
in clinical trials as a single agent or in combination with standard therapy
for various cancer types, showing a trend toward increased overall survival
and progression-free survival70. Troglitazone as a PPARγ ligand has been
reported to exhibit antiproliferative effects and/or enhance cancer
immunotherapy71,72. Other drugs, such as rolapitant that is used as an
antiemetic in oncology73, accolate for chronic treatment of asthma, and
risperidal for mental/mood disorders, and other ligands shown in Table 3
will be of interest in searching for repurposing to treat GIM.

Computational molecular docking has been used as a tool for the
discovery of repurposed drugs74,75. By the docking analysis with PyMOL, we
identified and visualized five compounds per target protein based on their
binding affinity, the nature of the bonds formed and interactions. We
presented the repurposed drugs and believed that the information will be
useful not only for the identified drugs but also for development of new
drugs as potential ‘prototypes’, particularly for CD44 which has the highest
binding affinities with the following molecules including E155,
ZINC3830342, ZINC3830383, and ZINC3830430.

Taken together, the methods and the results of this study could help in
the targeted selection of GIM individuals who would benefit the most from
screening and surveillance endoscopy and in the development of treatment
for GA-related GIM. The multi-bioinformatics included GEM, ScType on
scRNA-seq, IPA, Cytoscape, tissue microarray at HPA, Gene set enrich-
ment analysis (GSEA) (also called functional enrichment analysis or path-
way enrichment analysis) and molecular docking analysis, in addition to
preliminary analyses with pagerank centrality, GO and MSigDB enrich-
ments (data not shown).

This study has at least the following four limitations. First, after
identifying potential biomarkers, the next step is validation. One of possible
in vivo models would be the INS-GAS mice in which the majority are with
high risk of spontaneous progression fromGIM toGA76. Unfortunately, we
didn’t have capacity at the time of validating the repurposed drugs as
reported in the present study. Furthermore, we didn’t find the individual
specific biomarkers thatwere correlatedwith the spatial progression ofGIM
to GA in terms of express levels and grade of dysplasia, and we were unable
to identify the individual specific biomarkers that were upregulated in
patients with nondysplastic GIM that later progress to GA. Therefore, we
proposed the GEM, signaling pathways, molecular network and network of
signaling pathways. Presumably, this study (together with other studies in
the literature) might contribute to the future development of AI/ML-sup-
ported in silico models in prediction of the progression of GIM patients to
GA. Second, the repurposed drugs proposed in this study should be assessed
in detail in terms of risk-benefit analysis. Many of the drugs that were listed
in the present study are fairly toxic and would not be recommended (either
alone or in combinations) unless the risk of GA progression is extremely
high. However, it would be possible to take these repurposed drugs and
other molecular ligands as “lead compounds or prototypes” for the drug

)MIG(44DC)lamroN(44DC CD44 (GA)

EGFR SRC PXN JUN BRCA1 P53 MDM2 CTNNB1 CD44

Normal/GIM

GA

a

b

Fig. 7 | Representative immunohistochemistry of 9 hub proteins.Note: tissuemicroarray at Human Protein Atlas (a) and immunofluorescent staining (b) in which CD44
is indicated in green and Ki67 in red, and CD44 on goblet cells in (arrows). Bar = 100 μm.
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Table 3 | The hub proteins and ligand (repurposed drugs) interacting residues

Protein Ligand Binding affinity
kcal/mol

Interacting residues

EGFR E155 (ZINC3830332) −10.3 Leu718;Gly719; Asp837 (3.7 Å); Arg841 (2.3 Å); Asn842, Ile878 (2.7 Å); Lys879 (2.3 Å) (four hydrogenbonds)

Gliquidone (ZINC1482077) −10.6 Gly762 (3.3 Å); Met766; Ala859 (3.5 Å); Leu861 (2.7 Å) (three hydrogen bonds)

Gossypol (ZINC3775575) −10.5 Gly721; Ala722 (3.1 Å); Gly724 (3.0 Å); Lys745 (2.0 Å); Met793 (3.4 Å) (four hydrogen bonds)

Troglitazone (ZINC968276) −10.5 Met793 (1.9 Å, 3.3 Å); Asp837 (3.3 Å); Arg841 (2.7 Å, 3.2 Å, 3.6 Å); Asn842 (2.0 Å) (forming a total of seven
hydrogen bonds)

ZINC3830383 −10.6 Lys745 (2.7 Å); Asp837 (3.4 Å, 3.8 Å); Arg841 (three hydrogen bonds)

SRC ZINC3830342 −12.2 Met343 (3.8 Å); Gly346; Ser347 (3.3 Å); Ala392 (two hydrogen bonds)

ZINC3830343 −12.2 Met343 (3.8 Å); Gly346, Ser347 (3.3 Å), Ala392 (two hydrogen bonds)

ZINC3830371 −10.6 Arg162; Pro363 (3.5 Å); Asp367 (3.8 Å); Gly397 (3.4 Å); Asp399 (2.4 Å, 3.3 Å, 3.9 Å); Leu400 (2.0 Å), (seven
hydrogen bonds)

ZINC3830384 −11.6 Gln277 (3.4 Å); Cys279; Phe280 (3.0 Å); Lys297 (2.3 Å, 2.8 Å); Thr340; Ser347 (2.3 Å, 3.5 Å); Ala392 (3.7 Å),
Asn393; Asp406 (3.3 Å, 3.9 Å) (nine hydrogen bonds)

ZINC3830386 −11.5 Gln277 (3.4 Å); Gly278; Cys279 (2.0 Å); Lys297 (2.1 Å, 2.9 Å, 3.0 Å); Asp388 (3.4 Å); Arg390 (2.0 Å); Asn393;
Asp406 (3.0, 3.9 Å) (nine hydrogen bonds)

PXN Accolate (ZINC896717) −5.9 Met616 (3.5 Å); Asp617 (3.4 Å, 4.0 Å); Asp618 (2.6 Å); Leu622 (3.4 Å); Asp625 (four hydrogen bonds)

Differin (ZINC3784182) −5.9 Leu622 (4.0 Å; Asp625 (3.3 Å) (two hydrogen bonds)

Troglitazone (ZINC968276) −5.9 Asp617 (3.7 Å); Asp618 (1.8 Å); Asp625 (two hydrogen bonds)

ZINC1612996 −6.0 Leu623 (without forming hydrogen bonds)

ZINC3830342 −5.9 Asp620 (without hydrogen bonds)

JUN Differin (ZINC3784182) −8.2 Arg272 (3.1 Å); Arg276; Glu281 (3.7 Å) (two hydrogen bonds)

E155 (ZINC3830332) −8.1 Ser269; Arg272 (2.1 Å, 3.6 Å); Glu275 (3.4 Å); Arg276 (2.6 Å); (four hydrogen bonds)

Rolapitant (ZINC3816514) −8.1 Ser269 (2.5 Å); Arg276 (2.6 Å) (two hydrogen bonds)

ZINC1612996 −8.1 Arg272 (3.1 Å); Arg276; Glu281 (3.7 Å) (two hydrogen bonds)

ZINC3830369 −8.1 Arg276 (2.2 Å, 3.3 Å); Glu281 (3.2 Å) (three hydrogen bonds)

BRCA1 ZINC3830342 −9.3 Trp1782; Gln1785 (without hydrogen bonds)

ZINC3830343 −9.3 Trp1782; Gln1785 (without hydrogen bonds)

ZINC3830384 −8.7 Sep406 (3.2 Å, 3.3 Å, 3.4 Å); Leu1657 (3.4 Å, 3.8 Å); Pro1659 (3.8 Å); Asn1678; Lys1702 (2.0 Å) (seven
hydrogen bonds)

E155 (ZINC3830332) −9.1 Sep406 (3.3 Å, 3.5 Å); Leu1657 (3.2 Å, 3.7 Å); Thr1658 (3.5 Å), Arg1670; Asn1678 (2.8 Å) (six
hydrogen bonds)

Differin (ZINC3784182) −8.6 Gln1811 (2.6 Å); Arg1835 (2.2 Å); Glu1836 (3.7 Å) (three hydrogen bonds)

p53 (dimer) E155 −7.7 Gln100 (3.1 Å); Ala138 (3.4 Å); Thr140 (3.1 Å); Ser166 (3.1 Å, 3.4 Å); Asp186; Arg196 (1.9 Å); Glu198 (3.8 Å);
Asn235 (3.7 Å) (eight hydrogen bonds)

ZINC607700 −10.6 Lys164 (3.9 Å); Asp186 (3.4 Å); Arg196 (2.7 Å) (three hydrogen bonds)

ZINC1612996 −10.5 Gln100 (2.1 Å); Lys164 (3.8 Å); Ser166 (2.0, 2.8 Å); Val197 (3.8 Å); Gly199 (2.5 Å); Asn200 (1.9 Å); Asn235
(3.8 Å) (eight hydrogen bonds)

ZINC3830342 −10.6 Thr150; Asp228 (without hydrogen bonds)

ZINC3830384 −10.4 ZINC3830384 -10,4 - Leu137 (3.4 Å), Lys139 (2.2 Å), Ser166 (2.3, 2.6, 2.8 Å),Gln167,Asp186 (3.5 Å), Arg196
(2.1, 3.1 Å), Glu198 (3.4 Å) (nine hydrogen bonds)

MDM2 ZINC3830371 −10.2 Gln72 (3.2 Å, 3.4 Å, 3.6 Å); His96 (3.0 Å); Ile99; Tyr100 (four hydrogen bonds)

ZINC3830372 −10.4 Gln18 (3.3 Å); Ile19 (2.2 Å, 3.6 Å); Gln24 (2.7 Å); Val93 (3.9 Å); His (2.1 Å) (six hydrogen bonds)

Accolate ZINC896717 −10.3 Gln24, Leu54 (3.5 Å); His96 (one hydrogen bond)

Risperidal ZINC538312 −10.6 Ile19 (3.5 Å); Pro20; Gln24 (2.4 Å); Leu54 (3.2 Å); Val93 (three hydrogen bonds)

Rolapitant ZINC3816514 −10.7 Leu54 (3.5 Å) (one hydrogen bond)

CTNNB1 ZINC3830383 −9.2 His223, His260, Asn261, Lys292, Asp295, Asp299, Tyr333, Thr339, Arg342

E155 −9.1 Asp249, Ser250, Thr289, Asn290

ZINC3830369 −8.9 Asn290, Asp299, Thr339, Arg342

ZINC3830385 −8.6 Gln266, Gly268, Ala269, Lys270, Met271, Tyr306, Gly307, Asn308

ZINC3830386 −8.6 His260, Ala295, Asp299, Lys335, Thr339, Arg342

CD44 E155 (ZINC3830332) −9.2 Lys42 (2.2 Å, 2.9 Å); Arg45 (1.8 Å, 3.3 Å); Tyr46 (3.1 Å, 3.7 Å); Ser47; Ser117 (2.1 Å); His118 (2.6 Å, 2.7 Å);
Arg167 (2.5 Å); Asp172 (3.7 Å) (11 hydrogen bonds)

Irinotecan (ZINC1612996) −9.5 Asn29; Glu41 (3.6 Å); Glu79 (3.4 Å); Arg155 (two hydrogen bonds)

ZINC3830342 −9.9 Glu41; Cys81 (2.4 Å) (one hydrogen bond)

ZINC3830383 −9.5 Arg33 (2.9 Å); Phe60 (3.8 Å); Asn125 (1.9 Å, 2.4 Å, 3.4 Å, 3.6 Å); Ser127 (2.4 Å, 2.7 Å, 3.5 Å); Thr138 (nine
hydrogen bonds)

ZINC3830430 −9.3 Asn29 (2.9 Å, 3.6 Å); Val30; Thr31; Tyr34 (2.1 Å); His39 (3.0 Å); Glu79 (3.8 Å); Arg94 (1.9 Å, 2.2 Å, 2.6 Å); Asn
(2.1 Å); Arg155 (nine hydrogen bonds)
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development for treatment of GA-related GIM. Third, based on the results
of this study and the literature, we proposed a hypothesis that GIM andGA
share the common tissue-resident stem cells, leading to the progression
from GIM to GA. One of possible validation methods could be organoid
models of GIM vs. GA. Forth, the interpretations of the results reported in
the present study (including main and supplementary results) were limited
due to consideration of the length of Discussion.

Methods
Patients and study design
This study has been performed in accordance with the Declaration of
Helsinki and approved by the Regional Committees forMedical andHealth
Research Ethics Central Norway (REK 2012-1029). The surgical samples
were taken from 16 GA patients at St. Olav’s Hospital. The stomach spe-
cimens were taken from four pre-determined positions in corpus (major
and minor curvature), cardia and antrum per stomach (Fig. 8), including
tumors, adjacent non-tumor tissues, and distanced non-tumor tissues,
immediately after gastrectomy during 2005 to 2010. All patients were
diagnosed histologically as primary gastric adenocarcinoma of stage I-IV.
Patients have since been followed-up for five years at St. Olavs Hospital,
Trondheim, Norway. TNM status was defined, and samples were classified
according to Lauren’s classification, (Intestinal, diffuse or mixed/combined
type), WHO classification (tubular, papillary, mucinous and poorly cohe-
sive), WHO grading (well, moderately or poorly differentiated). All histo-
logical sampleswithoutones fromonepatient (no. 6) due to a technical error
were reviewed according to the Japanese pathological classification. Samples
were assigned gastric histopathology scoring including inflammation, epi-
thelial defects, oxyntic atrophy, epithelial hyperplasia and dysplasia and an
overall GHAI score. The samples from patient no. 6 did not undergo
pathological evaluation and were not analyzed further. Thus, 15 patients
were included for gene expression profiling. One or more of the four tissue
samples displayed the tumor, and the remaining tissue samples showed a
“normal” appearance. The samples were then evaluated histologically and
subjected to Illumina microarray gene expression. In addition, the tissue
biopsy samples were obtained as routine medical diagnosis by endoscopy
from patients with gastritis and/or gastric cancer and were subjected to
pathology assessment. Total eight samples from eight patients were used for
the immunofluorescent staining ofCD44 at TokyoUniversityHospital, and
the three representative samples were used in this study. Ethics protocol was
approved at Tokyo University Hospital and written informed consent was
obtained from all patients.

Multi-bioinformatics
Illumina microarray gene expression data were extracted as an Excel
document, while the control data results were extracted. Data wrangling
and normalization were performed with R version 4.1.1 and the tidyverse
package version 1.3.1. The data frame was filtered using the sample vector
list containing the patient samples that were not used for further analysis
andwas then saved as a text file to be imported into lumi. The control data
were similarly imported from a text file to the data frame of control before
it was filtered and saved as a text file. Lumi version 2.44.0 was used to filter
the unexpressed genes from thedata. Geneswith detection threshold< 1%
in 10 or fewer samples were removed. A limit of 11 was set because the
smallest group is GIM, which contains 11 samples. The patient pathology
was imported as pdf (pathology dataframe) and filtered to be used as a
designmatrix. Any flawed samples were removed before the sampleswere
filtered and categorized as GA, GIM or normal. Samples were categorized
as cancer if they had a pathological evaluation as GA or a biopsy classi-
fication of 2 out of 5, where a biopsy classification of 1 is certain tumor
tissue. Samples were categorized as GIM if they were not classified as GA
but had a histopathological scoring that indicated intestinal metaplasia.
Samples were categorized as normal if they were neither classified as GA
nor GIM. After categorization, a new column concerning the sample
pathology was made.

A single-cell transcriptomic atlas of premalignant lesions and earlyGA
was modified for data visualization and analysis. All genes that had an
adjustedp value above 5%were removed.Genes found inmore thanone cell
type were removed when using the single-cell transcriptome biomarkers as
cell type biomarkers for the tissue data. In this way, only the RNAs that were
not significant in any other cell typewould be usedwhenmaking a heatmap
or when utilizing cell type-specific clustering. Genes without a match in the
sample data frame were cross-referenced with the UniProt knowledgebase.
The genes from the single-cell transcriptomics were then sorted to coincide/
align with the microarray data. The data of the single-cell transcriptomic
atlaswere also used to confirm thefindings by using twodifferent datasets in
Seurat version 4.0.4. Cells expressing less than 400 genes, more than 7000
genes or cells containing more than 20% genes correlated to the mito-
chondria were filtered out.

The housekeeping genes CTBP1, CUL1, DIMT1L, FBXW2, GPBP1,
LUC7L2, OAZ1, PAPOLA, SPG21, TRIM27, UBQLN1, ZNF207, AGPAT1,
B2M, CAPN2, CYCC (CCNC), PMM1, SDHA, RPL29, RPL29-B2M, and
B2M-GAPDH were used for normalization using geNorm, a computional
method, from ctrlGene version 1.0.1. It should be noted that OAZ1 was
removed from the normalization due to high intensity output. SPG21 was
removed from the normalization due to a very low expression value. The
data were also normalized with DESeq2 version 1.32.0. (It should be
mentioned that the effects of different normalization methods on the out-
comes were not included in the present study).

Seurat version 4.0.4 was used to perform dimensional reduction.
Normalized data from the patients were inputted into Seurat and scaled,
clustered and plotted through Seurat functions: CreateSeuratObject, Sca-
leData, FindVariableFeatures, RunPCA, FindNeighbors, FindClusters,
RunUMAP and RunTSNE. The clustering methods performed were
UMAP and tSNE. Important parameters included 1) selection.method =
vst, 2) nfeatures = 5000, 3) dims = 1:10 and 4) perplexity = 10. Heatmaps
were created by ComplexHeatmap version 2.8.0. The differential equations
were made with both DESeq2 and limma. The single-cell transcriptomic
atlas was tested in DESeq2, whereas themicroarray data were tested in both
DESeq2 and limma.

The tissue and single-cell transcriptomedatasets and theirdifferentially
expressed genes (DEGs) were imported into IPA (Qiagen). The microarray
data mapped 1 9223 of 2 0918 gene IDs, and the single-cell transcriptome
mapped 17921 if 22910 gene IDs to equivalent IDs in IPA. A core analysis
was then run on each dataset with the criteria of an adjusted p value < 0.05
and an absolute log2FoldChange of 1. Each dataset was considered for their
signaling pathways. A comparison analysis was performed between the
scRNA-seq and the background-corrected lima processed dataset.

GEM
ScType

Cytoscape
HPA

CopyKat
Pagerank

GO-
MSigDB

Molecular 
docking

Poten�al 
biomarkers

Data prepara�on 
in R

Fig. 8 | Study design showing multi-bioinformatics used for analysis of surgical
biopsies (4 samples per stomach = total 60 samples from 16 patients), single-cell
RNA sequencing from 13 patients91, immunohistochemistry from 19 patients.
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A co-analysis of all patient samples was performed with ScType to
visualize cell populations and the cell type abundance for each tissue type30.
To define the subset of cancerous cells, aneuploidy analysis was performed
using CopyKat. The underlying idea is that gene expression levels of many
adjacent genes can provide depth information to infer genomic copy
number in that region, and cells with extensive genome‐wide copy number
aberrations (aneuploidy) are considered cancer cells. In the case of the raw
fastq files or BAM file, real variant calling was performed to validate the
subset of cancer cells in consideration of CopyKat, which is well correlated
with SNV calling, especially for solid tumors30. Furthermore, to investigate
latent disease‐related regulatory changes that are invisible based on clus-
tering or differential expression analysis, regulatory networks from single-
cell data and quantify gene centralities were inferred. PageRank centrality
was calculated to identify the nodes with high Pagerank centrality, indi-
cating “popular” genes involved in multiple regulatory pathways. GO and
MSigDB enrichments were performed to visualize overrepresentation of
KEGG_CELL_ADHESION_MOLECULES_CAMS77. Network graph was
built using igraph v1.4.3 and visualized with ggplot2 v3.3.6.

Functional enrichment analysis was performed using Protein-Protein
Interaction Networks (https://string-db.org/), Protein, Genetic and Che-
mical Interactions (https://thebiogrid.org/) and IntAct Molecular Interac-
tion Database (https://www.ebi.ac.uk/intact/home) and Cytoscape 3.10.

The Human Protein Atlas was used, including pathology data with
immunohistochemisty using semi-quantitative tissuemicroarrays based on
The Human Protein Atlas version 23.0 and Ensembl version 109 and RNA
single cell read count data based on 31 datasets (https://www.proteinatlas.
org/)39,78–84.

Blind docking analysis was performed using 100 random compounds
from the FDA-approved drug list. The three-dimensional crystal structures
of target proteinswere retrieved from theRCSBProteinDataBank (PDB) in
PDB format85. These proteins include the epidermal growth factor receptor
(PDB ID: 5U8L), proto-oncogene tyrosine-protein kinase Src (PDB ID:
8XN8), paxillin (PDB ID: 5W93), transcription factor Jun (PDB ID: 5T01),
breast cancer type 1 susceptibility protein (PDB ID: 4Y2G), tumor protein
p53 (PDB ID: 8A31), E3 ubiquitin-protein ligaseMDM2 (PDB ID: 4MDN),
and CD44 antigen (PDB ID: 5SC3). Initially, these structures were in
complex formations with other molecules. To facilitate further analysis,
protein preparation was performed using AutoDock Tools 1.5.686, which
involved removing water molecules, adding polar hydrogen atoms, and
assigning Kollman charges. Following these modifications, the structures of
the target proteins were converted from PDB to PDBQT format. Addi-
tionally, AutoDock Tools 1.5.6 was utilized to define a grid box for each
protein, setting the stage for subsequent docking simulations. The grid box
dimensions for EGFR were 48 ×49 x 61 Å and it was centered at 5.549,
-6.743, and -25.974. For SRC the dimensionswere set to 64×62 x 66 Åand it
was centered at 23.298, 0.183, and 15.596. For PAX the grid box dimensions
were 24 ×24 x 24 Å, centered at 3.757, -7.759 and 32.776. The grid box
dimensions for Junwere 68×70x 68 Åand itwas centered at -16.564, 21.969
and 24.614. For BRCA 1 the dimensions were 68 ×50 x 40 Å, centered at
-26.133, 15.257 and -27.353. For p53 the grid box dimensions were 40 ×48 x
50 Å, centered at 98.225, 80.184 and -29.347. The grid box dimensions for
MDM2were 36 ×34 x 44Å and it was centered at -14.982, 0.643 and 1.031,
while forCD44 the dimensionswere set to 36×48x 40 and itwas centered at
0.933, -0.201 and 5.715. For each analysis the value of spacing (ångstrom)
was set to 1.0. Three-dimensional structures of FDA approved drugs were
available in the ZINC database87. Compounds were initially downloaded in
the appropriate SDF format and then prepared and converted to PDBQT
format using OpenBabel 3.1.1 software with default settings. During this
preparation phase, various adjustments were applied to the ligands,
including the addition of charges, hydrogen atoms, assignment of atom
types, conversion of bond types, and establishment of the root. It is
important to highlight that the default settings of OpenBabel generate the
molecule’s 3Dstructure in aneutral statewithout considering any ionization
states, a featuremaintained in thePDBQTformatof the ligands employed in
this study88. Molecular docking simulations were conducted utilizing

AutoDock Vina 1.1.2, employing an energy range of four and an exhaus-
tiveness value of 3289. The interactions between the receptors and the chosen
compounds were subsequently visualized and analyzed using
PyMOL 2.5.490.

Data availability
All data used in this study are available within the manuscript and the raw
data will be provided per request.
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