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Identifying biomarkers able to discriminate individuals on different health trajectories is crucial to 
understand the molecular basis of age-related morbidity. We investigated multi-omics signatures of 
general health and organ-specific morbidity, as well as their interconnectivity. We examined cross-
sectional metabolome and proteome data from 3,142 adults of the Cooperative Health Research in 
South Tyrol (CHRIS) study, an Alpine population study designed to investigate how human biology, 
environment, and lifestyle factors contribute to people’s health over time. We had 174 metabolites and 
148 proteins quantified from fasting serum and plasma samples. We used the Cumulative Illness Rating 
Scale (CIRS) Comorbidity Index (CMI), which considers morbidity in 14 organ systems, to assess health 
status (any morbidity vs. healthy). Omics-signatures for health status were identified using random 
forest (RF) classifiers. Linear regression models were fitted to assess directionality of omics markers 
and health status associations, as well as to identify omics markers related to organ-specific morbidity. 
Next to age, we identified 21 metabolites and 10 proteins as relevant predictors of health status and 
results confirmed associations for serotonin and glutamate to be age-independent. Considering organ-
specific morbidity, several metabolites and proteins were jointly related to endocrine, cardiovascular, 
and renal morbidity. To conclude, circulating serotonin was identified as a potential novel predictor for 
overall morbidity.
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Non-communicable diseases (NCDs) are the leading cause of morbidity and premature mortality globally1. Age 
itself is the leading predictor for most NCDs: NCD prevalence increases with age and multiple diseases tend to 
cluster among older individuals2. Common biological processes triggered by molecular damage and modified by 
cellular and systemic responses drive biological aging and modify risks for multiple diseases in a tissue-, organ- 
and system-specific manner3. In turn, these health outcomes feed back into the underlying biological processes 
impacting the rate of aging and enhancing the risk for further disease4. It is therefore important to enhance 
our understanding of the molecular basis of age-related diseases to improve measures for disease prevention 
and general health5. Omics-based biomarkers provide insights into the molecular processes driving functional 
decline, they also help monitoring health trajectories, age-related physiological decline and disease onset6. Such 
biomarkers can also support the development of prevention strategies targeting those processes and provide 
surrogate endpoints in intervention studies5. The goal is early identification of individuals at higher risk of 
diseases, who will benefit most from such preventive interventions7.

Protein biomarkers have the advantage of being direct biological effectors of the underlying genomic 
background7. Serum metabolomics on the other hand provides a snapshot of general physiological state of an 
organism, and is influenced by genetic, epigenetic, and environmental factors8,9. For instance, Tanaka et al. 
(2020)7 identified a proteomic signature of aging involving 76 proteins and predicting accumulation of chronic 
diseases and all-cause mortality. You et al. (2023)10 developed a disease specific proteomic risk score, which 
stratified the risk for 45 common disease conditions, resulting into an equivalent predictive performance over 
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established clinical indicators for almost all endpoints. Similarly, Gadd et al. (2024)11 demonstrated the utility 
of proteomic scores in predicting several 10-year incident outcomes beyond factors, such as age, sex, lifestyle 
and clinically relevant biomarkers, showing the relevance of early proteomic contributions to major age-related 
diseases. Pietzner et al. (2021)12 used untargeted metabolomics to investigate signatures of multimorbidity and 
found that 420 metabolites are shared between at least two chronic diseases. A recent work demonstrated the 
potential of metabolomic profiles as a multi-disease assay to inform on the risk of many common diseases 
simultaneously. For 10-year outcome prediction of 15 selected endpoints a combination of age, sex and the 
metabolomic state was equal or outperformed established predictors13.

Advances in different omics technologies and computing capabilities have also enabled the integration of 
multi-omics data to capture the complex molecular interplay of health and disease14. In TwinsUK, using data 
from 510 women, Zierer et al. (2016)15 integrated four high-throughput omics datasets and demonstrated the 
interconnectivity of age-related diseases by highlighting molecular markers of the aging process, which might 
drive disease comorbidities.

Here, we aimed to identify multi-omics signatures of general health among adult individuals using cross-
sectional data from the population-based Cooperative Health Research in South Tyrol (CHRIS) study, an Alpine 
population study designed to investigate how human biology, environment, and lifestyle factors contribute 
to people’s health over time. We specifically included targeted serum metabolomics16 and plasma proteomics 
data17. The Cumulative Illness Rating Scale (CIRS) based Comorbidity Index (CMI)18, reflecting disease status 
and severity in 14 relevant organ systems, was used to assess health status by classifying individuals into having 
any morbidity (CMI ≥ 1) or being healthy (CMI = 0). We then applied predictive models using a random forest 
classifier to determine metabolite and protein markers of health status and investigated differences in abundances 
of the relevant markers using linear regression models. Further, overall health status is a broader condition 
affecting multiple organ systems, for which the combination of systems affected by morbidity can vary across 
individuals. We therefore complemented our analysis by linear regression models investigating associations and 
inter-dependencies between CIRS organ-domain specific morbidity, such as the endocrine-metabolic or the 
renal domain, and individual proteins or metabolites .

Results
The main analytic sample consisted of n = 3,142 adult individuals from the CHRIS study with available 
metabolomics and proteomics data. The AbsoluteIDQ® p180 kit from Biocrates (Biocrates Life Sciences AG, 
Innsbruck, Austria) was used for metabolite quantification in fasting serum samples16. The high abundance 
plasma proteome was determined using the Scanning SWATH mass spectrometry-based approach17. We first 
present the study sample’s main characteristics by health status (any morbidity vs. healthy) and the relationships 
between the co-occurring comorbidities. Next, we provide findings from the random forest (RF) analysis, which 
was complemented by multiple linear regression analyses to better evaluate actual differences in abundances of 
each significant metabolite and protein from the RF analysis by health status, independent of age and sex. Finally, 
we investigated associations between organ specific morbidity and all available metabolites and proteins using 
linear regression models.

Health status and characteristics of the study sample
The characteristics for the main analytic sample are presented in Table  1. The CIRS organ domains most 
completely described by the available data (completeness ≥ 50%) were the hypertension, cardiac, respiratory, 
neurological, renal, vascular, endocrine-metabolic, hepatic and psychiatric/behavioral domains (Table 1). The 
remaining domains had < 50% completeness and in general a lower proportion of unhealthy individuals was 
observed for these domains (Table  1). Among all individuals, 56% (n = 1,751) were affected by at least one 
morbidity condition (CMI ≥ 1). As expected, these were on average older than healthy individuals (CMI = 0; 
Table 1; Fig. 1). The top five organ domains affected by health problems were the hepatic, vascular, hypertension, 
endocrine-metabolic and the respiratory domain, with 27.4%, 14.9%, 12.8%, 10.3%, and 8.8% of morbidity 
prevalence estimates, respectively. We additionally provide the characteristics for the CHRIS cohort, regardless 
of available omics data, to confirm the robustness of main characteristics and estimated disease prevalences in 
our analytic sample. These are reported in Supplementary Table S1 and Figure S1.

Next, we explored relationships between the 14 CIRS domains through ordinary correspondence analysis 
(OCA; Fig. 2), for which information was encoded as a binary variable in the analysis (no morbidity, morbidity). 
We observed proximity between the hypertension, renal and endocrine domains, the cardiac and the vascular 
domains, and between the neurological and the psychiatric domains. To compare the robustness of the 
comorbidity relationships we present the OCA analysis results for the CHRIS cohort in Supplementary Figure 
S2.

Multi omics signatures of health status
To avoid confounding of results due to the impact of medication17, we performed the analysis on metabolite 
and protein abundances adjusted for use of medications that were not considered in the CIRS definition 
(Supplementary Table S2).

For the RF analysis we built a model including age, sex, 174 metabolites and 148 proteins as predictors. 
Overall, NModel = 100 RF models were generated, each containing NTree = 500 trees per model, using repeated 
random subsampling with 80% training and 20% validation set sizes, respectively. We compared the performance 
measures using the area under the receiver operating curve (ROC AUC), as well as the Matthew’s correlation 
coefficient (MCC) and MCC-F1. The RF model showed moderate performance (AUC = 0.747, 95% Confidence 
Interval (CI) = 0.743, 0.751; Fig. 3; MCC and MCC-F1 are presented in Supplementary Figure S3). In addition, 
we built models that included varying sets of the predictors, which were (a) age and sex, (b) age, sex and 
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metabolites, (c) age, sex and proteins, and (d) age, sex, metabolites, proteins. When comparing differences in 
mean AUCs and mean MCCs, the metabolomics/proteomics-based models (b, c,d) generally showed greater 
performance over the model including age and sex only.When comparing the different omics-based models, 
statistically significant differences in performance were found, but these differences were not robust across the 
two performance measures AUC and MCC. A detailed performance comparison of these models is presented 
in Supplementary Text S1.

We next selected individual features (i.e., age, sex, metabolites or proteins) based on their importance (as 
expressed as mean decrease in Gini Index) and computed p-values for each feature’s Gini Index from an empirical 
background distribution. We selected a feature if it was at least 50 times significant at the level of α = 0.05 and 
obtained 33 features, including 21 metabolites and 10 proteins, with age being the most important and sex the 
least relevant for predicting health status (Fig.  4a). Among the top ten omics markers were the metabolites 
serotonin, glutamate, hexose, three acylcarnitines (C18:1, C16:1, C16), ornithine, and the proteins CFH, A2M 
and IGFALS. The medication-adjusted abundance distributions of these metabolites and proteins stratified by 
health status are presented in Fig. 4b. Individuals with any morbidity had lower mean abundance of serotonin, 
taurine and lysoPC C18:2, and higher mean abundance of all other metabolites. Regarding proteins, individuals 
with any morbidity had lower mean abundances of A2M, IGFALS, IGHM, and F2, and higher abundance of 
CFH, C4BPA, A1BG, APOH, AFM, and RBP4.

To better characterize the actual association between health status and each significant metabolite and protein 
from the RF analysis, we performed separate regression analyses with their abundance as the response variable 
and health status (any morbidity vs. healthy), age and sex as the explanatory variables, allowing us to evaluate the 
differences in abundances of these markers by health status independently of age or sex. Coefficients for health 
status were extracted from these models and are presented in Fig. 5 and Supplementary Table S3. In order to 
account for multiple hypothesis testing, we applied a Bonferroni correction by multiplying the p-values by the 
number of performed tests (n = 31 metabolites and proteins). Metabolites and proteins were considered relevant 
if their adjusted p-value was smaller than 0.05 and if the difference in abundance was larger than the data set-
specific observed technical variance of that marker (see Methods for details). Individuals with any morbidity had, 
on average, 22% lower mean abundance of serotonin and 12% higher abundance of serum glutamate. Twelve 
other markers (C18:1, C16:1, lyso PC a C18:2, PC aa C32:1, tyrosine, taurine, hexose, kynurenine, AFM, CFH, 
RBP4, and A1BG) passed the multiple-testing correction, however, the observed differences in abundances did 
fall within the range of the technical variability and were thus not considered significant16. Given that age was the 
strongest predictor for health status in the RF model, we further investigated and compared the coefficients for 

Overall Healthy Any morbidity Completeness c

Sample size, n (%) 3,142 1,391 (44%) 1,751 (56%)

Age, mean (SD) 46.5 (16.7) 39.0 (13.9) 52.5 (16.3)

Comorbidity Index, mean (SD) 1.04 (1.34) 0 1.86 (1.30)

Sex, n (%)

 Females 1,748 (55.6%) 868 (62.4%) 880 (50.3%)

 Males 1,394 (44.4%) 523 (37.6%) 871 (49.7%)

Morbidity in CIRS domains, yes (%)

 Hepatic 861 (27.4%) 861 (49.2%) 59

 Vascular 467 (14.9%) 467 (26.7%) 62

 Hypertension 403 (12.8%) 403 (23.0%) 100

 Endocrine-Metabolic 325 (10.3%) 325 (18.6%) 74

 Respiratory 278 (8.8%) 278 (15.9%) 71

 Upper Gastrointestinal 168 (5.3%) 168 (9.6%) 44

 Psychiatric and behavioral 151 (4.8%) 151 (8.6%) 53

 MBJd 141 (4.5%) 141 (8.1%) 48

 Renal 132 (4.2%) 132 (7.5%) 59

 Cardiac 110 (3.5%) 110 (6.3%) 71

 Neurological 82 (2.6%) 82 (4.7%) 66

 Lower Gastrointestinal 67 (2.1%) 67 (3.8%) 44

 Genitourinary 58 (1.8%) 58 (3.3%) 33

 EENTe 11 (0.4%) 8 (0.6%) 32

Table 1. Characteristics of the main analytic sample with information on health status (any morbidity vs. 
healthy)a and CIRS domain specific morbidityb. aHealth status was assessed through the Cumulative Illness 
Rating Scale (CIRS) Comorbidity Index (CMI) by classifying individuals as having any morbidity (CMI ≥ 1) or 
being healthy (CMI = 0). bCIRS domain specific morbidity is defined as having a score ≥ 2 in the given domain. 
cCompleteness presents the coverage of the necessary information available in the CHRIS Study with regard to 
the CIRS guidelines expressed in percentages. dMBJ=Musculoskeletal, bones and joints. eEENT= Ears, eyes, 
nose and throat.
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age and health association from the regression models. For some markers, such as citrulline, abundances were 
almost entirely explained by age and the coefficient for the association with health status from the regression 
model was only very small, and not significant. For others, such as serotonin and glutamate, associations with 
health status were strong, even in these age-adjusted models, suggesting an age-independent association of these 
metabolites with health.

Metabolomic and proteomic signatures related to CIRS domain specific morbidity
We additionally evaluated associations between CIRS organ-specific morbidity and all available metabolites 
and proteins. To do so, we implemented separate regression models for medication adjusted abundances of 
all 174 metabolites and 148 proteins as response variable and with each CIRS domain as well as age and sex as 
explanatory variables, and evaluated whether markers were shared across - or specific for any domain (Fig. 6; 
Supplementary Table S4). In total, 83 significant omics-disease associations were identified, passing both 
significance criteria (Bonferroni correction for multiple testing, consideration of technical variability), with 
40 metabolites and 17 proteins being significant for ≥ 1 CIRS domain. Associations were observed with the 
cardiac, vascular, hypertension, endocrine-metabolic, renal, hepatic, psychiatric, neurological, respiratory and 
lower gastrointestinal and genitourinary domains (Fig. 6). Eleven metabolites (serotonin, glutamate, isoleucine, 
taurine, dihydroxyphenylalanine, several glycerophospholipids and acylcarnitines) and three proteins (F2, 
C3, A2M) were shared across multiple domains. For example, serotonin was related to the cardiac, vascular, 
hypertension and psychiatric systems, and glutamate to the hypertension, endocrine-metabolic, respiratory and 
hepatic domains. The proteins F2 and A2M were related to the cardiac, vascular, and the renal domains, and 
C3 to the hypertension and endocrine-metabolic domains. Overall, phosphatidylcholines and sphingolipids 
were all negatively associated with morbidity conditions in the related CIRS domain, whereas for acylcarnitines 
positive associations were observed. The directionality of biogenic amines and amino acids was not consistent 
across classes but remained consistent across CIRS domains. For proteins, negative associations were observed 
with APOB, APOD, APOM, IGHM, CD5L, PON1, FCN3, F2, C4BPA, IGHG2 and IGKC, whereas positive 
associations were found with SERPINA1, AFM, VTN, C3, HP, SERPIND1 and A2M. In general, all metabolites 
and proteins that were significantly associated with multiple domains showed consistent effect directions, being 
either negative or positive.

Fig. 1. Distribution of health status and age in the main analytic sample. (A) Age distribution (y-axis) by 
Comorbidity Index values, which range from 0–9 (x-axis). The x-axis additionally provides information on the 
total number of participants with each corresponding index value. The Comorbidity Index value expresses the 
total number of CIRS organ domains scoring ≥ 2. (B) Absolute distribution of “Any morbidity” (no, yes) by age 
group. Red bars represent the number of participants with any morbidity in the respective age group, whereas 
the number of healthy subjects is shown in blue in this stacked bar plot (C) Age distribution by morbidity 
conditions (no, yes) in the specific CIRS domains.
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Discussion
In this cross-sectional analysis of CHRIS study data we identified age and 31 metabolites and proteins 
predicting overall health status (any morbidity vs. healthy) in adults using a random forest classifier. These 
markers included 21 metabolites (5 biogenic amines; 4 amino acids; 6 acylcarnitines; 5 glycerophospholipids; 
and hexose monosaccharides), and 10 plasma proteins. Subsequent regression analyses confirmed a sizeable 
association of health status with both serotonin and glutamate, which was independent of age and sex. Analyses 
on single CIRS domains further identified multiple metabolite- and protein-disease associations, most being 
related to cardiovascular, hypertension, endocrine-metabolic and renal morbidity, revealing strong molecular 
interconnectivity across these related domains.

Several studies have investigated omics markers of aging, longevity6,19, aging-related chronic diseases7,11–13,20,21, 
but only few have integrated multi-omics data with regards to general health assessment15,22. Independent of 
the approach used, great heterogeneity exists in the included omics technologies, protein and/or metabolite 
coverage, analytic tools as well as the outcome of interest, which makes comparison of studies challenging. In our 

Fig. 2. Biplot of ordinary correspondence analysis presenting relations between the 14 CIRS domains. 
Information on each domain was encoded as a binary variable (no morbidity, morbidity). Each data points 
represents one individual. CIRS domains with a stronger relation have longer (size consistency) and closer 
(direction consistency) loadings.
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study, multi-omics RF models identified several metabolites and proteins relevant for predicting health status 
(any morbidity vs. healthy).

Among the age-independent predictive metabolites was serotonin, which is involved in the regulation of 
energy, glucose and lipid metabolism. Changes in the serotonin system are known risk factors for many age-
related diseases, such as diabetes and cardiovascular disease23,24, which was also observed in our study. Up to 
95% of serotonin is produced in the gut, and only 5% of serotonin is synthesized by neurons, mainly in the central 
nervous system24. Although serotonin does not cross the blood-brain barrier, intestinal serotonin release causes 
neuronal activation in the brain stem, thus indirectly affecting the brain23. No other study has linked serotonin 
as a healthy aging marker per se. However, serotonin is a tryptophan derivative, and as inflammation and stress 
activate the tryptophan metabolism through the kynurenine pathway25, this consequently causes decreased 
production of serotonin26. The age associated upregulation of kynurenine and downregulation of serotonin 
therefore indicate a relevant role of tryptophan metabolism in inflammaging and aging27. Although tryptophan 
was included in the metabolomics panel in this study, it was not identified among the selected metabolites 
in the RF model. These results indicate a robust relation between health and circulating serotonin levels, but 

Fig. 3. Performance evaluation of NModel = 100 random forest models including as predictors age, sex, 174 
metabolites and 148 proteins to classify health status (any morbidity vs. healthy) represented as ROC AUCs. In 
the plot each validation run is shown as a gray line with the average curve shown in black.
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the role of tryptophan metabolism and related pathways, and the putative causal relationships deserves further 
investigation.

Glutamate was also identified as an age-independent predictor for health status. This amino acid has been 
previously associated with physical frailty in elderly individuals28, supporting our findings. It has further been 
linked to cardiovascular disease and has been suggested to be a potential biomarker of abdominal obesity and 
metabolic risk29. Glutamate is an important excitatory neurotransmitter in the brain, and although concentrations 
in the brain are much higher than in plasma, as the blood brain barrier is not very permeable to glutamate30, it 
is also one of the most abundant amino acids in the liver, kidney and skeletal muscle, showing great metabolic 
versatility31. Glutamate plays a key role in protein synthesis and degradation32 and is a by-product of the 
catabolism of branched chain amino acids29. By linking amino acid and carbohydrate metabolism glutamate 

Fig. 4. Evaluation of importance for significant features identified through the random forest models including 
as predictors age, sex, 174 metabolites and 148 proteins, for health status (any morbidity vs. healthy). #: Rank 
of the specific feature. Predictor significance was estimated by permutation testing, which generates NModel 
= 100 background distributions, yielding 100 p-values for each predictor variable. Box plots are color-coded 
by the number of times a p-value was significant for such a variable (p < 0.05): red, all 100 runs returned a 
significant p-value; orange, between 80 and 99 runs returned a significant p-value; blue, between 50 and 79 
runs returned a significant p-value. Panels are restricted to features that are significant in at least 50% of all 
runs. Density plots are scaled to have the same width, a median of zero (0) (horizontal bar) and standard 
deviation of one (1) for the healthy group. For comparability, the any morbidity group data have been scaled to 
the standard deviation of the healthy group. (a) Mean decrease in Gini Index for significant features. (b) Violin 
plots presenting scaled abundance distributions stratified by health status for significant features identified 
through RF, ordered by importance from left to right.
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supports energy production, which has further implications for insulin secretion32. More specifically, glutamate 
is also a source of alpha-ketoglutarate, which plays a key role in energy metabolism and aging processes and that 
has been implicated in improved life and health span33–36. In this study the morbidity group is associated with 
higher levels of circulating glutamate, which might reflect a depletion of alpha-ketoglutarate relative to healthy 
individuals.

Other relevant markers (metabolites hexose, C18:1, C16:1, lyso PC a C18:2, PC aa C32:1, tyrosine, taurine, 
kynurenine, and proteins AFM, CFH, RBP4, A1BG) were determined with the RF model, and the age 
independent associations confirmed by linear regression, but their difference in abundances was lower than the 
technical variance observed for these markers in the present data set. We provide further discussion of those 
markers in Supplementary Text S2.

When looking into organ-specific morbidity, most health conditions in our study were related to the hepatic 
domain, followed by the vascular, hypertension, endocrine-metabolic and the renal domains. Using OCA, we 
observed closer relatedness between the renal, hypertension and endocrine-metabolic, as well as the vascular 
and cardiac domains. Our analyses linking omics markers to specific CIRS domains supported such connections. 

Fig. 5. Volcano plot for the differential abundance of metabolomic and proteomic markers of health status 
(any morbidity vs. healthy). Coefficients represent the log2-difference in average concentrations between the 
groups.
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For example, we observed the metabolites serotonin, glutamate, taurine, isoleucine, three glycerophospholipids 
(lysoPC a C17.0/18.1/18.2), and two acylcarnitines (C3, C6 (C4)-1-DC) and the proteins C3, APOB, F2, A2M 
and HP as common markers among the cardiac, vascular, hypertension, endocrine-metabolic, renal but also the 
respiratory domains. The co-occurrence of type-2 diabetes and cardiovascular diseases is very common, and its 
high degree of connectivity has been found with other diseases as well37. In addition, cardiovascular and kidney 
disease are closely interrelated and disease of one organ is known to cause dysfunction of the other38. Remaining 
molecular signatures were domain specific showing no connections among each other, such as the proteins 
VTN, APOD and a set of other amino acids (valine, leucine, alanine) being only related to the endocrine-
metabolic domain. Such associations have also been reported previously in the literature39–41. Untargeted 
metabolomics analysis in the prospective, population-based EPIC-Norfolk study identified 420 metabolites that 
were shared among two or more chronic diseases12, further observing high connectivity among cardiometabolic 
and respiratory diseases across different biochemical classes of metabolites. Those findings highlight potential 
biological pathways related to the onset of multiple chronic diseases, such as liver and kidney function, lipid and 
glucose metabolism and low-grade inflammation, among others12.

Strengths of our investigation are the wealth of the available data resource, foremost with the availability 
of both metabolomics and proteomics data among the same participants. Additionally, available phenotypic 
parameters, both quantitative (such as blood parameters), self-reported or collected by trained study-nurses 
allowed a detailed characterization of the participants and enabled the assessment of the health status through 
the CIRS guidelines, which has been shown to be a useful tool to measure morbidity in clinical research42.

A first limitation is given by the study design, due to which participants with severe morbidity might have 
been underrepresented. In addition, for some of the CIRS domains only limited information in the CHRIS 
data was available, which led to a low completeness (< 50%) with respect to the CIRS guidelines for the 
EENT, genitourinary and the gastrointestinal domains. These domains were therefore affected by strong case-
control imbalance, which might limit the power to detect any differences in mean abundances of metabolites 
and proteins. Moreover, given the low data completeness for these domains we cannot exclude any potential 
misclassification of cases and controls. In addition, metabolite and protein concentrations might be influenced 
by lifestyle, hormonal changes such as introduced by menopausal status and its treatment, as well as medication. 
Available information on medication use, irrelevant for the CIRS assessment, allowed adjustments to exclude 
spurious influence of this factor on the results. However, as the CIRS itself considers medication status to 
characterize certain diseases, it was not possible to distinguish whether the observed associations were driven 
by the disease itself or by the treatment for the given or related diseases. The present analyses are also limited to 
the set of metabolites and proteins that are possible to quantify by the analytical approaches used. Finally, given 
the cross-sectional design of the study we are only able to assess associations, hence no conclusions on temporal 
antecedence and causality can be drawn. Finally, we did not validate our models on an independent testing 
set. Despite these limitations, we were able to replicate several findings from previous studies, which supports 
reliable data and procedural quality within this study. Overall, using multi-omics data for profiling health status 
has great potential to identify changes in health trajectories at an earlier stage in life. This could help to develop 
new, effective target therapies for treating related as well as seemingly unrelated diseases occurring at the same 
time by uncovering common biological pathways connecting different underlying pathogenic mechanisms43.

To conclude, we identified several molecular signatures of overall health status. Specifically, circulating 
serotonin is suggested as a promising novel predictor for health and morbidity independent of age, implicating a 
potential key role of tryptophan metabolism and serotonin related pathways in sustaining health. The results also 
point to glutamate as another predictor for health and morbidity in adults, in agreement with previous studies 
relating this amino acid to frailty, metabolic and cardiovascular health. Future studies are needed to investigate 
the mediating role of these signatures in relation to lifestyle and the environment to promote healthy aging. In 

Fig. 6. Heatmap presenting associations between metabolites, proteins and CIRS organ domains. Associations 
were obtained from multiple linear regression models adjusted for age and sex. Hierarchical clustering using 
the Euclidean distance as the similarity measure was applied by clustering rows and columns based on the 
coefficients describing the associations between metabolites and proteins with each corresponding CIRS 
organ domain. Only metabolites and proteins that were significantly associated with at least one specific CIRS 
domain are presented. Asterisks (*) highlight significant associations. β-coefficients are color-coded as follows: 
red hues represent positive relations and blue hues represent negative relations.

 

Scientific Reports |        (2024) 14:26635 9| https://doi.org/10.1038/s41598-024-75627-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


this regard the application of mendelian randomization approaches should be considered to further investigate 
causal links between circulating serotonin, serotonin metabolism and chronic disease.

Methods
Study cohort
The CHRIS study is a population-based cohort of 13,393 adults aged 18 and over recruited from 13 towns in 
the alpine Val Venosta/Vinschgau district in the Bolzano-South Tyrol province of northern Italy. The study was 
designed to investigate the genetic and molecular basis of age-related common chronic conditions and their 
interaction with lifestyle and environment in the general population44.

The study was approved by the Ethics Committee of the Healthcare System of the Autonomous Province of 
Bolzano. The study conforms to the Declaration of Helsinki, and with national and institutional legal and ethical 
requirements.

Metabolomics data were available for n = 6,415 individuals and proteomics data for n = 3,541. After excluding 
participants who were not fasting (n = 475) or had missing information on fasting status (n = 2), as well as 
women who were pregnant (n = 25) or unsure about pregnancy (n = 9), n = 3,142 individuals with overlapping 
omics data were available for analysis.

Data collection
Data, including collection of anthropometric measurements, blood and urine standard laboratory tests, blood 
pressure measurement and lifestyle information, were collected at the study center following overnight fasting44. 
Laboratory test data included all main cardiovascular and metabolic risk factors, and markers of iron metabolism, 
coagulation, renal damage, thyroid, and liver function. Blood (serum and plasma) and urine samples were 
collected and stored in a biobank.

To obtain information on disease history, participants were interviewed by trained study assistants. Specific 
clinical domains covered by the questionnaires were the circulatory and nervous system, as well as psychiatric 
disorders, cognition, autonomic and genitourinary function, endocrine, nutritional, and metabolic diseases. A 
detailed overview of the mode of assessment can be found elsewhere44. In addition, each questionnaire contained 
a section for “other diseases”, where participants could report any other condition not explicitly included in the 
domains as free text. Detailed medication information was collected by scanning the barcodes of the boxes of 
the medication used within the seven days prior to study center visit and brought by the study participants to the 
interview. The Anatomical Therapeutic Chemical (ATC) medicinal product classification coding system45 and 
the mode, frequency, and duration of drug administration was recorded for each scanned medication.

Assessment of the health status
To assess health in the CHRIS study sample, we used the Cumulative Illness Rating Scale (CIRS), which is a 
clinically relevant tool to measure the chronic medical illness burden by taking the number and the severity of 
chronic diseases into account46. For the purpose of this study we used the revised CIRS18, which assesses 14 organ 
related domains rating each of them according to the degree of severity ranging from: grade 0 (no impairment) 
to grade 4 (extremely severe impairment). Based on this guideline, we determined for all CHRIS participants 
the CIRS score for each domain by screening our questionnaire and interview data, as well as laboratory and 
clinical parameters for any given medical condition. We next derived the CIRS Comorbidity Index (CMI), 
which calculates the total number of CIRS organ domains with a score ≥ 2 (domains with moderate or severe 
morbidity). To define health status we classified individuals as being healthy if the CMI = 0 and as having any 
morbidity if CMI ≥ 1, which means that at least one CIRS organ domain was identified with moderate or severe 
morbidity. We additionally considered organ specific health by classifying individuals as being healthy if the 
CIRS organ domain scored < 2, or having morbidity if the respective domain scored ≥ 2.

We further assessed the completeness of the CIRS score with regard to the guidelines18 based on 
available CHRIS data for each domain. Detailed information on the completeness assessment is presented in 
Supplementary Text S3.

Metabolite and protein quantification
The AbsoluteIDQ® p180 kit from Biocrates (Biocrates Life Sciences AG, Innsbruck, Austria) was used for 
metabolite quantification in fasting serum samples. Details on data generation, quality assessment and 
normalization are provided in Verri Hernandes et al. (2022)16. In total, concentrations of 175 metabolites and 
lipids were quantified. Due to the large number of missing values, sarcosine was excluded from the present 
analysis. An overview of the included metabolites is presented in the Supplementary Table S5. According to 
common practice in quantitative proteomics/metabolomics analyses, abundances were log2-transformed prior 
to any data analysis to stabilize the variance and result in signal distributions that resemble more closely a normal 
distribution.

The high abundance plasma proteome was determined using the Scanning SWATH mass spectrometry-
based approach. Details on sample processing, data acquisition and normalization are provided in Dordevic et 
al. (2024)17. In total 148 highly abundant proteins were quantified and included in this analysis. An overview of 
the included proteins is presented in Supplementary Table S6.

Metabolite and protein abundances were adjusted for frequent medication use with a linear model based 
approach: models were fitted separately for each metabolite or protein with their abundance as response, and 
medication (as individual binary variables) as explanatory variables. Only medications taken at least twice per 
week and not considered for CIRS scoring were used. The residuals from these models were used to construct 
medication-independent abundances for the RF and subsequent regression analyses. Supplementary Table S2 
lists the medications for which abundances were adjusted.
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Statistical analysis
Differences in characteristics were presented as mean (standard deviation, SD) for continuous variables and as 
percentages for categorical variables.

To investigate the relations between CIRS-domain specific morbidity we encoded binary data for each domain 
as 0 (no morbidity) and 1 (morbidity) and performed ordinary correspondence analysis (OCA) using the rda 
function in the vegan package for R47. OCA is a technique used to visualize relationships between categorical 
variables creating a contingency table of their joint frequencies. Then, the chi-square distance between the row 
and column profiles is calculated to assess the association between categories. The chi-square distance matrix 
is decomposed using singular value decomposition, which is further used to create two-dimensional plots 
equivalent to PCA plots for continuous variables48.

Random forest and linear regression analysis
We used a random forest (RF) classification model to predict health status (any morbidity vs. healthy), including 
as predictors age, sex, 174 metabolites and 148 proteins, respectively. Overall, NModel = 100 RF models were 
generated, each containing NTree = 500 trees per model, considering 80% training set sizes. Predictions were 
validated by NModel = 100 times stratified repeated random subsampling with 20% test set sizes, such that 
the ratio between the healthy and the any morbidity group of the original set sizes remained the same for the 
subsampled sets. We used the randomForest R package49 to perform the RF analysis.

Model performance was measured based on the receiver operating characteristic (ROC) area under the curve 
(AUC), the Matthew’s correlation coefficient (MCC), and the unit-normalized Matthews correlation coefficient 
(MCC-F1).

The Gini Index was used to measure feature importance. We further estimated the significance of the Gini 
Indices for the random forest models by permuting the response variable using the rfPermute R package50. This 
generates a background distribution by calculating NPerm = 100 random forests, one for each permuted response 
variable, each with NTree = 500 trees. Usually, a background distribution is calculated only once; however, to 
increase the robustness of our results, we created a background distribution for each validation run, yielding 
Nmodel = 100 p-values for each predictor variable. We selected a predictor if in ≥ 50 out of the 100 models the 
predictor was significant at the level α = 0.05.

To further investigate associations between health status and the significant metabolites and proteins obtained 
from the RF analysis we fitted separate multiple linear regression models with abundances of each metabolite and 
protein as the response variable, and with health status, age and sex as the explanatory variables The resulting p-
values were adjusted for multiple hypothesis testing using the Bonferroni method. After correction, results were 
considered statistically significant if the adjusted p-value remained below the conventional significance level 
of α = 0.05. For the present data sets we additionally had the advantage of repeated measurements of quality 
control (QC) samples, which allowed us to estimate the technical variance of each individual metabolite or 
protein in the analyzed data set. We therefore calculated the coefficient of variation (CV) for each metabolite and 
protein and used these as additional criteria in the selection of significant features: In addition to the statistical 
significance, we required for metabolites that the observed difference in abundances was at least two times larger 
than the technical variance and for proteins one time larger than the technical variance. While these thresholds 
were chosen arbitrarily, they reflect the difference in variability observed for the proteomics and metabolomics 
data sets, and this more stringent significance criterion ensured selection of the most reliable and consistent 
metabolites/proteins in the present data set.

Investigation of omics-markers related to CIRS domains
We additionally investigated associations between metabolites, proteins and the specific CIRS domains using 
again multiple linear regression models. We fitted separate linear regression models for each metabolite or 
protein using their abundances as response variable and each CIRS domain, age and sex as the explanatory 
variables.

Similarly to the previous analysis, we applied a Bonferroni correction by multiplying the p-values by the 
number of tests (metabolites:14 CIRS domains*174 metabolites; proteins: 14 CIRS domains*148 proteins), and 
considered results to be significant if the adjusted p-value remained below the conventional significance level 
of α = 0.05 and the average difference in abundance was larger than the technical variance, as described in the 
previous section.

All analyses were conducted using the R statistical software, version 4.1.0 (www.R-project.org).

Data availability
The data that support the findings of this study are not openly available due to reasons of sensitivity. Individual 
level CHRIS study data can be requested for research purposes by submitting a dedicated request to the CHRIS 
Access Committee. Please visit https://chrisportal.eurac.edu/ for more information on the process or contact the 
corresponding author.
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