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Alternative splicing is coupled to gene
expression in a subset of variably
expressed genes
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Guy Karlebach1 , Robin Steinhaus2,3, Daniel Danis1, Maeva Devoucoux 1, Olga Anczuków1,4,5,
Gloria Sheynkman 6, Dominik Seelow2,3 & Peter N. Robinson 1,2

Numerous factors regulate alternative splicing of human genes at a co-transcriptional level. However,
how alternative splicing depends on the regulation of gene expression is poorly understood. We
leveraged data from theGenotype-Tissue Expression (GTEx) project to show a significant association
of gene expression and splicing for 6874 (4.9%) of 141,043 exons in 1106 (13.3%) of 8314 genes with
substantially variable expression in nine GTEx tissues. About half of these exons demonstrate higher
inclusion with higher gene expression, and half demonstrate higher exclusion, with the observed
direction of coupling being highly consistent across different tissues and in external datasets. The
exons differ with respect to multiple characteristics and are enriched for hundreds of isoform-specific
Gene Ontology annotations suggesting an important regulatory mechanism. Notably, splicing-
expression coupling of exonswith roles in JUN andMAP kinase signalling could play an important role
during cell division.

Over 95%of humanmulti-exon genes undergo alternative splicing (AS) in a
developmental, tissue-specific, or signal transduction-dependent manner1.
Splicing is a highly regulated process by which an intron is excised from a
pre-mRNA transcript and the flanking exons are ligated together by a series
of steps, whereby all or part of the splicing process occurs co-
transcriptionally2–4. Transcript elongation follows the initiation of tran-
scription, adding ribonucleoside triphosphates to the growingmRNAchain.
Splicing, as well as other processes involved in mRNA maturation is
influenced by interactions with the RNA polymerase II (RNAP2) transcript
elongation complex2. Changes in promoter sequence and occupation can
modify the splicing pattern of several genes, evidencing a coupling between
transcription and AS5–8. It has been proposed that the promoter effect
involves modulation of RNAP2 elongation rates9,10. Two major and
potentially complementary models have been proposed to explain how
transcription and splicing are coupled, referred to as the kinetic coupling
and the spatial coupling models.

Kinetic coupling refers to the notion that the rate of transcription
elongation determines the temporal “window of opportunity” for selection
or rejection of an upstream sequence. If upstream and downstream events
on the nascent transcript compete, the upstream sequencewill have a “head

start” because it emerges from RNAP2 before the downstream sequence
does.The advantage conferredby thehead start is greaterwhenelongation is
slow10,11. It has been shown that elongation rate can influence AS by mod-
ulating several classes of co-transcriptional events including alternative
splice site recognition, binding of regulatory proteins, and formation of
RNA secondary structures12,13. These observations led to the notion that
slow elongation expands the “window of opportunity” for recognition of an
upstream 3′ splice site before it must compete with a downstream site,
therefore promoting inclusion of the upstream cassette exon. In contrast,
slow elongation was shown to favor promoter skipping of CFTR exon 9 by
increasing the recruitment of the negative factor ETR-3 onto theUG-repeat
at the 3′ splice site of the exon14,15.

Spatial coupling refers to the ability of the transcription machinery to
recruit various classes ofRNAprocessing factors to the site of transcript. The
RNAP2 C-terminal domain (CTD) plays a central role in recruiting factors
involved in transcriptional elongation, splicing, and other functions related
tomRNAmaturation. The RNAP2CTD is extensively phosphorylated and
dephosphorylated upon different stages of transcription and acts as a
dynamic docking site for factors required for the mRNA processing events
that occur together with transcript elongation16. Transcribed exons are
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tethered to the elongatingRNAP2 transcription complex17,18. The serine and
arginine-rich splicing factor 3 (SRSF3) was shown to possess a CTD-
dependent inhibitory action on the inclusion of fibronectin cassette
exon 3319.

Numerous other factors influence AS, including nucleosome occu-
pancy, chromatin remodelers, RNA secondary structure, as well as histone
marks and DNA methylation and the protein factors that interact with
them20–24. In principle these factors could influence AS by modulating
elongation through differential nucleosome density, histone modification
profiles, DNA methylation density, or by recruiting splicing factors to the
chromatin template as the transcriptionalmachinerypasses11,25. Two studies
have demonstrated a pervasive impact of elongation rate on splicing. The
first showed that reduction of RNAP2 elongation speed by drugs or RNAP2
mutations tended to increase exon inclusion levels26. Interestingly, many of
the corresponding splicing events often introduce premature truncation
codons, which are predicted to lead to nonsense-mediated decay. This has
been shown experimentally to be a common mechanism for gene regula-
tion, including the autoregulation of proteins that affect the splicing
process27–29. A second study investigated RNAP2 mutants that increased or
decreased elongation rates, characterizing exons for which a faster elonga-
tion rate results in more inclusion of the exon in transcripts, and exons for
which a faster gene expression rate results in more skipping of the exon in
transcripts30.

Although gene expression is controlled by numerous transcriptional
and posttranscriptional factors, substantial evidence argues that expression
ofmost genes is controlled inpart at the level of transcription elongation31–36.
In this work, we leverage comprehensive bulk RNA-seq data from the
Genotype-Tissue Expression (GTEx) project37,38 to investigate associations
between gene expression and AS. We identify thousands of exons whose
inclusionor exclusion is correlated to theoverall level of gene expressionand
characterize significantly different properties of the exons and the tran-
scripts and genes they are contained in.

Results
Association between gene expression and alternative splicing
We focused on alternative splicing events that differentiate between a subset
of a gene’s transcripts and the rest of its transcripts. We examined rates of
exon inclusion/exclusion in comparison to the overall rate of gene expres-
sion in nine tissues with 226 to 653 samples each (Fig. 1, Supplementary
Table 1).

Type 0, upregulated-high ψ (UHP), and downregulated-high ψ
(DHP) exons
We filtered 683,196 annotated human exons for those that show a
threshold amount of variability in RNA-seq experiments from nine
GTEx organ cohorts with between 226 and 653 samples each, identifying
141,043 exons that showed a degree of variable expression equal to or
above a threshold of a mean count of at least 20 reads per sample and at
least a two-fold ratio of the 95th percentile to the 5th percentile of
expression values.

We classified the relationship between overall gene expression and the
percent-spliced in (ψ) valuesof these exons, defining exonswhere increasing
values of ψ (higher exon inclusion) are associated with higher gene
expression as UHP exons (“upregulation of gene expression associatedwith
high percent splice in”), exons where increasing values of ψ are associated
with lower gene expression as DHP (“downregulation of gene expression
associated with high percent splice in”), and exons that show alternative
splicingwithout associationbetween theψ value andgene expression as type
0 exons (defined as aBenjamini–Hochberg-corrected p-value of at least 0.5).
For each of the nine investigated tissues from the GTEx resource, we per-
formed linear regression to predict gene expression based on ψ, and
determined the significance of the coefficient for ψ. Raw p values were
corrected for multiple testing by the Benjamini-Hochberg method, and
associations are reported as significant at a corrected p-value threshold of
0.05 (Methods).

Using these heuristic definitions, we identified 3667 UHP and 3207
DHP exons; a total of 6874 unique exons were identified as UHP or DHP
in at least one tissue, corresponding to 4.9% of the 141,043 exons that
showed a at least a threshold level of gene expression variability
(Methods). 989 exons were identified as UHP or DHP inmultiple tissues
(Fig. 1; additional examples are shown in Supplementary Fig. 1). In all,
exonswere identified asUHPorDHP 8282 times across the 9 tissues that
were tested.

In all 989 cases in which exons were identified as UHP or DHP in
multiple tissues, the assignment toUHPorDHPwas consistent.We further
used the same criteria to find the same UHP/DHP exons in sets of samples
that originated from the same donor, for donors with at least 20 tissue
samples.A total of 63,961of the sameUHP/DHPexons (1916unique exons,
~89%) were detected in 528 donors. For 63,255 (~99%) the assignment to
UHP or DHPwas consistent with the assignment from tissue samples. The
small number of inconsistencies is possibly a result of wrong classification
due to the relatively small number of samples per donor (a median of
27 samples per donor vs. 342.5 per tissue).

We repeated the same analysis in unrelated breast, left ventricle and
liver bulk RNA-seq datasets obtained from the SRA (Methods). In all three
datasets, most of the overlapping exons were type 0 in both the GTEx and
the SRA dataset, and most of the other exons were type 0 in one of the
datasets. For the breast and left ventricle datasets, we observed a highly
significant overlap of UHP or DHP classifications between the GTEx and
SRAdatasets. For liver, therewere 52,521 exons thatwere classifiedas type 0,
17 exons that were classified as UHP and 47 exons that were classified as
DHP. 14 exons were classified as DHP in both datasets, one exon was
classified as UHP in both datasets, and all other exons were type 0 in at least
one of the datasets (SupplementaryTable 2). These results suggest that there
is a significant consistency of exon types across different donor cohorts and
experimental procedures.

Minimum prevalence of expression/splicing regulation coupling
In order to estimate how prevalent the coupling between expression and
splicing is, we counted the number of exons that were neither detected as
UHP nor as DHP, had a 95th/5th expression percentile ratio of at least 2,
and were assigned a Benjamini-Hochberg-corrected p-value of at least
0.5, in addition to being expressed in at least half the samples in a tissue
and at a mean level of 20 transcripts. This definition of type 0 exons
intends to identify exons with substantial gene expression variability but
with no evidence for being UHP or DHP exons. This resulted in 67,814
cassette exons identified as type 0. Since observing an effect of expression
on splicing requires the presence of regulatory factors, such as RNA
binding proteins, not observing a correlation does not immediately
imply that an exon is type 0 in all tissues. However, since we examined
nine different tissues, it is likely that there is roughly an order of mag-
nitude difference between the counts of UHP/DHP exons and type 0
exons (6874UHP/DHP vs. 67,814 type 0). In the nine tissue dataset from
GTEx, there were a total of 8314 genes that contained at least one exon
classified as UHP, DHP, or type 0. Of these, 1106 genes (13.3%) had at
least one UHP or DHP exon. Supplementary Table 7 summarizes the
number of UHP/DHP exons that were detected in the GTEx dataset,
those that were detected in multiple tissues, and the overlap of these
exons with exons detected in other datasets. While the number of UHP/
DHP exons that are detected depends on the genes are expressed in each
dataset, those genes vary in expression, statistical power and cellular
mechanisms such as epigenetics modifications, the consistency in the
direction of coupling suggests a core mechanism that if active, has a
specific effect for each exon.

Characteristics of type0,UHP, andDHPexonsand the transcript
and genes that contain them
UHP/DHP exons differ from type 0 exons in a number of character-
istics including exon count, intron length, and distribution of biotypes
(Fig. 2). Genes containing UHP/DHP exons have on average more
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exons than genes containing only type 0 exons. The genes containing
them had on average slightly fewer transcripts (13 and 12 for UHP and
DHP, respectively, and 14 for type 0). Furthermore, type UHP/DHP
exons are included in a larger proportion of transcripts than type
0 exons.

We define the “upstream” intron as the last contiguous non-coding
region that is transcribed 5′ to the exon, and the “downstream” intron as the
first such region that is transcribed 3′ to the exon. The median upstream
intron lengths were 572 bp for types 0, 857 bp for type UHP, and 732 bp for
DHP; the differences between UHP or DHP and type 0 were statistically
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significant. In contrast, the median downstream intron lengths were 576 bp
for type 0, 834.5 bp for UHP, and 485 bp for DHP. The differences are
statistically significant between all types. DHP exons had amedian length of
158 bp, which is significantly longer than UHP (median 135 bp) and type 0
(median 142 bp) exons. Finally, transcripts containing UHP/DHP exons
have ahigher fraction of protein coding transcripts (65% forUHP/DHPand
50.7% for type 0 exons), and a smaller fraction of retained introns (12.5%
and 13% for UHP/DHP, respectively, and 20.5% for type 0) and long non-
coding RNA (0.47%, 0.36% and 2.3% for UHP/DHP, and type 0, respec-
tively) (Fig. 2 and Table 1). Additionally, the mean MaxEnt39 acceptor and
donor splice site scores were higher for both UHP and DHP exons than for
type 0 exons (Supplementary Figs. 3 and S4).

High consistency of UHP vs. DHP classification across multiple
tissues and datasets
We hypothesized that if the classification of exons as UHP or DHP is
related to one or more core regulatory processes, then the classifica-
tion should be largely conserved across different tissues. Among the
detected UHP/DHP exons, there are 606 exons that appear in more
than one tissue as DHP always, 383 that appear inmore than one tissue
always as UHP, and none that appear in more than one tissue as
conflicting types. The slopes of the regression lines fitted in different
tissues may have different slopes, but the change in slope is correlated
across UHP/DHP exons (Supplementary Fig. 5). In addition, the slope
is a linear function of the mean expression level, with coefficient close
to 1, possibly indicating that differences in expression rates affect the

impact of UHP/DHP exons on the gene’s transcript profile (Supple-
mentary Fig. 2).

Distribution of RNA polymerase II binding in type 0, UHP, and
DHP exons
RNAPol II accumulateson exons in yeast andhumanandpauses over the 5′
and 3′ splice sites of human exons40. Additionally, Pol II density is lower at
skipped exons than at alternative retained exons41,42. Based on the suggested
mechanism (Fig. 1E), we hypothesized that RNAP2 density might differ
between the type 0, UHP, andDHP exons investigated in the current study.

In order to estimate the difference in transcription speed of UHP
and DHP exons compared to type 0 exons, we used two PRO-Seq
datasets43,44 (Methods). These datasets sequenced nascent mRNA in
addition to mature mRNA, and therefore allowed reads to be counted in
the intronic parts of the nascent mRNA of each gene. The introns
downstream of UHP/DHP exons are more likely to be sequenced, sug-
gesting that RNA polymerase spends more time transcribing them
(Fig. 3, Chi-squared test p < 2.2 × 10–308). The longer transcription time
may be necessary for the regulatory interactions that promote or sup-
press the splicing of the exon, and thus may be sensitive to changes in
expression rate. Supplementary Fig. 10 shows that RNAP binding to the
exons themselves is likely to be lower for UHP/DHP.

Enriched motifs
Binding of transcription factors to promoters may influence splicing by
altering the rate of RNAP2 elongation or recruiting splicing factors to pre-

Fig. 1 | Multitissue RNA-seq analysis identifies association between gene
expression and alternative splicing. A RNA-seq samples from 9 tissues with the
largest number of samples were analyzed. B For each of 141,043 alternative splicing
events with above-threshold variability in the nine tissues, total gene expression and
percent-spliced in (ψ) were calculated and logistic regression was performed to test
the association of gene expression and ψ. The cartoon at the top shows the regions of
the introns surrounding the cassette exon that were investigated bioinformatically.
C 3667UHP (for “upregulated-highψ”) exons with a statistically significant positive
association were identified (ψ increases as total gene expression increases). One
example is shown, exon 2 of ABI2.D 3207DHP (for “downregulated-highψ”) exons

with a statistically significant negative association were identified (ψ decreases as
total gene expression increases). In the example, exon 4 of ABLIM2 is shown. EWe
hypothesized that our observations are related tomechanisms including coupling of
RNAP2 extension speed with splicing decisions. In this example, a relatively fast
RNAP2 elongation rate exposes a regulatory element (red box) at the 3′ end of intron
B (shown in yellow), which promotes skipping of exon B (left); in contract, slower
RNAP2 elongation fails to expose this element for a period of time sufficient for the
splicing machinery to include exon B. This is one of many mechanisms that link
transcription and alternative splicing. The figure was generated using ggpubr and
Adobe Illustrator.

Fig. 2 | Characteristics of type 0, UHP, and
DHP exons. a The number of exons of genes that
includes a type 0, UHP, and DHP exon. b The
number of transcripts per gene containing a UHP,
DHP or type 0 exon. c Exon length in base pairs for
type 0, UHP, and DHP exons. d The length of
introns upstream of type 0, UHP, and DHP exons.
e The length of introns downstream of type 0, UHP,
and DHP exons. f Fraction of transcripts of each
type associated with different biotypes. Green: pro-
tein coding; purple: retained intron; blue: protein
coding CDS not defined; khaki: nonsense mediated
decay; red: lncRNA. a–e Outliers were removed to
limit the y-axis range; d–eThe dashed red line shows
the median for the up/downstream intron length
type 0 exons. The figure was generated using ggpubr.
Boxplot whisker lengths are the default (1.5 IQR).
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mRNAs45. We reasoned that if this were a common factor related to the
mechanisms that underlie UHP/DHP exons, then we would expect to see
enrichment of predicted transcription factor flexible model (TFFM) sites in
the promoter regions of UHP/DHP exons compared to type 0 exons, and
would also see enrichments of predicted RBP binding sites in the sequences
surrounding the UHP and DHP exons. We therefore calculated the num-
bers of predicted binding sites and compared the observed counts to those
observed in 1,000,000 permutations in which the labels of UHP, DHP, and
type 0 exons had been randomly shuffled (Methods).

321 of 610 tested TFFMs showed significant enrichment in genes with
UHP or DHP exons but no type 0 exons as compared to genes with at least
one type 0 exonbut noUHP/DHPexon.However, themaximumdifference
between the two classes was 3%, suggesting that no individual transcription
factor is associated with a majority of the observed effects (Table 2, Sup-
plementary Table 3).We tested enrichment for core promoter elements and
CpG islands and found that a significantly higher proportion of DHP genes
co-localizedwith a CpG island and a lower proportion contain a TATAbox
(Supplementary Table 4). We examined 71 RBP models, 31 of which
showed significant differences between UHP or DHP and type 0 exons
(Supplementary Table 5).

Biological rationale for coupling expression and splicing
The ubiquity of UHP/DHP exons led us to further investigate associa-
tions of transcript-specific functions. Alternative splicing of many genes
can produce isoforms that differ with respect to enzymatic activities and

subcellular localizations, as well as protein–protein, protein–DNA, and
protein–ligand physical interactions46. Gene Ontology (GO) over-
representation analysis is a standard approach to assessing the func-
tional profile of differentially expressed genes47, but analogous methods
for examining the functional profile of differential isoforms have not
been available, possibly because of the paucity of experimentally con-
firmed functional annotations of isoforms48. We recently developed an
expectation-maximization framework for predicting isoform-specific
GO annotations49. We used these annotations to assess over-
representation of GO terms in the set of isoforms that were found to be
UHP in our study, with the universe of comparison being the set of all
isoforms for which an exon of any type was detected. A total of 410 GO
terms displayed significant overrepresentation (See Table 3 for the top
ten and Supplementary File 2 for a complete list).

Interestingly, the top three overrepresented terms, JUN kinase activity
(Supplementary Fig. 6), MAP kinase activity, and MAP kinase kinase
activity annotate genes and pathways that coordinately regulate gene
expression, mitosis, metabolism, motility, survival, apoptosis, differentia-
tion and protection against DNA damage, and deleterious mutations50–52.
Our results suggest that cells can upregulate these pathways both by
increasing overall expression of genes in the pathway and also by alternative
splicing to favor transcription of isoforms that specifically possess pathway
activity.

We investigated the association between the degree of differential
expression and the degree of alternative splicing by regressing ψ against the

Fig. 3 | UHP/DHP exons and RNAP2 profiles. a Intersection with PRO-Seq reads
and downstream introns per exon type count, from the Wissink et al. dataset43 and
the Gupta et al. dataset44. The dashed lines show the maximum difference between
type 0 exons and other exon types that was obtained in 1000 permutations of the
exon types (Fig. 3b). The values for UHP/DHP exons are significantly larger than
type 0, suggesting a longer processing time of that section of the nascent mRNA.

bDifferences between the PRO-SEQ counts obtained for type 0 exons and the values
obtained for other exon types, when the exon types for every hit are permuted 1000
times. The differences are much smaller than those obtained for the real data,
suggesting that the results are statistically significant. The figure was generated using
ggpubr. Boxplot whisker lengths are the default (1.5 IQR).

Table 1 | Characteristics of type 0, UHP, and DHP exons

Feature type 0 UHP DHP 0 vs. UHP 0 vs. DHP UHP vs. DHP

exons per genea 11 13 14 2:1× 10�12 1:7× 10�14 6:7× 10�1

transcripts per genea 14 13 12 7:7× 10�24 1:5× 10�76 1:06 × 10�10

inclusion in proportion of transcriptsa 9% 24.1% 20% 2:2× 10�308 1:2× 10�280 2:4× 10�4

upstream intron lengtha 584 bp 930 bp 832 bp 1:6× 10�30 8:4× 10�17 0.03

downstream intron lengtha 587 bp 932 bp 613 bp 9:8× 10�23 1:3× 10�1 3:9× 10�14

exon lengtha 142 bp 135 bp 158 bp 0.03 1:9× 10�32 7:9× 10�25

The values for genes that had both exon types were counted for both types of exons. a) Mann-Whitney test.
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gene expression level for all exons identified as UHP/DHP. We found that
the slope of the expression-ψ line is approximately themean expression level
of the gene (Supplementary Fig. 2). Therefore, in dividing cells, which need
to double their protein content, increasing expression of genes annotated to
JUN kinase activity, MAP kinase activity, and MAP kinase kinase activity
will additionally strongly favor transcription of UHPs that also are specifi-
cally annotated to theseGOterms.Thus, increasedgene expressionwill both
increase the overall amount of genes and shift their transcript distributions
to transcripts with Jun kinase activity. In order to test this hypothesis, we
computed the Pearson correlation between UHP exons ψ and Cyclin D1
gene expression, as the latter is a marker for the level of mitosis53. This
correlation is mostly positive, while the same correlation between DHP/
Type 0 exonψ andCyclinD1 expression ismostly negative (Supplementary
Fig. 7).We further calculated correlation betweenUHP exonsψ and Cyclin
D1 expression in The Cancer Genome Atlas (TCGA) transcript expression
dataset, for primary tumor and normal tissue, and found a significant
reduction in correlation in tumor samples (Supplementary Fig. 8). Syn-
chronization of alternative splicing with the cell cycle has been previously
observed by Domingues et al. 54. Their list of genes significantly overlaps
with genes that contain UHP or DHP exons (p-value 0.01, Hypergeometric
Test). Schor et al. also suggested that the coupling mechanism may be
altered in cancer55. Based on ourfindings, we suggest a potentialmechanism
bywhich the degradation of expression-splicing couplingmay contribute to
cancer development. At early stages of cancer development, when the cells

divide quickly but have not accumulated a large number of mutations, the
coupling is intact, and might even be activated compared to normal cells if
the normal cells divide slowly. At later stages, as more mutations accumu-
late, the coupling is reduced as splicing factor binding sites and splicing
factors are affected by mutations. Since this does not prevent the cells from
further dividing, we speculate that the pathways that are no longer induced
by the cell cycle are intended to prevent genomic instability, for example
through the inclusion of transcripts in the Jun Kinase and MAP Kinases
pathways. In order to test this idea, we separated the cancer samples in
Supplementary Fig. 8 to those that had less than 20 non-silent mutations
(SNPs and indel) and those that had 20 or more. As can be seen in Sup-
plementary Fig. 9, the correlation of UHP PSI with Cyclin D1 expression
decreased with increase in the number of SNVs, which supports the
hypothesis that the coupling degrades gradually.

Many of the top enriched terms of DHP-containing transcripts are
involved in monosaccharide metabolism, e.g., glycolysis, fructose
metabolism, glycolysis from storage polysaccharide and glycogen
catabolism (Supplementary File 3 contains a complete list). We spec-
ulate that this coupling could promote efficient replenishment of
energy reserves after cell division or generate energy for future division.
It is reasonable to assume that DHP exons are also used to shut down
pathways whose activity is undesirable during cell division. We defer a
focused analysis of the functional synergy between UHP and DHP
exons to a future study.

Table 2 | Transcription factor flexible models (TFFMs) in promoters of genes harboring UHP and DHP exons

motif model Type 0 UHP DHP Type 0 vs. UHP Type 0 vs. DHP UHP vs. DHP

PRDM14 TFFM0987.1 41.5% 44.5% 44.2% p < 1.0 × 10–6 * p < 1.0 ×10–6 * n.s.

SP1 TFFM0097.2 39.2% 37.9% 36.8% n.s. p < 1.0 ×10–6 * n.s.

KLF4 TFFM0056.3 36.7% 38.0% 35.8%, n.s. n.s. 6.80 ×10–5 *

KLF4 TFFM0056.2 35.1% 35.3% 33.3% n.s. 2.20 ×10–5 * 0.000394

ZNF75D TFFM0647.1 34.4% 34.2% 32.3% n.s. p < 1.0 ×10–6 * 0.000751

KLF15 TFFM0515.1 34.1% 33.8% 32.0% n.s. p < 1.0 ×10–6 * 0.001070

ZBTB6 TFFM0624.1 32.7% 30.6% 30.2% p < 1.0 × 10–6 * p < 1.0 ×10–6 * n.s.

FLI1 TFFM0031.1 31.6% 29.7% 31.9% p < 1.0 × 10–6 * n.s. 5.90 ×10–5 *

CTCF TFFM0014.1 29.7% 31.6% 30.6% p < 1.0 × 10–6 * n.s. n.s.

NEUROD1 TFFM0143.1 30.6% 28.4% 29.2% p < 1.0 × 10–6 * n.s. n.s.

TBFSswere assessed for overrepresentation in genes harboringUHP or DHP exons compared to genes only harboring one ormore type 0 exon. 291models showed a significant difference in permutation
testing in which labels of exons (UHP, DHP, type 0) were randomly permuted and the p-value was calculated empirically as the proportion of permutations in which the observed difference between UHP
(DHP) and type 0 exons was at least as extreme as the observed difference. The top ten are shown in this table and all results are presented in Supplementary Table 3. Of the significant models, the mean
difference was 1.7% (UHP vs. type 0) and 1.1% (DHP vs. type 0). No significant differences were observed between UHP and DHP (not shown). *: significant at a Bonferroni-corrected threshold of
9.11 × 10–5.

Table 3 | The ten GO terms in which UHP isoforms are most over-represented

GO Term Coverage p.value adj.p

JUN kinase activity (GO:0004705) 0.62 2.04 × 10–54 2.89 × 10–51

MAP kinase activity (GO:0004707) 0.49 2.22 × 10–54 3.13 × 10–51

MAP kinase kinase activity (GO:0004708) 0.59 7.68 × 10–50 1.08 × 10–46

response to light stimulus (GO:0009416) 0.60 7.90 × 10–44 1.11 × 10–40

actin binding (GO:0003779) 0.19 2.78 × 10–35 3.91 × 10–32

Fc-epsilon receptor signaling pathway (GO:0038095) 0.51 2.66 × 10–33 3.74 × 10–30

GPI-anchor transamidase complex (GO:0042765) 0.65 6.37 × 10–31 8.95 × 10–28

cytoskeleton organization (GO:0007010) 0.32 7.16 × 10–31 1.01 × 10–27

cytoskeletal protein binding (GO:0008092) 0.31 1.30 × 10–30 1.82 × 10–27

cellular senescence (GO:0090398) 0.44 1.02 × 10–29 1.43 × 10–26

Enrichment was tested using the hypergeometric test, where we draw UHP isoforms or other isoforms a number of times that equals the number of isoforms that are annotated to the GO term (Methods).
Bonferroni multiple testing correction was applied (adjusted p-value column). Coverage refers to the proportion of isoforms annotated to the term that contain a UHP exon.
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Discussion
We developed an approach to characterize associations between overall
gene expression, defined as the sum of read counts for all transcripts
assigned to a gene, and the regulation of alternative splicing, defined as the
inclusion or exclusion of an exon belonging to some, but not all, transcripts
of the gene.We identified exonswhose exclusion or inclusionwas correlated
with total gene expression. UHP (upregulated-high ψ) exons show a sig-
nificant association of higher overall gene expression with higher degrees of
exon inclusion, and DHP (downregulated-high ψ) exons show a significant
association of lower overall gene expression with higher degrees of exon
inclusion. It is likely that the total number of such exons identified by our
study, 3667 UHP exons and 3207 DHP exons, corresponding to a total of
6874 exons in 1106 genes, represents a lower bound, because the experi-
ments investigated in our study do not comprise a sufficient range of con-
ditions to assay a sufficiently variable range of expression and splicing to
detect all UHP and DHP exons.

A previous work assayed RNAP2 mutants that change average
elongation rates genome-wide and showed two classes of cassette exons
that displayed higher degrees of inclusion with slower RNAP2 mutants
(type I) and lower degrees of inclusion with faster RNAP2mutants (type
II). The type I exons tended to have weaker splice sites, to be surrounded
by shorter introns compared to type II exons, and to harbor distinct
sequence motifs30. The exons identified by this work were mapped to the
hg19 genome, and splicing was quantified using the MATS tool, which
does not reconstruct full transcripts, limiting comparability with our
results. Speculatively, however, the association of type I/II as well as of
UHP/DHP exons with intron length, splice site strength, and sequence
motifs could indicate partially sharedmechanism, with differences being
due to the fact that the previous studywas investigating global changes of
RNAP2 extension speed.

Our study identified significant differences in the strength of splice
sites, intron and exon length, anddifferent proportions of predictedTFBS in
promoter regions of gene harboring UHP/DHP exons compared to genes
with type 0 exons. Additionally, we identified a significantly higher relative
RNAPbinding toUHP/DHPexons vs. type 0 on the same gene in data from
106 POLR2A ChIP-Seq experiments, and a higher count of nascent RNA
reads per base pair in introns downstream of UHP and DHP exons as
compared to type 0 exons, suggesting a role of RNAP2 in mediating the
observed effects. The consistency of UHP/DHP classification across tissues
of the direction of correlation between expression and exon proportion
suggests an intrinsic mechanism that is not the sole result of epigenetic
modifications. Our interpretation is that local modulation of transcription
speed40 could play a role in modulation of alternative splicing. In our study,
we identified 141,043 exons with a mean count of at least 20 reads per
sample and at least a twofold ratio of the 95th percentile to the 5th percentile
of expression values. Of these, 4.8% were classified as either UHP or DHP.
We expect that the figure of 4.8% of exons displaying a significant relation
between splicing and expression is a lower bound, and that comprehensive
profiling of large-scale datasets representing a wider range of tissues,
developmental stages, and disease states may reveal additional instances of
coupled splicing and expression regulation. 1106 genes, corresponding to
13.3% of genes with non-trivial expression in the nine investigated GTEx
tissues, contained at least one UHP or DHP exon. This proposed
mechanism is decentralized and stems from intrinsic properties of
transcription.

Separate mechanisms of transcriptional regulation may override the
coupling of expression and splicing. For instance, inclusion of exon 7 of the
SMN2 gene, whose inclusion increases with transcription rate, can be
modified through acetylation56. The same mechanism can potentially over-
ride the coupling and thus alter the patterns observed in different experi-
ments. This is expected to cause exons that are UHP/DHP in the absence of
epigenetic modifications to behave as Type 0 exons. Indeed, in the datasets
that we examined, exons may be identified as coupled only in a subset of the
experimental conditions/cell types. In addition tomodifications that override
the coupling, the presence of signals that affect gene expression, for example

specific transcription factors or mitogens, may also change the observed
coupling pattern observed in our analysis. A dataset that is more diverse with
respect to these factors ismore likely to reveal coupling thanadataset inwhich
the rate of transcription is constant across samples.

Finally, UHP/DHP exons are enriched for hundreds of distinct GO
terms, suggesting that the coupling between expression and alternative
splicing may provide an important gene regulatory mechanism that might
be used in a variety of biological contexts.

There are several limitations to the current study, which could be
addressed by tailoring the experimental data to the needs of the study.
First, perturbation experiments are needed in order to show a
cause–effect relationship between expression and splicing. Our study is
based on correlation but we did not conduct perturbation experiments.
Additionally, datasets that compare the coupling in the presence of
different epigenetic modifications can elucidate the effect of such
modification on coupling. A third limitation is that we did not have
access to cell cycle-synchronized cells, which would be essential to
show the relationship between UHP/DHP exons and cell division. The
sparsity of information about RBP binding sites, or relevant ChIP-Seq
datasets, also limits our potential to identify RBPs that may affect the
coupling. While the affinity of RNAPII and its transcription rate are
likely to be a core element of the coupling mechanism, our ChIp-Seq
and PRO-Seq datasets that examine the binding of RNAPII are derived
from cell lines, whereas our RNA-Seq data are derived from tissues.
Future work should ideally match the cell types for different assays.

A direct comparison of our findings to a previously published study on
genetic interactions in Saccharomyces cerevisiae57 shows that the behaviorwe
observed in humancells ismore complex than the oneobserved in that study.
In yeast cells, increased RNAPII speed always decreases splicing efficiency;
however in our study on human tissues, we observed two classes of exon on
which increased RNAPII speed has an opposite effect. This difference is
possibly a result of splicing regulatory mechanisms that evolved in humans
but are absent in yeast. In yeast,most genes have a single intron, and therefore
the effects of coupling on pathway activation would be absent. At the same
time, both works find that slower elongation speed provides more time for
splicing factors to exert their effect. Hence, a coupling similar to the one
observed in yeast could have constituted a starting point for evolution of a
more complex system.

Methods
Data
RNA-seq data: The Genotype-Tissue Expression (GTEx) project offers a
genome-wide quantification of the expected number of transcripts in
thousands of samples across tens of different human tissues37. Quantifica-
tion is performed using bulk RNA-Sequencing and the RSEM tool58. We
used the file GTEx_Analysis_2017–06–05_v8_RSEMv1.3.0_transcript
_tpm.gct.gz, which provides transcripts per million counts across tissues
such that expression levels are normalized across experiments.

The tissues we tested include Spleen, Thyroid, Brain - Cortex, Adrenal
Gland, Breast -Mammary Tissue, Heart - Left Ventricle, Liver, Pituitary, and
Pancreas, and included several hundreds of samples each. This large number
of samples was chosen in order to have enough statistical power to satisfy
rigorous selection criteria. The UHP/DHP exons that were detected in the
GTEx RNA-Seq dataset were used for all the analyses described in the paper.
We compared the exons detected in the GTEx dataset to type 0, UHP, and
DHPexons in three breast (SRP301453), left ventricle (SRP237337), and liver
(SRP326468) bulk RNA-seq datasets that were obtained from the Sequence
ReadArchive (SRA)59. Tomaximize statistical power,we compared the exons
detected in the GTEx tissues as one set.

We additionally analyzed an RNA-seq dataset that comprised matched
tumor andcontrol samples fromTheCancerGenomeAtlas (TCGA60); TCGA
expression and mutation data was obtained from the UCSC Xena Browser
(xenabrowser.net). Inorder tofindanumberofnon-silent somaticmutations
thatwould split the cancer samples into two groups of low andhighmutation
number, we fitted a mixture of two Poisson distributions to the mutation
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count in the cancer samples. The number 20 corresponds to the largermean.
The Thyroid Carcinoma data had at least 50 samples in each condition
allowing a reliable computation of correlation, a diverse range of CyclinD1
expression values, and corresponded to a tissue that we also analyzed in
GTEx. The healthy samples showed the same level of correlation with Cyclin
D1 that is observed in GTEx. Finally, the distribution of mutations in the
tumor samples spanned both early stages (small number of mutations) and
advanced stages (large number of mutations). The other cancer types in
TCGA did not satisfy these requirements.

Gene models used for the definition of exon bounds and transcript
affiliation were derived from the GTF file Homo_sapiens.GRCh38.91.gtf
from GENCODE61. The GTF file contained 683,196 unique exons.

ChIP-seq data: For ChIP-Seq peaks, we downloaded BED files from
ENCODE using the provided filters to select ChIP-Seq files for POLR2A in
human cells62. This resulted in 105 BED files containing peaks. File names
are provided in Supplemental Table 6.

Gene expression variability threshold
We reasoned that genes that do not display a certain minimum level of
expressionvariabilitywouldnot behighlypowered to discover associations of
expression with alternative splicing. Therefore, we applied the following
inclusion criteria. The GRCh38 GENCODE annotations of the human
genome comprise 683,196 exons. Exons were removed from further analysis
unless they were expressed in at least half of the samples from a given tissue
(i.e., had a read count of at least one) andwhich displayed amean expression
level across all samples from the tissue of 20 counts ormore. Additionally, we
calculated the ratio of the 95th percentile and 5th percentile of the expression
values, and removed exons whose ratio was less than 2.0. Finally, we limited
analysis to genes that contained at least one exon that showed alternative
splicing, defined as a gene with at least two transcripts that differed with
respect to inclusion or exclusion of an exon or exon segment.

Percent spliced in (ψ)
For each gene that passed that threshold defined in the previous section, we
investigated whether the transcripts differ with respect to inclusion or
exclusion of a cassette exon. If so, we treat each affected cassette exon in the
gene separately, and define the count of transcripts that contain the exon ei
as ITincðeiÞ and the count of transcripts that exclude the exon as ITexclðeiÞ to
calculate the Percent Spliced In, ψðeiÞ as

ψðeiÞ ¼
ITincðeiÞ

ITincðeiÞ þ ITexclðeiÞ
ð1Þ

If multiple sets of exons are perfectly correlated with respect to tran-
script structure, they are collapsed such that the statistics for the event are
calculated only once. For instance, if a gene has two transcripts with exon
structure A-B-C-D-E and A-C-E, then we calculate the selection criteria for
only one of the alternatively spliced exons B and D and apply them to both.

Correlation between gene expression and alternative splicing
We investigated potential associations between gene expression and alter-
native splicing of cassette exons as defined above. We applied the following
linear regression model for cassette exon ei of gene g, whereby YðgÞ is the
total expression of the gene (sum of counts of all transcripts assigned to the
gene), and ψðeiÞ is the percent spliced in as defined above.

YðgÞ � β0 þ β1ψðeiÞ ð2Þ

In words, the model predicts the gene expression level based on exon
inclusion fraction.

Thep-value for the coefficientβ1 tests the null hypothesis thatψðeiÞ has
no correlationwithYðgÞ. This p-value is corrected formultiple testing using
the Benjamini Hochberg method63 in each tissue separately.

We conclude that there is a significant relationship between alternative
splicing and expression if the corrected p-value is 0.05 or less, the coefficient

of determination (R2) is at least 0.5, and additionally the ratio of the 95
percentile and 5 percentile of the expression values is at least 2.

The results of this analysis are used to define the exon type. For each
analyzed cassette exon, if there is a significant correlation and β1 > 0, that is,
higher inclusion predicts higher expression, the exon is classified as
upregulated-highψ (UHP). If β1 < 0, that is, higher inclusion predicts lower
expression, the exon is classified as downregulated-high ψ (DHP). If the
relationship is not significant, the exon is classified as type 0. We note that
exons that are not cassette exons are not classified by our definition.

Analysis of PRO-Seq datasets
We obtained the aligned reads for the dataset of ref. 43 in.bam file format
from the ENCODEwebsite using the PRO-Seq filter, which retrieves 8 files
corresponding to two biological samples. For the dataset of 44 we obtained
the FASTQ files from SRA and processed themusing the pipeline described
in ref. 64, using the “output-genome-bam” option of RSEM. In order to
compute overlaps with intronic regions we used bedtools intersect with
default parameters65. The counts were computed for every gene that con-
tained at least one UHP/DHP exon.

Enriched motif testing
Here, we characterized predicted sequence motifs for transcript factor
binding sites (TFBS), RNA-binding protein (RBP) binding sites, and core
promoter elements (CPE).

We characterized TFBS predicted by detailed transcript factor flexible
models (TFFM)66 in the promoters of genes containing at least one type 0
exon but no UHD or DHP exon (referred to as type 0 gene), genes con-
taining no type 0 or DHP exon but at least one UHP exon (referred to as
UHP gene), and genes containing no type 0 or UHP exon but at least one
DHP exon (referred to as DHP gene). TFFMs binding motifs were taken
from JASPAR67, RBP matrices were taken from the RNA-binding protein
database68, and CPEs were characterized as previously69. The calculations
were conducted within the backend infrastructure of the FABIAN-variant
application70.

We derived empirical p-values by random sampling (without replace-
ment)withonemillionpermutationsofourvariableof interest.Thep-value is
the proportion of samples that have a test statistic larger than that of our
observed In our case, the statistic of interest is the difference of the proportion
of hits for someprotein-binding factor inUHP(orDHP)vs. type0 exons. For
instance, let’s say that the proportion of UHP promoters with a TATA box is
32.6% and the proportion of type 0 promoters with a TATA box is 17.2%.
Then our statistic of interest is Δ= 32.6−17.2 = 15.4. We then run the same
analysis 1,000,000 times with permutations of the promoters (start with the
same collection of promoters and randomize the assignments toUHP,DHP,
and type 0 while retaining the same overall numbers). Call the result of each
randomizing analysis Δ′. Then our p-value is the proportion of times that Δ′
> Δ.

Since we are performing the above procedure for hundreds of cov-
ariates (i.e., several tests for eachTFBS),we adjusted formultiple testing by
Bonferroni correction after excluding tests where either |Δ′− Δ| < 0.5
or |Δ′− Δ|/Δ < 0.05.

Functional enrichment analysis
Using isoform-level function assignment from isopret49, the hypergeometric
test was used to determine the probability of observing at least the observed
number ofUHP-containing isoforms out of the total isoforms annotated to a
given GO term that were UHP, DHP, or type 0. Only GO terms with at least
fiveUHP isoformsannotated to themwere considered.Bonferroni correction
was applied to the resulting p-values.

Data availability
Thedata used in this study are available at theNCBI SequenceReadArchive
(SRA)59. The individual datasets can be downloaded by using the
Snakemake71 script that is provided under anMITLicense at https://github.
com/TheJacksonLaboratory/gene_exp_psi.
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Code availability
TheSnakemake file additionally runs a collection of scripts that were used to
generate themain results presented in themanuscript. Source code for theC
++ applicationused to analyzemotifs associatedwithUHPandDHPexons
is also provided at the GitHub repository. Any additional information
required to reanalyze the data reported in this paper is available from the
corresponding author upon request.
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