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Structural variants (SVs) are significant contributors to inter-individual genetic
variation associated with traits and diseases. Current SV studies using whole-
genome sequencing (WGS) have a largely Eurocentric composition, with little
known about SV diversity in other ancestries, particularly from Asia. Here, we
present a WGS catalogue of 73,035 SVs from 8392 Singaporeans of East Asian,
Southeast Asian and South Asian ancestries, of which ~65% (47,770 SVs) are
novel. We show that Asian populations can be stratified by their global SV
patterns and identified 42,239 novel SVs that are specific to Asian populations.
52% of these novel SVs are restricted to one of the threemajor ancestry groups
studied (Indian, Chinese or Malay). We uncovered SVs affecting major clini-
cally actionable loci. Lastly, by identifying SVs in linkage disequilibrium with
single-nucleotide variants, we demonstrate the utility of our SV catalogue in
the fine-mapping of Asian GWAS variants and identification of potential cau-
sative variants. These results augment our knowledge of structural variation
across human populations, thereby reducing current ancestry biases in global
references of genetic variation afflicting equity, diversity and inclusion in
genetic research.

Human genomic variation plays a critical role in health and disease,
making its study a vital area of biological and medical research1,2.
To improve our understanding of genetic variation across diverse
human genomes and populations, international consortia such as the
1000 Genomes Project3 (1000G), Genome Aggregation Database
(gnomAD)4, and national efforts such as the U.K. 100,000 Genomes
Project5 and NIH’s All of Us program6 have reported large-scale
population-based sequencing efforts to comprehensively delineate
common and rare genetic mutations across different geographies and

ancestry groups.Most of these studies have focused primarily on base-
pair level variations such as single-nucleotide polymorphisms (SNPs)
and short insertions/deletions (indels)3,4,7. Recently, structural variants
(SVs) have emerged as another important sourceof variation8,9. SVs are
genome rearrangements ≥50 bp and can be classified into different
classes such as deletions, duplications, insertions (including mobile
element insertions (MEIs)), translocations and inversions10. Different
classes of SVs have been proposed to arise through various mechan-
isms, including non-allelic homologous recombination orMEI events11.
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With the availability of whole-genome sequencing (WGS) and the
development of SV calling algorithms, researchers are increasingly
leveraging short-read WGS data to characterise the spectra of human
SVs. In 2015, the 1000 Genome Project 12 analysed 2504 low-pass
genomes (~7x coverage) to discover 68,818 SVs affecting 2.5x more
base pairs in the genome compared to SNPs. The gnomAD-SV project10

identified 335,470 SVs from 14,891 WGS samples, clarifying the impact
of SVs in different portions of the genome and generating SV catalo-
gues to facilitate the identification of SVs associated with medical and
phenotypic traits. Some phenotypically/medically relevant SVs include
Chr17p11.2 duplications leading to PMP22 gene overexpression and
Charcot-Marie-Tooth disease (an inherited neurological disorder)13,
and Chr7 deletions affecting the ELN (Elastin) gene associated with
Williams neurodevelopment syndrome 14. Some SVs may be pleio-
tropic, such as the aforementioned Chr7 deletions which are asso-
ciated with autism15, schizophrenia16 and cancer17. Knowledge of SVs
can also improve our understanding of human evolution, as some SVs
display population and ancestry-specific patterns10,12. For instance,
amylase, a key enzyme involved in the digestion of starch has a higher
copy number inAsian populationswhere rice (starch) is a staple food18.
These studies highlight the importance of characterising the diversity
of SV landscapes on a global scale.

Asia accounts for 60% of the world population. However, many
large-scale SV profiling projects have focused on individuals of
European ancestry, resulting in an under-representation of SVs
reflective of Asian populations (gnomAD-SV: 1304 Asian genomes;
1000Genomes Project: 993 Asian genomes). Moreover, despite recent
efforts to close this gap, current SV studies of Asian populations are
still of limited sample size and have focused on single ancestry
groups19,20.

Singapore is a multi-ancestry country populated by individuals of
Indian, Chinese andMalay ethnicity due to its immigration history. The
majority of the residents (~74%)21 in Singapore are Chinese, who are
mainly descendants of Han Chinese from the southern provinces of
China22. Malays represent 13.6%21 of the population forms the second
largest ethnic group in Singapore. The Malay community in Singapore
are mainly descendants of Austronesian people in Southeast Asia,
particularly fromMalaysia and Indonesia. Lastly, Indians form the third
largest ethnic group in Singapore. Majority of the Indians in Singapore
are descendants of Indian migrants from south-eastern part of India22.
Given the genetic diversity of the population, Singapore can serve in
the first approximation as a snapshot of East Asian, South-East Asia,
and South Asia populations, and is uniquely suited for cataloguing
Asian SV landscapes and genomic variation.

The Singapore Genome Variation Project (SGVP)22, the
SG10K_Health23 and the SG10K_Med24 projects, which focussed on
small variants (SNP and lesser than 50bp long indels) have previously
demonstrated the value of Singaporean genomes for precision medi-
cine. Here, we describe one of the first and to our knowledge the
largest multi-ancestry study of SVs in Asians. Using WGS data from
8392 individuals (SG10K_Health) along with specialised SV-calling
tools, we identified and characterised SVs in these three Asian popu-
lations and related these SVs to regulatory and biological effects. Our
results contribute to the growing body of research on SVs and fill a
critical gap in deciphering the genomic variation landscape across
Asian populations.

Results
SV catalogues of three major ancestry groups in Singapore
We analysed Illumina short-read WGS data of 9770 samples from the
SG10K_Health study23, comprising participants of Chinese (58%),
Indians (24%) and Malays (18%) ethnicities. After CRAM-level quality
control (QC) and removing samples failing at least 1 of 9 QC metrics
(Methods), 8392 samples were retained. This data set is subsequently
referred to as SG10K Structural Variant release 1.4 (“SG10K-SV-r1.4”).

The SG10K-SV-r1.4 dataset comprises multiple sub-cohorts
sequenced at heterogeneous depths and using different library con-
struction methods (Supplementary Data 1). Previous studies have
demonstrated that library preparation methods, PCR-free (PCR-) and
PCR-amplified (PCR+), can cause non-uniformity of sequencing
coverage10, which can in turn affect the ability to accurately detect the
structural variation. Differences in sequencing depth between libraries
within a collection also impact structural variation genotyping sensi-
tivity. To ensure robust SV analysis and to reduce technical con-
founding factors, we split the collection into three datasets, namely
(1) Discovery cohort of 5487 individuals (average sequencing depth:
15x, library construction method: PCR+), (2) 15x_validation cohort
containing 1523 individuals (average sequencing depth: 15x, library
construction method: PCR-), (3) 30x_validation cohort consist of 1922
individuals (average sequencing depth: 30x, library construction
method: PCR+). We focused on the discovery cohort which contains
the largestnumber of individualswith a uniform sequencingdepth and
library construction method to identify SVs. We used the two valida-
tion datasets to re-genotype the variants detected in the discovery so
as to ensure that results observed in the discovery dataset are repro-
ducible. Overall, when confined to the discovery cohort alone
(n = 5487), this study represents one of the largest Asian SV studies to
date (Fig. 1a), covering 4 times as many individuals of Asian ancestries
compared to previous studies10,12. In addition, our discovery cohort
contains individuals of Southeast Asian ancestry (1144 individuals of
Malay ethnicity), a population which has to date not been included in
previous large population-based SV studies10,12.

For the SG10K-SV-r1.4 discovery callset, we focused on the three
most common SV types: deletions, insertions, and duplications (Fig. 1b
and Supplementary Fig. 1, “Methods” section). Due to their distinct
genomic properties, it is challenging to accurately identify SVs using a
single analytic tool25, and most previous SV cataloguing efforts have
employed a combined suite of SV class-specialised algorithms10,12. At
present, there are a plethora of SV detection tools available, each with
its own pros and cons. In order to identify the tools to generate the
SG10K-SV catalogue, we benchmarked several well-known SV callers,
includingManta26, Delly27 and Smoove28. SVs identified using long-read
WGS in 34 1000G samples by Ebert et al.29 were used as a truth set to
assert the performance of each SV caller to recover joint-genotyped
SVs across matched 30x and 15x down-sampled short-read WGS
(Supplementary Note 1, Supplementary Data 2). While measures of
precision for Delly were superior to that obtained with Manta, Manta
yielded overall higher F1-scores than other tools individually or in
combination (Fig. 1c–e and Supplementary Figs. 2 and 3). This
benchmarking also allowed us to estimate the fraction of SVs missed
by our SV detection pipeline between 15x and 30x WGS. On average,
across all the 1000G samples, 14.6% of long-read-defined SVs re-
identified when sequenced at a depth of 30x could not be re-identified
when down-sampled to 15x (Supplementary Fig. 3). Although Manta
performs better than other tools for deletions and insertions detec-
tion, it has inherent limitations to accurately detect duplications in
regions containing tandem repeat sequences (e.g., microsatellites and
minisatellites)30,31. We thus complementedMantawith SurVIndel232, an
in-house developed algorithm that has demonstrated the ability to
detect duplications at high sensitivity in such context (Supplementary
Note 2, Supplementary Figs. 4 and 5, and Supplementary Data 3 and 4).
Similarly,mobile elements insertions (MEIs) present characteristics for
which the MELT33 algorithm has demonstrated superior detection
ability. Combining all three tools, we identified 73,035 SVs comprising
29,011 insertions (including MEIs), 11,560 deletions, and 32,464
duplications. Approximately 66.5% and 86.7% of SG10K-SV-r1.4 events
were novel (Fig. 2a, b) with respect to gnomAD-SV10 and 1000 Gen-
omes Project phase 3 SV12 (1000G-SV), respectively, reflecting the
potential for new discoveries when analysing underrepresented Asian
genomes.
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Utilising variants in the discovery dataset, we genotyped these
variants in samples from our two validation datasets to ensure that
results observed in the discovery dataset are reproducible. 40,883 and
60,715 of the SVs detected in the discovery dataset were identified in
the 15x PCR- and 30x PCR+ validation dataset, respectively. For the
15x_validation dataset, a total of 6775 deletions, 17,036 duplications,
and 17,072 insertions were detected. In the 30x_validation dataset,
19,275 deletions, 21,377 duplications and 20,063 insertions were
detected.

SG10K_Health SV Landscape
On average, each SG10K_Health individual harboured 1439 insertions,
1584 deletions, and 1103 duplications. These figures were consistent
across all three ancestries (Fig. 2c). Compared to gnomAD-SV, we
detected fewer insertions anddeletions per individual (insertions: 1439
in SG10K_Health vs 2612 in gnomAD-SV; Deletions: 1584 vs 3505), likely
due to the higher sequencing depth (32x) of gnomAD-SV samples10.
Confirming this hypothesis, we detected comparable insertion or
deletion counts per individual in our 30x_validation dataset compared
to gnomAD-SV (2030 insertions and 3200 deletions; Supplementary
Fig. 6). However, despite lower sequencing depth in our discovery
cohort, we detected comparable numbers of duplications compared
to gnomAD-SV (1103 vs 1346), likely reflecting the improved sensitivity
of the SurVIndel2 duplication-detection pipeline. Similar to previous
studies10, the majority (>70%; 53,759) of deletions, insertions and
duplications were rare events with allele frequencies (AF) less than or
equal to 1% (Fig. 2d and Supplementary Fig. 7). Nevertheless, we

identified 465 SVs with allele frequencies greater than 0.95 in our
discovery cohort; in these cases, the reference genome bears the
minor allele.

While most detected SVs were small (Fig. 2c), we identified 2678
deletions and 2065duplications longer than 10 kb. Therewas a striking
abundance of SVs at 300bp, 2 kb and 6 kb (Fig. 2c). The 300 bp and
6 kb insertions corresponded to Alu and LINE1 elements respectively,
the twomost abundant classes of transposable elements in the human
genome (~11%34 and ~17%35 of the genome). The 2 kb SVs represent
composite SVA (SINE, Variable Number Tandem Repeat, and Alu)
transposons. These results highlight the pervasive contribution of
repeat elements (Alu, LINE1, SVAs) in sculpting human genomic var-
iation, and high-level similarities between our SV catalogue and other
studies12.

SVs have been reported to cluster at specific genomic regions
(“hotspots”). Several factors have been proposed to influence the
location of SV hotspots, such as segmental duplications and the local
presence of transposable elements36. These factors may contribute to
SV formation due to their higher propensity for DNA breakage and
repair, with local transposable elements increasing the likelihood
of non-allelic homologous recombination (NAHR)37. To identify SV
hotspots, we employed hotspotter38 (bandwidth:200,000, num.-
trial=10,000, pval=5 × 10−3) and identified 251 regions containing
higher-than-expected SV densities (Supplementary Data 5). Together,
these 251 regions affected ~211Mb, in line with previous findings29.
Notably, 36% (90out of 251) of the hotspot regionswere locatedwithin
5Mb of the ends of the chromosomes as well as near the centromeric
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regions. Excluding these sub-telomeric and centromeric hotspots, 88
hotspots were unique to SG10K-SV compared to gnomAD-SV. For
example, we identified a 988,219 bp (chr12:124035647-125023866)
hotspot region containing 58 SVs. This hotspot overlaps the NCOR2
(Nuclear receptor corepressor 2) gene, a corepressor that is frequently
altered in prostate cancer39.

Impact of SVs on regulatory elements and gene bodies
To assess the impact of SG10K-SV on different categories of functional
genomic regions, we overlapped the SVs with gene regulatory ele-
ments identified by ENCODE and the Epigenomics Roadmap project40.
Regulatory elements surveyed included 926,535 putative regulatory
elements annotated as distal enhancers (667,599), proximal enhancers
(141,830), insulators (CTCF sites, 56,766), promoters (34,803), and
poised elements (exhibiting DNase I hypersensitivity but are likely
functionally gated by additional trans-acting signals), and non-
promoter K4me3 regions (25,537)40.

Common deletions (AF ≥ 1%) were significantly depleted at puta-
tive enhancers and insulators, consistent with a model of negative
selection acting on alterations affecting gene expression (Fig. 3a). In
contrast, rare (1% >AF ≥0.1%) and ultra-rare (AF <0.1%) deletions did

not exhibit similar depletion signals. Common duplications were also
significantly depleted at distal and proximal enhancers (Fig. 3a and
Supplementary Data 6) again suggesting the action of purifying
selection. Unexpectedly, we observed common duplications being
enriched at annotated non-promoter H3K4me3 regions. To deepen
this observation, we examined the intersect of 81 non-promoter
H3K4me3 regions overlapping common duplications, and found that
they were highly and significantly enriched for tandem repeats relative
to all 25,537 H3K4me3 regions (fold enrichment: 4.6: hypergeometric
p-value: 2.45 × 10-23).We speculate that since readmapping artifacts are
common at tandem repeats, it is possible that these mapping artifacts
might have contributed to artefactual ChIP-seq peaks at these tandem
repeat regions.

We then analysed gene bodies (UTRs, CDS, exons or introns). SVs
of all three categorieswere strongly depleted at gene bodies, including
3’UTRs, 5’UTRs, CDS, exons, and introns (Fig. 3b and Supplementary
Data 7). For example, common deletions were depleted 5-fold at
coding exons, against reflecting high selection pressure on coding
sequences. Similar to enhancers, rare and ultra-rare SVs showed
weaker depletion patterns in exons of all types. Interestingly, intronic
regions showed no deviations from background, except for a modest
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with allele frequency≥0.01; rare indicates variantswith allele frequency≥0.001 and
allele frequency <0.01; ultra-rare variants refers to variants with allele frequency
<0.001. P-value was computed using 10,000 randompermutations and correction
with Benjamini–Hochberg false discovery rate was done. Ns indicates not sig-
nificant p-value, * indicates p-value < 0.05, **p-value < 0.01, *** indicates p-value <
0.001, **** indicates p-value < 0.0001. The exact p-value for the analysis can be

found in Supplementary Data 6. b Distribution of SVs (Deletions, Insertions,
Duplications) disrupting (GENCODE) gene centric features across allele frequency
bins. p-value was computed using 10,000 random permutations and correction
with BenjaminiHochberg false discovery ratewasdone. Ns indicatesnot significant
p-value, * indicates p-value < 0.05, **p-value < 0.01, *** indicates p-value < 0.001,
**** indicates p-value < 0.0001. The exact p-value for the analysis can be found in
Supplementary Data 7. c In silico prediction of functional consequences of SVs
segregated by allele frequencies.d Samplot of a 9.43 kbdeletion event overlapping
the TRDN gene region.
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elevation in rare and ultra-rare insertions. This may reflect the
increased propensity of certain MEIs families to insert into the gene
bodies of actively transcribed genes or GC-rich regions41,42.

SVs deleting gene regions may cause complete or partial loss of
function (LOF) effects. Conversely, duplicationsmay lead to gene copy
gain, augmenting gene dosage. Employing SVTK43 to assess the
potential impact of the SG10K SVs on protein-coding regions, we
identified 2153 SVs (2.95% of 73,035) with direct predicted impact on
protein coding integrity (Fig. 3c). Of these, 1008 SVs resulted in likely
gene LOF. LOF-associated SVs tended to occur at low allele frequencies
(AF < 1%). We identified 881 duplications predicted to cause copy
number gain of one or several consecutive protein-coding genes. Copy
number gain events were typically larger compared to LOF events
(median size 90 kb vs 9.7 kb). These patterns are in linewith findings in
gnomAD-SV where the majority of protein coding affecting SVs
resulted in LOF, and copy gain events exhibited larger sizes.

We assessed the potential impact of SVs on major clinically
actionable genes, focusing on81AmericanCollege ofMedical Genetics
and Genomics (ACMG v3.244) defined actionable genes associatedwith
highly penetrant and actionable genetic conditions. AnnotSV45 was
used to identify SVs potentially affecting at least one ACMG v3.2 gene.
We found 14 SVs affecting the coding sequence integrity in 11 clinically
actionable ACMGgenes. For example, we identified a 9.4 kbdeletion in
three Chinese individuals (AF = 5.18 × 10−4), affecting TRDN (Fig. 3d),
encoding triadin and a key component of the calcium release
complex46. Mutations in TRDN gene are associated with a recessive
form of Catecholaminergic polymorphic ventricular tachycardia47. We
also found a 9.16 kb heterozygous deletion affecting PRKAG2 in two
Chinese individuals with an AF of 0.00034 (Supplementary Fig. 8).
PRKAG2 gene encodes the gamma-2 subunit of the AMP-activated
protein kinase (AMPK)48 and mutations in PRKAG2 gene have been
associated with cardiomyopathy related to glycogen storage in
heart cells49.

SV patterns between international cohorts
Reflecting the novelty of the SG10K-SV catalogue, 66.5% (49,601/
73,035) and 86.7% (63,367/73,035) of the SVs identified were not pre-
viously reported in gnomAD-SV (Fig. 2a) or 1000G-SV catalogues
(Fig. 2b), respectively. In total, 47,770 SVs in SG10K-SV did not overlap
with either study (1000G-SV and gnomAD-SV). Applying a call rate cut-
off across each ethnic group of ≥ 50% within SG10K-SV, we identified
42,239 SVs and hereby termed these as “Asian specific - novel” SVs. The
majority of novel Asian-specific SVs identified exclusively in our cata-
logue exhibited lower allele frequencies than SVs identified in both
SG10K-SV and gnomAD-SV or SG10K-SV and 1000G-SV (Supplemen-
tary Fig. 9).

Next, we focusedon the 25,265 SVs inSG10K-SVwhichoverlapped
at least one study. We used this subset to identify SVs with a higher
prevalence in Asian populations, employing fixation index (Fst)50

analysis described in the Methods section. This resulted in identifying
an additional 10,902 (out of 25,265) Asian-specific SVs.

Notable examples of Asian-specific SVs include a previously
reported 2.9 kb deletion (chr2:111125617-111128520) in intron 2 of the
BIM gene, which is associated with resistance to tyrosine kinase
inhibitors51. This SV is present in gnomAD-SV at a higher AF in East-
Asians compared to other ethnicities (AF EAS: 7.37 × 10−2, AF others:
1.04 × 10−4). Another example comprises a rare 19.3 kb deletion
(chr16:165396_184700) spanning theHBA1 andHBA2 genes, associated
with α-thalassemia and detectedmore frequently in Asian populations
(AF EAS: 9.93 × 10−3, AF others: 1.04 × 10−4)20.

SVs between Asian ancestry groups
We then investigated SV patterns distinctive to the three major Asian
ancestries. Principal components analysis (PCA) on the full set of
SG10K-SV demonstrated ancestry-specific population clustering

(Fig. 4a), similar to SNV clustering using the SG10K_Health23 dataset
with the same samples (Supplementary Fig. 10). A similar PCA-based
populations’ structure organisation was found using either insertion,
deletion, or duplication only events (Supplementary Fig. 11). Never-
theless, 52% of SVs were seen in only one ancestry, 13% were shared
across two ancestries, and the remaining 35% of the SVs were in all
three populations (Fig. 4b), supporting pervasive differences across
each of these SV classes contribution to population differentiation.
However, as the numbers of SVs detected as unique in a population
correlated with cohort size (Supplementary Data 1) and were enriched
for low-frequency SVs (Supplementary Fig. 12), it remains possible that
some of these SVs may be present in other populations, but remain
undetected due to their innate low allele frequency.

To gain a more granular understanding of ancestry-specific SV
patterns, we calculated fixation indexes (Fst)50 for each of the detected
SV and assigned a significance score to each observation using per-
mutation analysis (see Methods). By examining the resulting Fst
trends,we found that SVswith extreme Fst values (0.7 and above)were
mostly detected in small numbers of individuals (call rate <2%) not
reaching significance thresholds (Fig. 4c). Amongst SVs exhibiting
statistically significant Fst values, we identified 11,715 SVs displaying
ancestry-specific frequencypatterns, comprising 3580deletions, 4068
insertions, and 4067 duplications (see Methods).

86 of the 11,715 ancestry-specific SVs, comprising 40 deletions, 44
duplications, and 2 insertions (Fig. 4c and Supplementary Data 8)
resulted in gene copy gains or LOFs. These gene integrity affecting
ancestry-specific SVs were observed across a range of population-level
allele frequencies (Fig. 4d) and included several previously reported
SVs. For example, we observed a 2.7 kb deletion (chr6:8432262-
8434992) in the SLC35B3 gene, involved in the transport of 3’-phos-
phoadenosine-5’-phosphosulfate (PAPS)52. This SV was common (AF =
0.016) in East Asians within the gnomAD-SV catalogue and rare in
other ancestries. This SV also exhibited significantly higher AFs in
Chinese and Malays compared to Indians (AF SG-Chinese: 0.0149, AF
SG-Indian: 0.0018, AF SG-Malay: 0.0196). Another example was a rare
8.8 kb deletion (chr6:158745097-158753965) overlapping STYL3, pre-
sent at low allele frequency (AF =0.00015) in gnomAD-SV. This SV
shows a higher allele frequency in East Asians (AF =0.00148) com-
pared to other ancestries within gnomAD-SV and was not observed in
individuals of South Asian ancestry in gnomAD-SV. We observed a
similar allele frequency for Chinese and Indians (AF SG-Chinese:
0.0012, AF SG-Indian: 0). However, this deletion appears to be com-
mon among individuals of Malay ethnicity (AF SG-Malay: 0.019). A
third examplewas a 9.8 kb duplication overlapping PROCR, encoding a
receptor for activated protein C53. This duplication was seen only in
Asians in gnomAD-SV (EAS AF = 0.008; SAS AF = 0.0002). This SV also
exhibited a higher allele frequency inChinese andMalays compared to
Indians (AF SG-Chinese: 0.0149, AF SG-Indian: 0, AFSG-Malay: 0.0026).
Finally, we identified a 18 kb duplication (chr6:73747426-73766255)
overlapping CD109, a glycosylphosphatidylinositol (GPI) anchored
protein54, and increased CD109 gene expression has been observed in
several cancers55,56. This duplication was observed in individuals of
South Asian ancestry but not in East Asians (EAS AF =0, SAS AF =
0.002). We noted a similar trend in allele frequencies within our cat-
alogue (AF SG-Chinese: 3.24 × 10−4, AF SG-Indian: 0.024, AF SG-
Malay: 0.0017).

Importantly, we also discovered previously unreported SVs. One
such SV was a 942 bp duplication overlapping SMC1B, encoding a
protein involved in chromatid cohesion and DNA recombination dur-
ing meiosis and mitosis57. The AF of this SV was higher in Chinese and
Indians compared to Malays (AF SG-Chinese: 0.28, AF SG-Indian: 0.25,
AF SG-Malay: 0.15). We also detected a 84 bp deletion in ZNF83, and
missense point mutations in ZNF83 have been associated with poor
prognosis in urothelial carcinoma58. This event was detected with
the lowest AF in Indians (AF SG-Chinese: 0.49, AF SG-Indian: 0.17,
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AF SG-Malay: 0.38). We found an Indian-specific insertion included a
209bp SV overlapping CEACAM3 (AF SG-Chinese: 0.05, AF SG-Indian:
0.11, AF SG-Malay: 0.07), a cell adhesion molecule that plays a crucial
role in the innate immune response to bacterial infections59. Finally, we
identified a 6.9 kb deletion overlapping TRIM48, a gene predicted to
encode protein that function as E3 ubiquitin ligases and has been
shown to promoteASK1 activation60. TheAFof this deletionwashigher
in Indian compared to Malay and Chinese individuals (AF SG-Chinese:
0.23, AF SG-Indian: 0.34, AF SG-Malay: 0.24). Collectively, our analyses
demonstrate that numerous population-specific SVs amongAsians can
be detected using SG10K-SV.

SVs exhibit cis-linkage to disease GWAS loci
Finally, SVs are gaining prominence as potential genetic drivers of
disease susceptibility, drug response and other phenotypes61. To
explorepotential associations betweenSVs andbiological phenotypes,
we hypothesised that certain trait-associated lead SNPs identified by
GWAS (GWAS-lead SNPs) might not (and often do not) represent the
actual causative variant. Conventional GWAS analysis thus often
requires pinpointing underlying causal variants using fine-scale
genetic mapping to assess variants showing high linkage dis-
equilibrium (LD)with leadSNPs. Since SVs are large variants in termsof
genomic span, it is possible that certain SVs in strong LD with GWAS
lead SNPs might be the causative genetic alteration62.

To explore this possibility, we performed LD analysis between
SG10K-SVs and previously reported WGS-inferred SG10K_Health small
variants (SNPs or short indels)23. LDwas computed for high-confidence

(call rate ≥ 0.8) common (MAF ≥ 1%) SVs (n = 6772) and small variants
(n = 9,450,184) located within a 1Mb distance (Fig. 5a). 15.8% of SVs
were not in LD with any SG10K_Health small variants (R2 < 0.2), sug-
gesting that a substantial proportion of SVs represents genetic varia-
bility that might be overlooked in conventional genetic association
analyses. 3909 of the 6772 high-confidence common SVs were in
strong LDwith 164,992 SG10K_Health SNPs (R2 ≥0.8). Of these, 885 SVs
were in strong LD with 2151 SG10K_Health SNPs matching lead SNPs
from the EBI GWAS catalogue63 based on genomic positions, with 385
SVs (154 deletions, 34 duplications, and 197 insertions) in strong LD
with 664 lead SNPs from GWAS focused on Asian cohorts. Supple-
mentary Data 9 lists all 385 SG10K-SVs candidate causative genetic
alteration together with their associated GWAS lead SNPs.

GWAS-lead SNPs are often found in non-coding regions of the
genome.Our analysis highlighted twoexonic-associated SVs in high LD
with these non-exonic SNPs, where the former may represent under-
lying causal variants. We focused on the subset of exon-overlapping
SG10K-SVs, since they could most directly be assigned a functional
consequence. A first example include a predicted LOF inducing SV
deletion (chr1: 152583066-152615264)which overlaps LCE3B and LCE3C
genes. This SV was in strong LD with two GWAS lead SNPs (rs4085613
(R2 = 0.97) and rs4845459 (R2 = 0.98); Fig. 5b)64,65. Notably, both SNPs
are associated with psoriasis (P = 7 × 10−30 and P = 6 × 10−11) in indivi-
duals of East Asian ancestries. Both SNPs are not found in the coding
region of the genes and hence, our analysis suggests that the linked
LOF SV should also be considered a potential causal variant for psor-
iasis in this locus.
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We also observed a predicted LOF SV (chr11:55,264,123-
55,271,064) deleting exons 2 to 6 of TRIM48 exhibited strong
LD (R2 = 0.903; Fig. 5c) with an intergenic GWAS-lead SNP
(chr11:54,697,371; rs11532186) associated with altered glomerular fil-
tration rate. Notably, an integrative analysis of genetic association and
gene expression in a cohort of patients with reduced kidney function
identified TRIM48 among the top causal candidates for urine meta-
bolite variation66,67. These examples support the value of including
SG10K-SVs in analyses of genetic drivers of phenotypic variation in
Asian cohorts. The full list of SVs in high LD with GWAS lead SNPs is
reported in Supplementary Data 9.

Discussion
Wegenerated a comprehensive catalogue of SVs in 8392 Singaporeans
containing 73,035 SVs. Compared to previous studies analysing pri-
marily populations of Eurocentric ancestry, our samples enabled us to
assess patterns of SV genetic diversity across Asia, leveraging on Sin-
gapore as a diverse multi-ancestry community. In particular, little is
known about the SV landscape in Malay individuals. Malays are the
third largest ethnic group in Asia.While themajority of the 220million
individuals of Malay ethnicity resides in Indonesia and Malaysia, they
are geographically distributed across several countries in Southeast
Asia, including Singapore and Sri Lanka68. Previously, Wu et al.7

investigated the population structure of the three Singaporean
populations with the 1000 Genomes project populations using small

variants and reported anancestral component that is largely specific to
the Malays in Singapore7. This result indicates the importance of
including individuals of Malay ethnicity in large-scale population-
based SV studies so as to uncover SVs unique to this community.
Previous studies have characterised SVs in theChinese (East Asian) and
Indian (South Asian) populations10,12. However, our current study
provides a much more comprehensive catalogue of SVs for these
populations by analysing a significantly larger number of samples than
previous efforts. Overall, our findings reiterate the importance of
creating a comprehensive population-specific database of SVs to fill
the gap of our understanding of genetic diversity in Asian populations.

While clearly a first-generation catalogue, the SG10K-SV database
identified novel SVs thatwere not seen in existing population-based SV
catalogues, such as gnomAD-SV and 1000G-SV. We identified 11,715
SVs displaying ancestry-specific frequency patterns, of which, 86 SVs
had functional implications. These 86 SVs included SVs that were
reported previously in Asian population as well as novel SVs showing
differences in allele frequencies between the ethnic groups. For
example, we identified a duplication overlapping CD109 that was also
seen in individuals of South Asian ancestry in gnomAD-SV. We
observed a similar allele frequency trend in SG10K-SV for this SV. We
also identified a rare deletion in STYL3 gene that was also present in
East Asians in the gnomAD-SV catalogue. However, using the SG10K-SV
catalogue, we observed that this deletion is common among indivi-
duals of Malay ethnicity with an allele frequency of 0.019. Apart from
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known SVs, we also identified multiple novel SVs showing significant
differences in allele frequencies between the ancestry groups. We
identified a novel duplication overlapping SMC1B that has a higher AF
in Chinese and Indians compared toMalays. We also detected another
novel Indian-specific insertion overlapping CEACAM3. These findings
reiterate the importance of creating a population-specific SV catalogue
which allows us to understand the genetic variations that drive dif-
ferences between the ethnic groups.

The SG10K-SV catalogue has also enabled us to identify potential
SVs associated with phenotypic variations. Beyond SVs affecting gene
function, integrating SG10K-SVswith SG10K_Health SNPs enabled us to
identify LD patterns between polymorphic single nucleotide (SNPs)
and large-scale genomic variations (SVs). Integrating the SG10k-SV and
SG10K_Health SNPs collections with Asian cohorts catalogued GWAS
lead SNPs, we were able to identify potential causative SVs plausibly
associated with disease phenotypes. For example, we identified a LOF
deletion affecting LCE3B/LC23C gene that is in strong LDwith two non-
coding GWAS lead SNPs associated with Psoriasis. This demonstrates
the value of the SG10K-SVdatabase, which allowed the identification of
potential causative SVs that are in strong LD with GWAS lead SNPs
associated with disease phenotypes in the Asian cohort.

Our study has several limitations. SV discovery is challenging, and
the full spectrum of SVs in the human genome remains poorly
understood. The findings presented here are primarily derived from
15x short-read WGS, and thus clearly underpowered both in terms of
sequencing read length and sequence coverage to capture all possible
SVs present in the Asian population. Existing algorithms rely on
sequencing coverage and split-reads from the short-readWGS data to
detect SVs, and hence, the precise identification of genomic coordi-
nates and length of tandem duplicates and large insertions is ham-
pered. In addition, at present, our SV callers captured only the three
most commonly analysed SVs (deletions, insertions and duplications),
but did not consider other SV classes (inversions, translocation) that
are also present in human genomes and are likely to have biological
consequences. Using long-read sequencing in the near future, either as
a single modality or coupled with high-coverage short-read sequen-
cing, will allow us to identify substantially more SVs, clarify SVs in
repetitive regions, and define new classes of SVs. Notwithstanding
these shortcomings, the SG10K-SV dataset is, by far, the largest Asian
SV database. This resource will be valuable to understanding the
genetic diversity of the Asian population and how these variations
underpin health and disease in the Asian population.

Methods
WGS data quality control
We processed WGS data collected from the SG10K_Health23 study.
SG10K Health comprises alignments and variant calls for SNVs and
INDELs from 9 local cohorts, including 9770 healthy individuals. Data
generation involvedWGS of bloodDNA samples (Illumina short-reads)
and subsequent analysis following GATK best practices (GATK4
GRCh38)69 to generate individual sample level CRAM files. It also
includedQCchecks intended to discard sampleswith poor sequencing
quality (e.g. hard filters for error rate and contamination), unusual
numbers of calls (e.g. Median absolute deviation (MAD)-based filters
on het/hom ratio), chromosome aneuploidies, and/or samples with
related individuals in the same cohort (see methods in Wong et al.,
2023 for additional details).

Using an in-housedevelopedpipeline,we calculated the coverage,
alignment andGC biasmetrics from the SG10KHealth CRAMs. In total,
nine metrics were considered for downstream filtering, chosen to
represent the type of evidence used by SV calling algorithms:

• median autosome coverage: The median coverage in autosomes,
excluding (i) bases in reads with lowmapping quality (mapq <20);
(ii) bases in reads marked as PCR duplicates, and (iii) overlapping
bases in read pairs; calculated with mosdepth70.

• mad autosome coverage: The median absolute deviation of cov-
erage in autosomes after coverage filters are applied (see “median
autosome coverage”); calculated with mosdepth70.

• pct autosomes 1x: Thepercentageofbases that attained at least 1X
sequence coverage in autosomes, after coverage filters are
applied (see median autosome coverage); calculated with
mosdepth70.

• pct reads aligned: The percentage of PF reads that align to the
reference; calculatedwith picard AlignmentSummaryMetrics71. PF
reads refer to reads that passes Illumina’s filter.

• pct reads properly paired: The percentage of reads that align as
proper pairs as calculated with samtools stats72. Properly pair
reads are reads in which both reads in the pair are mapped and
they are mapped within the range from each other based on the
estimated insert size distribution.

• median insert size: The median insert size of aligned reads; cal-
culated with picard InsertSizeMetrics71.

• mad insert size: The median absolute deviation of insert sizes;
calculated with picard InsertSizeMetrics71.

• gc dropout: Illumina-style GC dropout metric; calculated with
picard GcBiasSummaryMetrics71.

• at dropout: Illumina-style AT dropout metric; calculated with
picard GcBiasSummaryMetrics71.

In each cohort, we discarded samples outside 8 MAD from the
median for at least one of the nine metrics considered. Such filters led
to the exclusion of 1378 samples, thus leaving 8392 samples for
downstream analysis.

Deletions and insertions detection
In this study, we employedManta26 to identify deletions and insertions
separately in single samples, followed by SVimmer73 to obtain a puta-
tive cohort-wide consensus set. Individual-level genotype calls within
this uniformly-defined discovery SV set were then refined using
Graphtyper274.

Manta v1.6 was executed in the single sample mode to identify
deletions and insertions in the discovery dataset. We used the default
parameters and further filtered the single-sample VCF to retain (i) calls
that pass filters, (ii) with a length of 50bp or more and (iii) of the
selected variant types (deletions and insertions).

SV discovery from short read data is notedly a challenging
task75. Moreover, since the majority of our dataset consists of 15x
genomes (Supplementary Data 1), we expect lower sensitivity
compared to what has been reported in higher-depth studies10.
In order to overcome these limitations, we have incorporated
additional clustering and re-genotyping steps, which are known to
improve detection power in short-read-based studies. In brief, the
goal is to aggregate all SV candidates identified when evaluating
each sample individually (SV clustering), and then re-assess
the original data for the presence/absence of these calls (SV re-
genotyping).

Prior to clustering, we sought to discard any samples that dis-
played an unusual number of calls for any of the SV types considered,
by applying an 8-MAD filter on a per-cohort basis, analogous to the
strategy previously used during sample QC. For Manta, no samples
were discarded after applying such a filter, suggesting that the
upstream sample QC is already adequate to flag unusual samples. We
then clustered SV candidates in each of the call sets obtained during
the discovery step using svimmer73, which we ran with default para-
meters to aggregate events across all samples in the discovery dataset.
We then performed re-genotyping for each sample using Graphtyper74

v2.5.1 with default parameters and merged the individual genotype
VCF across all samples using vcf_merge subcommand within Graph-
typer2. We then set all genotypes that weremarked by Graphtyper2 as
Fail to null using Hail76.

Article https://doi.org/10.1038/s41467-024-53620-8

Nature Communications |         (2024) 15:9507 9

www.nature.com/naturecommunications


We retained SVs that passed the following criteria: (1)filter = PASS;
(2) SVMODEL =AGGREGATED; (3) SVTYPE = INS or SVTYPE =DEL; (4)
SVs with length ≥ 50 and SVs with length ≤ 1,000,000; (5) SVs that are
polymorphic and has at least 1 sample with a homozygous reference
genotype.

In order to create a high-confidence SV dataset, we applied
additional filters recommended by Graphtyper2. For deletions, we
retained variants that passed the following criteria: (1) ABHet > 0.30 |
ABHet <0; (2) AC/NUM_MERGED_SVS < 25; (3) PASS_AC >0; (4)
PASS_ratio > 0.1 and lastly (5) QD > 12. For insertions, we retained
variants that passed the following criteria: (1) ABHet > 0.25 | ABHet <0;
(2) AC/NUM_MERGED_SVS < 25; (3) PASS_AC >0; (4) PASS_ratio > 0.1
and (5) MaxAAS > 4.

Mobile element insertions detection
MELT v2.2.233 was executed using MELT-Split with default parameters
in a four-step process to identify different classes of MEIs (Alu, SVA,
LINE1) in the SG10K-SV discovery set. First, MELT-indivAnalysis was
used to identify MEI in each sample. Second, MELT-groupAnalysis was
used to aggregate MEIs across all samples in the discovery dataset.
Third, we performed re-genotyping for each sample using the merged
MEI informationobtained fromstep 2usingGenotype feature inMELT.
Lastly, MELT-Split uses the MELT-makeVCF function to filter and
mergeMEIs information across all samples into a single VCF. The four-
step MEI discovery was run separately for each MEI class. We extract
only variants that PASS the filters indicated by MELT for downstream
analysis.

For the two validation datasets, we used the output file from
MELT-groupAnalysis, which contains aggregated MEIs across all sam-
ples in the discovery dataset, to re-genotypeMEIs in each sample in the
twovalidationdatasets. Lastly,weused theMELT-makeVCF function to
filter and merge MEIs across all samples into a single VCF. We extract
only variants that PASS the filters indicated by MELT and polymorphic
variants with at least one 1 sample having homozygous reference
genotype.

Duplications detection
We ran SurVIndel232 with default parameters on each sample in the
discovery set and only retained tandem duplications. Duplications
were left-aligned using the normalised utility in SurVIndel2. Then, we
clustered the duplications as recommended in the manuscript of
SurVIndel2, merging events whose length differ by less than 100 bp,
and whose extremities were located within 200 bp of each other in a
manner analogous to that employed by SVimmer for insertion and
deletion clustering.

Next, we used the companion re-genotyper of SurVIndel2, SurV-
Typer, to genotype each duplication in each sample. The genotyped
duplications for each sample were merged using bcftools merge.
Duphold77 was ran on the calls generated by SurVIndel2. We set gen-
otypes calls to PASS if theymeet the following criteria: if genotype is (1)
homozygous reference and FT = = PASS; (2) heterozygous and FT = =
PASS and DHBFC> 1.3; (3) homozygous alternate and FT = = PASS and
DHBFC> 1.3. Genotypes that failed these criteria were set to Null using
Hail. Lastly, we retained duplications that passed the following criteria:
(1) duplications with length ≥ 50 and duplications with length ≤
1,000,000; (2) SVs that are polymorphic and has at least 1 sample with
a homozygous reference genotype.

Callset refinement andmerging of individual variant callset into
SG10K-SV Release 1.4 discovery and validation datasets
For the last step of the SV pipeline, we used a combination of regional,
call and event-specific filters to further refine the outputs of the re-
genotyping step, aiming to reduce the number of false positives in our
dataset. Region-specific filters were applied consistently across all
samples before generating the final SG10K-SV release 1.4 to (i) retain

events in autosomal contigs (chr1-22), (ii) exclude those that occur in
centromeres, telomeres, heterochromatin region27, (iii) exclude
regions in the primary assembly that overlap with ALT contigs and (iv)
exclude N-masked regions of the reference genome.

Benchmarking of tools for duplication calling
Benchmarking structural variations (SVs) generated by short-read
methods is often done using long-read-based ground truth catalogues.
The Human Genome SV Consortium (HGSVC) released HGSVC2, a
comprehensive set of SVs detected in 35 samples in the 1000 Genome
Project using PacBio HiFi and CLR reads29. Additionally, CRAM files at
30x coverage are available for all the samples78.Weused 10 samples for
our benchmarking effort. We down-sampled these 10 samples to a
sequencing depth of 15x using samtools72 to mimic our discovery set.
Next, we ran our pipeline on a dataset comprising 5487 discovery
samples plus the 10 benchmarking samples. Finally, we obtained a call
set for each sample by retaining SVs with an allele count of at least 1
and an FS value of PASS.Weused an in-house tool (https://github.com/
Mesh89/SVComparator) to compare, for each sample, the predicted
SVs with the set of SVs reported in HGSVC2. Our pipeline reports
tandem duplications and insertions separately, while HGSVC2 only
reports deletions and insertions; tandem duplications are considered
insertions. For this reason, we could not measure the sensitivity of our
duplications and insertions separately.

Principal component analysis
To investigate the relationship between the different ethnic groups
in Singapore, we performed principal component analysis (PCA)
using all variants (deletions, insertions, duplications and MEIs) gen-
otypes using the “hl.hwe_normalized_pca()” function in Hail76. We
performed PCA on all samples in the discovery dataset. The results
indicate that PC1 and PC2 can segregate the individuals by their
ethnic groups. We also performed PCA on all samples in the dis-
covery dataset for each variant type separately. The results obtained
per variant type recapitulated the population structure when all
variants were analysed together.

Comparison of the number of Asian samples across different
population-based SV studies
Weobtain the ancestry composition of 3major studieswith SV, namely
1) gnomAD-SV10 2) 1000 Genomes Project (1KG)12 3) Centers for
Common Disease Genomics (CCDG)8. Samples in gnomAD-SV were
grouped into EAS (gnomAD-SV East Asian (EAS) sample) and Other (all
other non-EAS sample), while 1KGwas grouped into EAS (1KG’s sample
found in superpopulation of East Asian ancestry (EAS)), SAS (1KG’s
sample found in superpopulation of South Asian ancestry (SAS)) and
Other (1KG’s superpopulation which are not EAS and SAS) and CCDG
was grouped into EAS (CCDG’s sample of EAS ancestry), SAS (CCDG’s
sample of SAS ancestry) andOther (CCDG’s sample of non-EAS or non-
SAS ancestry). SG10K-SV’s sample were grouped into SG-CHI (indivi-
duals of self-reported “Chinese” ethnicity), SG-MAL (individuals of self-
reported Malay ethnicity) and SG-IND (individuals of self-reported
Indian ethnicity). Sample count of each group was plotted in a stacked
barplot for each project.

Comparison to SVs from gnomAD-SV
We obtained the hg38 lift-over gnomAD-SV callset from NCBI’s dbvar
study “nstd166”.

The dataset can be obtained from https://ftp.ncbi.nlm.nih.gov/
pub/dbVar/data/Homo_sapiens/by_study/vcf/nstd166.GRCh38.
variant_call.vcf.gz. We considered any SG10K-SV to be novel if no
overlapping gnomAD-SV could be identified using a approach similar
to our SVimmer-based clustering of individual sample derived SV
candidates, aggregating events across gnomAD-SV and SG10K-SV with
SVimmer73 default parameters.
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Comparison to SVs from 1000G-SV
We obtained the VCF contain the SV calls from 1000G-SV from:
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_
map/supporting/GRCh38_positions/ALL.wgs.mergedSV.v8.
20130502.svs.genotypes.GRCh38.vcf.gz.

We considered any SG10K-SV to be novel if the SV does not
overlap 1000G-SV data using an approach similar to our SVimmer-
based clustering of individual sample derived SV candidates using
SVimmer73 default parameters.

Enrichment analysis
To calculate the relative enrichment for genic and non-coding regions
of the genome, we downloaded the ENCODE cCRE track79 and GEN-
CODE v4080 annotation from UCSC table browser.

First, we partitioned the SG10K-SV dataset into three groups
(ultra-rare, rare and common) based on the allele frequency of the
variants using bcftools72 (version 1.16) filter function. Ultra-rare var-
iants are variants with AF < 0.001; rare variants are variants with AF >
=0.001 and AF <0.01 and lastly, common variants are variants with
AF > =0.01. The partitioned VCF files were transformed into bed files
with bcftools query and a custom script. To calculate the relative
enrichment of SVs in non-coding cCRE regions, we retain only variants
that do not overlap any exons using bedtools81 (v2.30.0) intersect.
Next, we count the number of variants which overlaps cCRE regions
and genic regions using bedtools intersect. Lastly, we performed
permutation tests for the different cCRE regulatory elements or genic
regions that overlap SVs. For the permutation tests, the null distribu-
tion is calculated by the number of overlaps between cCRE regulatory
elements or genic regions and randomly shuffled SV locations. We
generated 10,000 random SV sets constraining the coordinates of the
shuffled SVs within the same chromosome and non-overlapping. The
enrichment of a specific cCRE regulatory elements or gene region and
SVoverlap is expressed as the log2 fold change of the number of actual
SVs that overlap the specific regulatory or gene regions divided by the
average of the null distribution. Each cCRE or genic regionwhich has 0
overlap with shuffled SV are assigned an arbitrary count of 1 to prevent
mathematical error. A positive log2 fold change indicates an enrich-
ment of SVs in the specific regulatory or gene region compared to a
random null distribution, whereas a negative log2 fold change indi-
cates a depletion of SVs in the specific regulatory or gene region when
compared against the null distribution. Lastly, the p-value was calcu-
lated as follows and corrected with Benjamini-Horchberg False Dis-
covery Rate with the scipy.stats (v1.11.4) package:

p� value=

½Number of times absðlog 2simulated f old changeÞ>=absðlog 2f old change actualÞ�
10,000

ð1Þ

SV annotations
We annotated the SV VCF using SVTK43 with default parameters to
associated SVs with GENCODE release 40 genes and transcripts using
the following command:

svtk annotate --gencode ~/gencode_v40/gencode.v40.primar-
y_assembly.annotation.gtf SG10K-SV-Release-1.4-HighConfidenceSV-
withMetadata.vcf.gz SG10K-SV-Release-1.4-HighConfidenceSV-
withMetadata.svtk.gencode40.vcf

We focused on SVs that were annotated as loss of function (LOF),
copy gain, duplications LOF (DUP_LOF). A deletion is predicted as LOF
when it overlap at least one exon of a gene. A duplication is predicted
as LOF when both the start and end of the duplication are contained
within the exon of a gene. On the other hand, a duplication is anno-
tated as DUP_LOF if a duplication overlaps at least one exon of a gene.
A duplication is annotated as copy gain if it spans the entire gene.

Lastly, an insertion is predicted as a LOF if a sequence is inserted into
an exon.

To identify SVs affecting medically relevant genes, we annotated
the SG10K-SV VCF using AnnotSV v3.445 with default parameters to
identify SVs overlapping with the genes listed in ACMG version 3.244.

AnnotSV -SVinputFile SG10K-SV-Release-1.4-HighConfidenceSV-
withMetadata.variantsonly.bed -svtBEDcol 4 -outputdir AnnotSV
-genomeBuild GRCh38 -bcftools /bin/bcftools -bedtools /bin/bedtools
-annotationsDir /usr/local/share/AnnotSV/

Identifying hotspots in SG10K-SV Release 1.4
To identify SV hotspot in the SG10K-SV dataset and gnomAD-SV
dataset, we employed hotspotter from the primatR package38 with the
following parameters: (bandwidth:200,000, num.trial=10,000,
pval=5 × 10−3). To identify hotspots unique to our dataset, we used
bedtools81 intersect with the “-v” function to find hotspot regions that
are absent in gnomAD-SV.

Linkage disequilibrium analysis between SNPs and SVs
To explore the relationship between SVs and SNPs, we conducted
pairwise linkage disequilibrium (LD) analysis between each SV and
small variants identified in SG10K_Health23. We compute LD between
high-confidence (call rate ≥ 0.8) common (MAF ≥ 1%) SVs (n = 6772)
and small variants (n = 9,450,184) located within a 1Mb window using
PLINK v1.982, similar to the approach used by TOPMED83.

Known GWAS lead SNPs were retrieved from the NHGRI-EBI
GWAS catalogue v1.0.2, only studies where the GWAS summary init-
sample information detailing the studied cohort(s) composition con-
tains, in part, or in full, the token chinese, Chinese, Japan, japan, Asian,
asian, Asia, asia, Korea, korea, Taiwan, taiwan, Malay, malay, India or
india, involving Asian individuals containing cohorts were retained.
Finally, we found SNPs in common between the filtered NHGRI-EBI
GWAS catalogue and SG10K-SNP that were in high LD (R2 ≥0.8) with an
SV in SG10K-SV.

Fixation index (Fst) calculation
We computed Fst values using the hudson_fst function from the scikit
allel Python package. The calculation involved comparing allele fre-
quencies (AF) between pairs of populations. For SG10K-SV, we per-
formed three pairwise comparisons, 1) Chinese vs. Indian, 2) Chinese
vs. Malay, and 3) Indian vs. Malay populations. The resulting Fst values
were obtained for each pair and the maximum Fst value was kept for
each SG10K-SV event along with the annotation of which pair-wise
comparison generated the Fst value. Next, to assign p-values to each
Fst value, we conducted permutation analysis. This approach involved
maintaining the original genotypematrix while randomly shuffling the
ancestry labels across 1000 iterations, for each of which the Fst was
recalculated. The significance of the observed Fst values was then
determined by comparing these against the distribution of Fst values
obtained from the permuted data, calculating a p-value based on the
proportion of permuted Fst values lower than the observed value. FDR
was applied to adjust for multiple testing. Subsequently, we applied
additional filtering on the obtained FDR values to identify SVs with
significant Fst. Specifically, we focused on events with an FDR thresh-
old of less than 1% and an Fst value greater than themean of the entire
dataset.

For gnomAD-SV Fst calculation, we compared EAS versus the non-
EAS ancestry group using the VCF downloaded from

https://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/by_
study/genotype/nstd166/gnomad_v2.1_sv.sites.accessioned.vcf.gz

which contains the necessary tags of the ancestry group’s allele
call type, for example the EAS_N_HOMREF, EAS_N_HET and EAS_N_-
HOMALT tags representing East Asian’s number of sample called
homozygous reference (hom_ref), heterozygous (het) and homo-
zygous alternate (hom_alt) allele respectively. With the count for each
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allele call type, we generated a GenotypeArray in scikit allel package
with each element in the GenotypeArray being genotype status, [0,0]
for hom_ref, [0,1] for het and [1,1] for hom_alt, based on the count of
EAS ancestry group allele call type and a similar GenotypeArray was
produced for thenon-EAS ancestrygroup. The EASGenotypeArray and
non-EASGenotypeArray was used to calculate the allele count for the 2
group with count_alleles function and the generated allele count used
to calculate Fst with hudson_fst function.

To generate the p-value for gnomAD-SV, we combine the EAS
GenotypeArray and non-EAS GenotypeArray and noted the length, n,
of EAS GenotypeArray, we then shuffle the combined GenotypeArray,
then split the shuffled GenotypeArray into shuffled EAS Genoty-
peArray with the first n genotype in the shuffled GenotypeArray and
the rest being shuffled non-EAS GenotypeArray. We calculated the Fst
between this 2 shuffled GenotypeArray and note down the Fst (Fst-
shuffled). FDRwas applied to adjust formultiple testing. Subsequently,
we applied additional filtering on the obtained FDR values to identify
SVs with significant Fst. Specifically, we focused on events with an FDR
threshold of less than 1% and an Fst value greater than themean of the
entire dataset.

We conducted a similar Fst analysis for 1000G-SV comparing
EAS + SAS against other ancestry.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The CRAM files for the 34 1000G samples used for benchmarking can
be found in https://registry.opendata.aws/1000-genomes/. The VCF
for the SVs called using long-read sequencing data for the 1000G
samples can be found in: https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
data_collections/HGSVC2/release/v2.0/integrated_callset/variants_
freeze4_sv_insdel_sym.vcf.gz. The VCF containing SV calls from
gnomAD-SV can be retrieved from https://ftp.ncbi.nlm.nih.gov/pub/
dbVar/data/Homo_sapiens/by_study/vcf/nstd166.GRCh38.variant_call.
vcf.gz. The VCF containing SVs from 1000G short-read data can be
obtained from https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/
integrated_sv_map/supporting/GRCh38_positions/ALL.wgs.mergedSV.
v8.20130502.svs.genotypes.GRCh38.vcf.gz. The sequence data used in
this study were obtained under Data Access Application NPM00002
through the National Precision Medicine (NPM) Data Access Commit-
tee (DAC). The data are available under controlled access due to data
privacy laws related to participant consent for data sharing. Bona fide
researchers are required to submit a data access request outlining the
proposed research, which will be subject to approval by the NPMDAC.
The average processing time is 6-8 weeks. The data access request
form and data access policy are available on the SG10K_Health web
portal (https://npm.a-star.edu.sg/help/). The aggregated SG10K-SV-
r1.4 VCF data can be downloaded via the CHORUS variant browser,
which is accessible through registration with the SG10K_Health web
portal (https://npm.a-star.edu.sg). The response time for access
requests is approximately 3working days, and thedatawill be available
for download upon access approval. For more information, users can
contact the NPM Programme Coordinating Office, A*STAR (con-
tact_npco@gis.a-star.edu.sg).

Code availability
Codes used for the analysis of the SG10K-SV dataset can be found in
GitHub (https://github.com/c-BIG/SG10K-SV-MANUSCRIPT).
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