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Cuproptosis-related signature predicts prognosis and indicates 
tumor immune infiltration in bladder cancer
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Background: Cuproptosis is a newly identified form of cell death that is dependent on copper (Cu) ions, 
termed Cu-dependent cytotoxicity. This process is distinct from other forms of cell death such as apoptosis, 
necrosis, and ferroptosis. The accumulation of copper is known to play a significant role in various biological 
processes, including angiogenesis (the formation of new blood vessels) and metastasis (the spread of cancer 
cells to different parts of the body). These processes are crucial for tumor growth and progression, indicating 
that copper and the cuproptosis-related genes (CPRGs) might be indispensable in the context of cancer 
development and progression. Given this background, we aimed to explore the relationship between CPRGs 
and both prognostic predictions and tumor microenvironment (TME) infiltration in bladder cancer (BLCA).
Methods: For this study, we utilized data from The Cancer Genome Atlas (TCGA) to identify CPRGs and 
subsequently divided BLCA patients into three distinct molecular clusters based on these genes. To assess the 
proportions of various immune cell types within the TME, we employed single-sample gene set enrichment 
analysis (ssGSEA) and the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts 
(CIBERSORT) method. These computational techniques allowed us to quantify the infiltration of different 
immune cells, providing insights into the immune landscape of the tumors. Furthermore, we developed a 
risk score model using CPRGs to predict the survival prospects of BLCA patients.
Results: Our analysis identified three molecular clusters of BLCA patients, each exhibiting unique 
clinical features and patterns of TME infiltration. Among these clusters, cluster 1 was associated with a 
poor prognosis. Interestingly, this cluster also showed significant infiltration of activated CD4+ (ssGSEA 
P<0.001) and CD8+ T (ssGSEA P<0.05) cells, which are crucial components of the immune response against 
tumors. This finding suggests a complex interaction between the immune system and the tumor, where a 
high presence of T cells does not necessarily correlate with better outcomes. Additionally, our risk score 
model revealed that the high-risk group, characterized by a specific expression pattern of CPRGs, also had 
enhanced infiltration of CD4+ and CD8+ T cells. This indicates that the cuproptosis-based risk model has a 
robust ability to predict patient prognosis and can guide immunotherapy decisions.
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Introduction

Bladder carcinoma (BLCA) is one of the most common 
mal ignancies ,  of  which the l i fet ime r isk  reaches 
approximately 1.1% for males and 0.27% for females (1).  
There are around 549,000 new BLCA cases and over 
200,000 deaths from this disease every year (2). The 
pathophysiology and molecular biology of BLCA have 

not yet been fully elucidated. BLCA can be classified as 
high- or low-grade based on its histopathological features. 
According to the depth of bladder wall invasion, BLCA 
can be classified as non-muscle-invasive bladder cancer 
(NMIBC) and muscle-invasive bladder cancer (MIBC), with 
different treatments respectively (3). It is evident that there 
are genetic alterations underlying different phenotypes 
of BLCA. For example, some common mutations have 
been identified in low-grade NMIBC (such as FGFR3 and 
PIK3CA) or high-grade MIBC (e.g., ERBB2 and TP53) (4). 
Currently, intravesical therapy, such as Bacille Calmette-
Guérin (BCG), remains the major therapy for BLCA, 
whereas the therapeutic options have been expanded 
to cytotoxic chemotherapy, immunotherapy, targeted 
therapies, and antibody–drug conjugates (5).

As an important intracellular mineral nutrient, copper 
(Cu) plays a role in several essential cellular process, 
including mitochondrial respiration, oxygen metabolism, 
iron uptake, as well as regulation of some biological pathways 
(6,7). In the past few years, connections between Cu and 
disease status have been observed, for example, a higher 
level of Cu has been found in various malignant tumors. 
It has been reported that BLCA patients demonstrated 
significantly higher levels of serum Cu compared with 
controls (8). Moreover, concentration of Cu in BLCA 
was significantly correlated with expression of vascular 
endothelial growth factor (VEGF) and hypoxia-inducible 
factor 1 (HIF-1) (9). Accumulation of Cu is associated 
with the process of angiogenesis, and metastasis (10).  
Recently, Tsvetkov et al. revealed a novel mechanism 
termed cuproptosis, by which excessive intracellular Cu 
concentrations lead to cell death (11). They observed the 
essential link between mitochondrial respiration and Cu-
induced cell death, which provided a potential direction 
for possible combination of therapeutic interventions. 

Highlight box

Key findings
• Identification of three molecular clusters: bladder cancer (BLCA) 

patients were categorized into three distinct molecular clusters 
based on cuproptosis-related genes (CPRGs). These clusters 
exhibited different clinical features and patterns of tumor 
microenvironment (TME) infiltration.

• Prognostic and therapeutic implications: the study highlighted 
that the cuproptosis-based risk model effectively predicts patient 
prognosis and could guide immunotherapy decisions. The findings 
emphasize the role of CPRGs in the TME and their potential as 
biomarkers for prognosis and therapeutic targets in BLCA.

What is known and what is new? 
• Cuproptosis is a novel form of cell death dependent on copper (Cu) 

ions.
• CPRGs might play a significant role in cancer development. The 

study categorizes BLCA patients into three distinct molecular 
clusters based on CPRGs.

What is the implication, and what should change now? 
• The correlation between high-risk scores, poor prognosis, and 

increased CD4+ and CD8+ T cell infiltration indicates that CPRGs 
could be potent biomarkers for predicting patient outcomes and 
guiding immunotherapy.

• CPRGs should be integrated into the diagnostic and prognostic 
evaluation of BLCA patients. Routine screening for these genes 
can help to identify patients with higher risks and tailor treatment 
plans accordingly.

Conclusions: Our study sheds light on the biological functions of CPRGs within the TME of BLCA and 
their correlations with clinical parameters and patient prognosis. The identification of distinct molecular 
clusters with varying prognoses and immune cell infiltrations highlights the heterogeneity of BLCA and 
underscores the potential of CPRGs as biomarkers for prognosis and therapeutic targets. These findings 
offer new perspectives for the development of immunotherapeutic strategies in the treatment of BLCA 
patients, potentially leading to more personalized and effective cancer therapies.
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Therefore, the exploration of cuproptosis-related genes 
(CPRGs) has the potential value of predicting therapeutic 
effects and targets.

As an immunogenic cancer, BLCA can be characterized 
by high tumor mutation burden (TMB). Although immune 
checkpoint blockade (ICB) has been a revolution for cancer 
treatment, only a limited number of patients benefit from 
it (12). The tumor microenvironment (TME), a complex 
mixture composed of cellular components (fibroblasts, 
immune cells, etc.) and non-cellular components (extracellular 
matrix, physicochemical factors, etc.), plays a critical role in 
initiation, progression, and treatment resistance of BLCA 
(13,14). The TME could lead to limited reinvigoration 
of antitumor immunity by imposing metabolic stress on 
immune cell infiltration (15). Therefore, characteristics of the 
TME may impact patients’ responses to therapy, and tumor 
cells could also influence TME by autocrine or paracrine 
effects (16,17). Recently, Damrauer et al. identified a novel 
expression signature of an inflamed TME in BLCA, which 
was associated with improved recurrence-free survival after 
BCG. They also reported an association between expression 
of immune checkpoint genes and an inflamed TME (18). 
To date, the relationship between TME cells infiltration 
and cuproptosis has been rarely reported in BLCA. It is 
critical to investigate the function and mechanism of the 
TME, cuproptosis, and their interactions in the pathogenesis 
and prognosis of BLCA for better cancer progression 
management and novel drug development.

In this study, we analyzed The Cancer Genome Atlas 
(TCGA)-BLCA, GSE13507 and GSE32894 datasets to 
determine the relationship between cuproptosis patterns 
and TME cell-infiltrating characteristics in BLCA. We 
identified three cuproptosis-related phenotypes in BLCA. 
Then, we established a scoring system to predict patients’ 
clinical outcomes and TME characteristics. Our findings 
may provide new ideas for applying different therapeutic 
treatments towards different BLCA cuproptosis-related 
phenotypes. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tau.
amegroups.com/article/view/10.21037/tau-24-456/rc).

Methods

RNA expression datasets

TCGA-BLCA cohort was downloaded in a form of 
transformed RSEM normalized count from the UCSC 
Xena Browser (https://xenabrowser.net/datapages/). 
Somatic mutation data were downloaded from Genomic 

Data Commons Data Portal (https://portal.gdc.cancer.gov/).  
GSE13507 and GSE32894 datasets were curated from 
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.
nih.gov/geo/). The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Cuproptosis-related genes (CPRGs) panel

A total of ten genes associated with cuproptosis (CDKN2A, 
DLD, DLAT, MTF1, LIAS, PDHA1, GLS, FDX1, LIPT1, 
PDHB) were extracted from a former investigation (11). The  
details regarding these CPRGs are provided in Table S1.

Consensus molecular clustering 

Consensus clustering based on the non-negative matrix 
factorization (NMF) was conducted using Consensus 
Cluster Plus tool from Bioconductor (https://bioconductor.
org/packages/release/bioc/html/ConsensusClusterPlus.
html) to delineate subgroups among BLCA patients, utilizing 
the expression profiles of CPRGs. The characteristics of 
these patient clusters are outlined in table available at: 
https://cdn.amegroups.cn/static/public/tau-24-456-1.xls.

Immune analysis

We utilized the Cell-type Identification by Estimating Relative 
Subsets of RNA Transcripts (CIBERSORT) deconvolution 
method to assess the relative abundance of 22 tumor-infiltrating 
immune cells (TIICs). Subsequently, gene signatures specific 
to immune cells, as per Charoentong’s research (19), were 
employed to compute immune infiltration-related scores via 
single-sample gene set enrichment analysis (ssGSEA). 

Somatic mutation analyses

Somatic mutation provided by VarScan file format was 
downloaded from Genomic Data Commons Data Portal. 
Copy number alteration files were curated from UCSC 
Xena online (https://xena.ucsc.edu/). 

Construction of cuproptosis-related prognostic risk score

To predict individual patient prognosis, we computed a risk 
score. Initially, we intersected the differentially expressed 
genes (DEGs) from each cluster identified by the ‘NMF’ 
function. Incorporating the ten CPRGs, we conducted 
univariate Cox regression analysis to identify genes 

https://tau.amegroups.com/article/view/10.21037/tau-24-456/rc
https://tau.amegroups.com/article/view/10.21037/tau-24-456/rc
https://xenabrowser.net/datapages/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cdn.amegroups.cn/static/public/TAU-24-456-Supplementary.pdf
https://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
https://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
https://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
https://cdn.amegroups.cn/static/public/tau-24-456-1.xls
https://xena.ucsc.edu/
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associated with overall survival (OS) by “survival” package 
survivalFunc. Subsequently, we performed 1,000 iterations  
and included five gene groups for further screening, 
following previous protocols (20). Among these, a 
gene model comprising 14 genes exhibited the highest 
frequency of occurrence, totaling 396 compared to other 
4-gene models. Finally, these 14 genes constituted the 
gene signature used to compute the risk score, which was 
determined as follows:

( )n
i ii

risk score Exp coef= ×∑  [1]

The patients across various cohorts were categorized 
into high- and low-risk groups by utilizing the median value 
of the risk score as the threshold. Subsequently, receiver 
operating characteristic (ROC) and Kaplan-Meier (KM) 
survival curves by “survivalROC” and “survival” package were 
constructed based on these risk groups by “glmnet” package. 
The coefficients of 14 genes are presented in Table S2. The 
heatmaps were generated by “pheatmap” package.

Statistical analyses

In this study, statistical analysis was conducted using R 
(version 4.2.3; R Foundation for Statistical Computing, 
Vienna, Austria) and GraphPad Prism (version 5; GraphPad 
Software, San Diego, CA, USA). The Wilcoxon test, 
log-rank test, and Kruskal-Wallis H test were employed. 
Specific details regarding the statistical tests are provided in 
the figure legends. 

Results

Widespread genetic variation of CPRGs in BLCA

We derived 10 CPRGs from a previous study (11). Some of 
the TCGA-BLCA samples had the distinctive expression 
of ten CPRGs from normal samples (Figure 1A). Somatic 
mutations of CPRGs were detected in 46 of 412 tumor 
samples in TCGA dataset (Figure 1B). Analyses of copy 
number variations (CNV) and expression profiling of 
CPRGs in BLCA are shown in Figure 1C-1E. This part 
introduced the heterogeneity of ten CGRs in BLCA. 

To investigate correlation between CPRGs and clinical 
prognosis, we combined univariate Cox regression model 
and KM survival analyses (Figure S1). 

Cuproptosis-related subtypes in BLCA

In Figure 2A, a network was utilized to exhibit correlation 

and prognostic values of CPRGs. To understand expression 
profiling patterns mediated by cuproptosis in BLCA, we next 
stratified 406 tumor tissues from TCGA-BLCA cohort into 
3 clusters based on gene expression of CPRGs (Figure 2B).  
There were 71 samples in cluster 1, 165 samples in cluster 2 
and 170 samples in cluster 3, among which cluster 1 displayed 
the worst prognosis (Figure 2C; P<0.05) with 32.39% of 
patients in stage IV (Figure 2D). The three clusters could 
be discriminated by PCA (Figure 2E). Pathways analysis 
showed that cell cycle-related, TGF-β, and immune-related 
pathways were mainly upregulated in cluster 1, suggesting 
there were distinct discrepancies of biological function 
among cuproptosis-related clusters, especially at the angle of 
immune infiltration (Figure 2F and Figure S2).

Immune analysis of in cuproptosis-related clusters

To understand in-depth characteristics of immune 
infiltration among three clusters, we employed ssGSEA (21)  
and CIBERSORT (22) analyses and found immune-
activated cells such as activated CD4/8+ T (from results of 
ssGSEA, Figure 3A; from results of CIBERSORT, Figure 3B) 
were predominantly enriched in cluster 1. Considering that 
patients in cluster 1 exhibited the worst prognosis, immune 
therapy related to activated CD4/8+ T cells might be a good 
candidate treatment for BLCA patients in cluster 1.

Construction of risk score model based on cuproptosis

As previously reported, cuproptosis is cell death dependent 
on mitochondrial respiration. To investigate cuproptosis-
related biological function underlying our transcriptomic 
classifications, we overlapped DEGs of three clusters and 
obtained in total of 426 genes (Figure 4A). Afterwards, 
Gene Ontology (GO) function analysis indicated that these 
genes were indeed associated with mitochondrial biological 
function such as mitochondrial respiratory chain complex 
assembly (Figure S3).

The above analyses mainly reflected molecular 
characteristics of cuproptosis-related clusters in BLCA. To 
further understand the prognostic prediction of CPRGs, 
we next combined 426 genes and ten CPRGs to generate 
a risk_model, recognized as CPRG_score. Here, we 
included three datasets (TCGA-BLCA cohort as training 
set, GSE13507 as validation cohort, and GSE32894 as 
an external cohort) for calculating the risk score. We 
observed that 365 of the above 1,345 genes could be 
detected in all three sets (Figure 4B). Therefore, a total 

https://cdn.amegroups.cn/static/public/TAU-24-456-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-24-456-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-24-456-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-24-456-Supplementary.pdf
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of 436 genes (including 10 CPRGs) were finally used for 
construction of CPRG_score. After 1,000 iteration as 
previously described (23), we chose a group of 14 genes 
with the highest frequency (396 times) as the candidates 
to calculate the CPRG_score (Figure 4C). The accuracy 
for predictive ability in patients’ survival by the CPRG_
score was presented by concordance index (C-index). Here, 
all three cohorts had the high value of C-index (0.6874 in 
TCGA-BLCA cohort; 0.6170 in GSE13507 cohort, and 
0.7769 in GSE32894; Figure 4D). Quantification analysis of 
CPRG_score (Figure 4E) in three clusters was in line with 
the results of proportion analysis (Figure 4F), which showed 
that CPRG_score was mainly upregulated in cluster 1.  
These analyses implied that high CPRG_score could 
predict a worse prognosis in BLCA patients.

Predictive capacity of CPRG_score in patient prognosis

Based on CPRG_score, we explored patients’ survival rates 
by dividing patients into high- and low-risk groups using the 
median value of CPRG_score. We observed that the high-
risk group predicted a worse survival rate (Figure 5A,5B;  
Figure S4A). Next, we calculated the area under the curve 
(AUC) values of survival rates in three cohorts. The results 
showed that AUC values at 1-, 2-, 3-, and 5-year were all 
beyond 0.6 in the training set (Figure 5C), validation set 
(Figure 5D), and the external cohort (Figure S4B). Increasing 
risk_score was parallel with the increasing death rates  
(Figure 5E-5H; Figure S4C,S4D). The expression of 14 
genes in low- and high-groups were shown by heatmap  
(Figure 5I,5J; Figure S4E). These results indicated the 

Figure 1 Widespread genetic variation of CPRGs in BLCA. (A) PCA analysis of normal and tumor samples. (B) Types of genetic alterations 
in 10 CPRGs. (C) Location of 10 CPRGs on chromosomes. (D) CNV frequency of 10 CPRGs in TCGA-BLCA samples. (E) The boxplot 
shows expression of 10 CPRGs between normal and tumor tissues. *, P<0.05; **, P<0.01; ***, P<0.001. NA, not applicable; CPRGs, 
cuproptosis-related genes; BLCA, bladder cancer; PCA, principal component analysis; CNV, copy number variation; TCGA, The Cancer 
Genome Atlas.
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Figure 2 Cuproptosis-related subtypes in BLCA. (A) A network describes the connection and prognostic values of 10 CPRGs.  
(B) NMF rank survey was shown. The optimal number of clusters: rank =3. (C) KM survival curves according to NMF clusters. P value was 
determined by the log-rank test. (D) The distribution plot shows the composition of clinicopathological features of three NMF clusters.  
(E) PCA shows the distribution of 3 NMF clusters. (F) Corresponding pathway activities of three NMF clusters. NMF, non-negative matrix 
factorization; BLCA, bladder cancer; CPRGs, cuproptosis-related genes; KM, Kaplan-Meier; PCA, principal component analysis.
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Figure 3 Immune analysis of cuproptosis-related clusters. (A)The ssGSEA was employed to analyze immune cell profiles across 3 clusters. 
Statistical comparisons among the three clusters were conducted using the Kruskal-Wallis H test. (B) The proportion of immune cells, 
determined through CIBERSORT analysis, is depicted in boxplots across the 3 clusters. Statistical differences among the clusters were 
evaluated using the Kruskal-Wallis H test. *, P<0.05, **, P<0.01, and ***, P<0.001 indicate significance. TCGA, The Cancer Genome Atlas; 
BLCA, bladder cancer; ssGSEA, single-sample gene set enrichment analysis; CIBERSORT, Cell-type Identification by Estimating Relative 
Subsets of RNA Transcripts; NA, not available; MDSC, myeloid-derived suppressor cell; NK, nature killer. 
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good ability of CPRG_score to predict prognosis of BLCA 
patients.

Immune characteristics between the high- and low-risk 
groups

Since CPRG_score exhibited an advantage in predicting 
patients’ survival rates, we next wanted to understand the 
immune infiltration patterns of high- and low-risk groups. 
By using ssGSEA analyses in TCGA (Figure 6A) and 
GSE13507 (Figure 6B), we observed that activated CD4/8+ 
T cells were upregulated in high-risk group, consistent with 
the results in cluster 1, which also had a worse survival rate. 

Therefore, these results further indicated the advantageous 
intervention for anti-cancer treatment based on these 
immune-activated cells, especially for patients in the high 
CPRG_score group and CPRG cluster 1.

Construction of a nomogram

By incorporating CPRG_score and disease stages, we finally 
developed a nomogram to predict OS of BLCA patients 
(Figure 7A). We observed that, in the training set (TCGA-
BLCA), AUC values at 1, 3, and 5 years were 0.749, 0.751, 
and 0.761, respectively (Figure 7B). In the validation cohort 
(GSE13507), AUC values at 1, 3, and 5 years were 0.841, 
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Figure 6 Immune characteristics between the high- and low-risk groups. (A) The ssGSEA was conducted on TCGA-BLCA data to assess 
the profiles of immune cells within high- and low-risk groups. Statistical disparities among the clusters were evaluated using the Kruskal-
Wallis H test. (B) The ssGSEA was also performed using GSE13507 data to examine immune cell profiles within high- and low-risk groups. 
The Kruskal-Wallis H test was utilized to compare statistical differences among the clusters, with significance indicated as *, P<0.05, **, 
P<0.01, and ***, P<0.001. ssGSEA, single-sample gene set enrichment analysis; TCGA, The Cancer Genome Atlas; BLCA, bladder cancer; 
MDSC, myeloid-derived suppressor cell; ns, not significant.
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Figure 7 Construction of a nomogram. (A) A nomogram was developed to predict the 1-, 3-, and 5-year OS of BLCA patients in the 
training set. (B) ROC curves were constructed to predict the 1-, 3-, and 5-year survival rates in both the training (TCGA) and testing 
(GSE13507) cohorts. (C) Calibration curves were generated to evaluate the performance of the nomogram in predicting the 1-, 3-, and 5-year 
survival rates in both the training and testing cohorts. ***, P<0.001. TCGA, The Cancer Genome Atlas; BLCA, bladder cancer; AUC, area 
under the curve; OS, overall survival; ROC, receiver operating characteristic.
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0.717, and 0.664, respectively (Figure 7B). Compared with 
the AUC values of disease stages (Figure S5), we observed 
that AUC values of nomogram of training set and validation 
cohort were higher than that of disease stages at 1, 3, and  
5 years. The calibration plots of the nomogram are displayed 
in Figure 7C. Thus, the nomogram we developed worked as 
a good model for predicting BLCA prognosis.

Discussion

In our study, we integrated and analyzed transcriptomic 
patterns mediated by CPRGs. We observed that the BLCA 
cohort curated from TCGA could be divided into three 
clusters with distinct clinicopathological characteristics, 
among which cluster 1 exhibited the worst survival rate 
and enrichment with immune-activated pathways. Here, 
we demonstrated that cluster 1 exhibited the enrichment 
with immune-activated pathways due to activated CD4/8+ 
T cells. As previously reported (24,25), cytotoxic CD8+ T 
cells (CTLs), as an activated type of CD8+ T cells, are a 
major population of TME cells that acts against the tumor. 
Therefore, it is advised to promote the activities of CD8+ 
T cells to enhance patients’ response to immunotherapy in 
cluster 1. In this part, our research delineated intra-tumor 
heterogeneity of transcriptomic classifications mediated 
by cuproptosis and characterized their TME infiltration 
characteristics. From this, we believed that cuproptosis-
based molecular subtypes could provide the new insights of 
cuproptosis molecular function in BLCA tumorigenesis (26). 

Since molecular classifications were mainly based on 
the characteristics of specific population of patients, we 
next would like to investigate the correlation between 
cuproptosis-based mediation and individual patient 
prognosis. Considering that there were few genes (ten 
genes were included in this study) related to cuproptosis, 
we performed analyses as previously reported and obtained 
in total of 426 DEGs exhibited in all three subtypes, which 
were finally recognized as cuproptosis phenotype-related 
genes. By using a model of machine learning including 
1,000 iterations, we constructed a risk_model based on  
14 genes. Next, three datasets (TCGA-BLCA, GSE13057, 
and GSE32894) were used to validate the accuracy of risk_
model in prognosis prediction. Here, we demonstrated high 
risk score was consistently related to the worse prognosis 
and positively correlated with cluster 1, suggesting that this 
risk_model exhibited an excellent prognostic ability. 

Finally, to improve the accuracy of prognosis prediction, 
we incorporated tumor-node-metastasis (TNM) stages 

and risk-score to construct a nomogram. In the training, 
validation, and external sets, we confirmed the strong ability 
of prediction in our nomogram. Therefore, the nomogram 
could be used as a cuproptosis-based predictive tool in 
clinical practice (27,28). However, our study mainly focused 
on the bioinformatics analyses, which would be short of 
robust confirmation. More in-depth experimental validation 
of our findings will be conducted in the near future.

Conclusions

CPRGs play a crucial role in the TME of BLCA, 
influencing clinical outcomes and immune responses. Their 
integration into clinical practice could improve prognostic 
predictions and inform personalized immunotherapy 
strategies, offering new directions for research and 
treatment in BLCA.
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