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Abstract

Background. Educational attainment (EduA) is correlated with life outcomes, and EduA itself
is influenced by both cognitive and non-cognitive factors. A recent study performed a ‘gen-
ome-wide association study (GWAS) by subtraction,’ subtracting genetic effects for cognitive
performance from an educational attainment GWAS to create orthogonal ‘cognitive’ and
‘non-cognitive’ factors. These cognitive and non-cognitive factors showed associations with
behavioral health outcomes in adults; however, whether these correlations are present during
childhood is unclear.
Methods. Using data from up to 5517 youth (ages 9–11) of European ancestry from the
ongoing Adolescent Brain Cognitive DevelopmentSM Study, we examined associations
between polygenic scores (PGS) for cognitive and non-cognitive factors and cognition, risk
tolerance, decision-making & personality, substance initiation, psychopathology, and brain
structure (e.g. volume, fractional anisotropy [FA]). Within-sibling analyses estimated whether
observed genetic associations may be consistent with direct genetic effects.
Results. Both PGSs were associated with greater cognition and lower impulsivity, drive, and
severity of psychotic-like experiences. The cognitive PGS was also associated with greater risk
tolerance, increased odds of choosing delayed reward, and decreased likelihood of ADHD and
bipolar disorder; the non-cognitive PGS was associated with lack of perseverance and reward
responsiveness. Cognitive PGS were more strongly associated with larger regional cortical
volumes; non-cognitive PGS were more strongly associated with higher FA. All associations
were characterized by small effects.
Conclusions. While the small sizes of these associations suggest that they are not effective for
prediction within individuals, cognitive and non-cognitive PGS show unique associations with
phenotypes in childhood at the population level.

Introduction

As educational attainment (EduA) is among the strongest predictors of positive outcomes
across the lifespan (e.g. income, health, well-being; Gutacker, Kinge, & Olsen, 2023;
Raghupathi & Raghupathi, 2020; Zajacova & Lawrence, 2018), understanding its contributing
factors is important. Despite often being thought of as primarily ‘environmental,’ EduA itself
is moderately heritable (h2 = 0.41–0.47; Heath et al., 1985; Silventoinen et al., 2020). Evidence
that EduA is strongly impacted by cognitive ability and a set of broadly defined ‘non-cognitive
skills’ (e.g. emotion regulation and personality traits such as grit and curiosity;
Chamorro-Premuzic & Furnham, 2003; Duckworth, Peterson, Matthews, & Kelly, 2007,
2019; Kovas et al., 2015; Malanchini, Engelhardt, Grotzinger, Harden, & Tucker-Drob,
2019; Noftle & Robins, 2007) has inspired recent approaches that have deconstructed the gen-
etic architecture of EduA into cognitive and non-cognitive components that have shared and
unique associations with complex EduA-related phenotypes (e.g. risk tolerance and psycho-
pathology; Demange et al., 2021; Malanchini et al., 2024; Tucker-Drob & Harden, 2012;
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Tucker-Drob, Briley, Engelhardt, Mann, & Harden, 2016).
However, the extent to which these differential associations are
present in childhood, before education has been completed,
remains poorly understood (Malanchini et al., 2024). Moreover,
prior research in adolescents underscores the critical role of devel-
opment in understanding factors such as substance use and sleep
disturbances that can significantly impact educational outcomes
and often are exacerbated during adolescence (de Zeeuw et al.,
2014; Donnellan, Martin, & Senia, 2021; Hicks et al., 2021).
By studying PGS of cognitive and non-cognitive components of
EduA in a developmental sample, we can study the extent to
which genetic liability for these cognitive and non-cognitive fac-
tors are associated with outcomes such as substance use and per-
sonality prior to the completion of education.

This study aims to characterize the associations between cog-
nitive and non-cognitive PGS and psychosocial and neuroimaging
phenotypes in a cohort of individuals aged 9–11 who have not yet
been as impacted by socioenvironmental factors such as amount
of schooling. We also controlled for potential confounders such
as population stratification, assortative mating, and passive
gene-environment correlations through within-sibling analyses.

Deconstructing the genetic architecture of educational
attainment into cognitive and non-cognitive components

Demange et al. (2021) demonstrated that genetic effects on EduA can
be parsed into cognitive and non-cognitive factors. To study genetic
influences on ‘non-cognitive skills,’ Demange et al. (2021) performed
a novel ‘genome-wide association study (GWAS)-by-subtraction’ by
residualizing the genetic effects of EduA (N = 1 131 881; Lee et al.,
2018) on the genetic effects of cognitive performance (Lee et al.,
2018) in a Cholesky decomposition using genomic structural equa-
tion modeling (Grotzinger et al., 2019), leaving a residual ‘non-
cognitive’ genetic factor (N = 510 715) and ‘cognitive’ genetic factor
(N = 257 841; Lee et al., 2018). In this way, the authors generated
two new GWASs, one of ‘non-cognitive skills’ that represents genetic
influences on EduA that are not shared with cognitive performance,
and an orthogonal ‘cognitive skills’GWAS. Their study identified 157
independent loci associated with the non-cognitive factor and
observed that the cognitive and non-cognitive factors showed distinct
associations with other relevant phenotypes. For example, the non-
cognitive factor showed positive genetic correlations with risk toler-
ance and some psychiatric disorders (e.g. bipolar disorder and
schizophrenia), and was positively genetically correlated with person-
ality traits including conscientiousness, extraversion, and agreeable-
ness, while the cognitive factor showed negative or null correlations
with these same phenotypes (Demange et al., 2021).

While the GWASs mentioned above consisted largely of adult
participants, adolescence is a critical stage of both cognitive and non-
cognitive development. Prior studies have shown that early individ-
ual differences in cognitive (e.g. cognitive performance; Lövdén,
Fratiglioni, Glymour, Lindenberger, & Tucker-Drob, 2020) and non-
cognitive factors (e.g. personality; Chamorro-Premuzic & Furnham,
2003; Noftle & Robins, 2007) may contribute to EduA, employment
outcomes, and overall success later in life (Duckworth et al., 2019;
Moffitt et al., 2011). A recent preprint reported that the association
between a non-cognitive PGS and academic achievement nearly
doubled between the ages of 7 and 16 (Malanchini et al., 2024), sug-
gesting that genetic factors related to non-cognitive facets of EduA
may become particularly influential during adolescence, a critical
developmental period for factors related to EduA. To date, most
examinations of associations between genetic propensities for

cognitive and non-cognitive factors and brain imaging have been
conducted in adult samples (Demange et al., 2021). Little is
known of the brain mechanisms related to either cognitive or non-
cognitive factors during middle/late childhood, a critical period for
neural plasticity. In sum, despite adolescence being an important
time for future academic achievement, little is known about the cog-
nitive and non-cognitive influences on EduA and their correlations
with relevant traits, behaviors, and brain structure during critical
developmental periods such as middle/late childhood.

The current study

In the current study, we estimated the associations between PGS
for cognitive and non-cognitive factors of EduA and outcome
measures among children enrolled in the ongoing Adolescent
Brain Cognitive Development (ABCD) Study (Volkow et al.,
2018; see Fig. 1 for overview). We focused on behavioral pheno-
types implicated in studies on adults (i.e. cognition, risk tolerance,
personality, & decision-making, substance initiation, psychopath-
ology; Demange et al., 2021) and examined associations with
brain structure. Finally, as prior research has shown that con-
founds such as assortative mating (Horwitz, Balbona, Paulich, &
Keller, 2023) can inflate GWAS test statistics (Yengo et al.,
2018) and polygenic score associations (Okbay et al., 2022), we
performed post hoc within-sibling analyses to assess whether any
significant associations may be independent of assortative mating,
passive gene-environment correlation, or other sociodemographic
confounders.

Methods

Participants

The ongoing Adolescent Brain and Cognitive Development SM

(ABCD) Study® is a longitudinal study following 11 879 children
(ages 8.9–11 at baseline; born between 2005 and 2009) recruited
from 21 research sites across the United States to study the devel-
opment of complex behavior and biology from late childhood to
late adolescence/young adulthood in the context of experience
and genetic background (Volkow et al., 2018). It includes a
family-based component in which twin (n = 2108), triplet (n =
30), non-twin siblings (n = 1589), and singletons (n = 8148)
were recruited. Caregivers provided written informed consent
and their children provided verbal assent. For the present study,
we used data from the baseline visit (2016–2018; ages: 9–11).
Analyses were only conducted in individuals with genetic ancestry
most similar to those of European ancestry reference populations
(see Polygenic Scores section below), due to the lack of relevant
well-powered discovery GWAS in other ancestries and the low
predictive utility of PGS when applied across ancestries (Martin
et al., 2017, 2019). After excluding individuals with missing out-
come or covariate data, described below, analytic Ns ranged from
4688 to 5517 (see online Supplemental Fig. S1 for analytic sample
size flow chart).

Measures

Cognition, risk tolerance, personality & decision-making, sub-
stance initiation, psychopathology, and neuroimaging data were
drawn from the baseline assessments from the National
Institute of Mental Health Data Archive (NDA; https://nda.nih.
gov/); data release 4.0 and 5.1, see online Supplemental
Table S1 for details). Socioeconomic status and genomic data
(release 3.0) were also derived from the baseline session.
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Cognition
Crystallized and fluid intelligence as well as their total composite
were estimated from the NIH Toolbox assessment (Luciana et al.,
2018).

Risk tolerance, personality, & decision-making
Risk tolerance and impulsivity were measured at baseline using the
20-item UPPS-P Impulsive Behavior scale short form (Cyders,
Littlefield, Coffey, & Karyadi, 2014; Watts, Smith, Barch, & Sher,
2020) which captures five dimensions related to impulsivity: (1)
Negative Urgency (i.e. tendency to act rashly when in a heightened
negative mood state), (2) Positive Urgency (i.e. tendency to act
rashly when in a heightened positive mood state), (3) Lack of
Perseverance (i.e. inability to keep focused or motivated to finish
a task), (4) Lack of Premeditation (i.e. tendency to not plan ahead
or to act without forethought of behavioral consequences), and
(5) Sensation Seeking (i.e. tendency to pursue novel or exciting
activities and experiences); see online Supplemental Table S1 for
details. A modified version of the BIS/BAS scales (Carver &
White, 1994; Pagliaccio et al., 2016) was used to broadly assess
two motivational systems: the behavioral inhibition system (BIS)
and the behavioral activation system (BAS). Measures included
the BIS subscale, sensitivity to punishment resulting in avoidance
and negative emotionality, and two BAS subscales: Drive, positive
motivation toward goals, and Reward Responsiveness, sensitivity
to reward resulting in approach behaviors and positive emotionality
(see online Supplemental Table S1 for details). The BAS
Fun-Seeking subscale was excluded from analyses as previous
research has indicated it had poor loading in age ranges that

match the ABCD sample at baseline (Pagliaccio et al., 2016). A sin-
gle item from the Sensation Seeking scale ‘I enjoy taking risks’ was
also included as a stand-alone measure of general risk tolerance.
Delayed discounting, as an index of decision-making, was measured
at baseline using the single-item cash choice task where youth
decide whether they would ‘rather have $75 in three days or $115
in 3 months’ (Luciana et al., 2018; Wulfert, Block, Santa Ana,
Rodriguez, & Colsman, 2002). This single-item measure was used,
as opposed to behavioral data acquired (Kohler, Lichenstein, &
Yip, 2022), due to quality control procedures of these data resulting
in the exclusion of large amounts of baseline data.

Substance use initiation
Given the low endorsement for all other substances at the baseline
assessment, only lifetime alcohol initiation, defined as ‘sips’ or ‘full
drinks,’ from the baseline substance use interview (Volkow et al.,
2018) was analyzed in the current study. Individuals endorsing
alcohol use only in the context of religious ceremonies were
excluded. Participants who had endorsed alcohol use were com-
pared to substance naive participants who endorsed no substance
initiation (e, g., individuals who endorsed alcohol use were com-
pared to individuals who did not initiate alcohol use nor use of can-
nabis, tobacco, or any other substances; Miller et al., 2024; see
online Supplemental Tables S1, S2 for additional information).

Psychopathology
We assessed six mental health-related measures. Given that the
distribution of the scores of severity of youth psychotic-like
experiences (PLEs) (Karcher & Barch, 2021) was skewed, we

Figure 1. Overview of study design. Demange et al. (2021) performed a ‘genome-wide association study (GWAS) by subtraction,’ subtracting genetic effects for a
cognitive performance GWAS from an educational attainment (EduA) GWAS to create orthogonal ‘cognitive’ and ‘non-cognitive’ factors. Here, we created cognitive
and non-cognitive PGSs using summary statistics from this GWAS-by-subtraction and evaluated whether EduA cognitive and non-cognitive PGSs are associated with
cognition, risk tolerance, personality, & decision-making, substance initiation, psychopathology, and neuroimaging phenotypes in the Adolescent Brain Cognitive
Development (ABCD) Study.
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first winsorized to three standard deviations. However, as the vari-
able still had a skew of ⩾ |1.96|, we then performed a rank-based
inverse normal transformation of the variable (See online
Supplemental Table S1 for details). We also included a caregiver-
reported diagnosis screener for autism (Barch et al., 2018).
Baseline data from the 5.1 release was used to generate
KSADS-5 diagnoses (Kaufman et al., 1997). KSADS-5 diagnoses
were created for: obsessive compulsive disorder (OCD), bipolar
disorder, major depressive disorder (MDD), and attention deficit
hyperactivity disorder (ADHD). The analytical N for these mea-
sures ranged from 5493 to 5506 and all definitions and items
used to create the lifetime mental health diagnoses measures
can be found in online Supplemental Table S1.

Neuroimaging
Indices of gray matter structure (i.e. cortical volumes) and white
matter tracts (i.e. fractional anisotropy [FA], mean diffusivity
[MD]) were derived using the Desikan-Killiany atlas (Desikan
et al., 2006) and Atlas Tract (Basser, Mattiello, & Lebihan,
1994), respectively. No task-related functional magnetic reson-
ance imaging (fMRI) data were examined due to test–retest
reliability concerns (Elliott et al., 2020). Acquisition and prepro-
cessing methodology (Casey et al., 2018; Hagler et al., 2019) as
well as additional information can be found in both the online
Supplemental Table 3 and Supplemental Methods.

Polygenic scores

Quality control was performed on the genomic data (ABCD data
release 3.0) using the Rapid Imputation and COmputational
PIpeLIne for Genome-Wide Association Studies (Lam et al.,
2020). Briefly, after performing QC and using a combination of
parent-reported demographic information and principal compo-
nents analysis to identify a subset of n = 5556 individuals of gen-
etic ancestry most similar to those of European ancestry reference
populations, the genetic data were imputed to the TOPMed
imputation reference panel (Taliun et al., 2021; online
Supplemental Methods). Only individuals of European ancestry
were analyzed, as the Demange et al., discovery GWAS only
included individuals of European ancestry, and there is poor pre-
dictive utility across ancestries which may lead to erroneous con-
clusions (Martin et al., 2017, 2019). While there are GWAS of
educational attainment and cognitive performance in other ances-
tries (such as those available for download from the Pan-UK
Biobank), these GWAS are very small (N < 10 000) and would
result in extremely under-powered PGS. Thus, we chose not to
extend our analyses to other ancestries, given the low statistical
power of the existing GWAS and the potentially sensitive nature
of phenotypes like cognition and educational attainment. Single
nucleotide polymorphisms (SNPs) with imputation R2 > 0.8 and
minor allele frequency>0.01 were retained for PGS analyses.

We used PRS-CS (Ge, Chen, Ni, Feng, & Smoller, 2019) to
calculate polygenic scores (PGS) in the European ancestry subset
of the ABCD Study sample, using effect sizes from the Demange
et al., GWAS of ‘cognitive skills’ (GWAS catalog accession
GCST90011875; effective n = 257 700; Demange et al., 2021) and
‘non-cognitive skills’ (GWAS catalog accession GCST90011874;
effective n = 510 795; Demange et al., 2021), derived by using
‘GWAS-by-subtraction’ to residualize the genetic effects of EduA
on the genetic effects of cognitive performance. We used the 1000
Genomes Phase 3 European ancestry sample as a reference panel
(1000 Genomes Project Consortium et al., 2015). We used the

‘auto’ function of PRS-CS, allowing the software to learn the global
shrinkage parameter from the data (see online Supplemental
Methods for details).

Statistical analyses

Analyses were preregistered on the Open Science Network
(https://doi.org/10.17605/OSF.IO/EV4BH) and conducted using
mixed effects models implemented using lmer (for continuous
outcomes) and glmer (for dichotomous outcomes) from the
lme4 package (Austin, 2010; Bates, Maechler, Bolker, & Walker,
2015) in R (v4.3; R Core Team). Both the cognitive and non-
cognitive PGS were included as predictors in the same model
(i.e. they were analyzed simultaneously). Age, sex, and the first
10 genetic principal components were included as fixed effect
covariates, with family ID and recruitment site as random effects
to account for data dependence. For imaging models, recruitment
site was replaced by MRI serial number. Imaging models also
included MRI manufacturer, global brain metrics representing
the mean for each modality, and mean motion for DTI as fixed
effects. We used false discovery rate (FDR; Benjamini and
Hochberg, 1995) to account for multiple testing ( pfdr < 0.05);
FDR was applied separately to the non-imaging phenotypes and
each respective imaging modality. R2 for the continuous out-
comes was calculated using the MuMIn package (Bartóń, 2024).
For the categorical outcomes, we used the same package to calcu-
late Nagelkerke pseudo R2 (Nagelkerke, 1991).

Three additional non-pre-registered post-hoc tests were
included: First, we tested whether the regression coefficients for
the cognitive and non-cognitive PGS significantly differed from
each other in each model (pdiff; online Supplemental Methods).
Second, to assess whether associations with cognitive and non-
cognitive PGS were influenced by socioeconomic status (SES),
we performed supplementary analyses that covaried for two SES
related variables at baseline: (1) caregiver-reported combined
past-12-month family income and (2) neighborhood deprivation
index, a composite of neighborhood socioeconomics (Fan et al.,
2021). Third, we conducted post hoc within-sibling analyses to
assess whether any significant associations arising from the primary
analyses may plausibly represent direct genetic effects. Polygenic
score associations can be confounded by gene-environment corre-
lations (rGE), where an individual’s genetic predisposition may be
correlated with their environment. This phenomenon may occur
via passive rGE, whereby parents shape a child’s environment
based on their own genetic predispositions (which are also passed
down to their children), or evocative or active rGE, whereby chil-
dren evoke responses or actively seek environments that correlate
with their own genetic disposition. Within-sibling PGS analyses
are one way to test whether PGS associations are inconsistent
with passive rGE. Because alleles are randomly assigned at birth,
any genetic differences between siblings are assumed to be free
from environmental influences that are shared, such as passive
rGE, and also free from other between-family confounding factors,
such as assortative mating or population stratification. Thus, sig-
nificant within-sibling effects indicate that these associations are
unconfounded by population stratification, assortative mating, pas-
sive gene-environment correlations (passive rGE), and other poten-
tial population-level confounds, though it should be noted that
active and evocative rGE will still influence within-sibling variation
in PGS effects (Brumpton et al., 2020; Howe et al., 2022; Young
et al., 2018). For these analyses, we included both the family
mean PGS and each sibling’s deviation from their family mean
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PGS as predictors in a mixed-effect model, as has been done pre-
viously (Selzam et al., 2019):

Yijk = bW(PGSij − PGSj)+ bB(PGSj)+ gj + gk + 1ijk

where Yijk represents the outcome for sibling i in family j at site k,
PGSij represents the polygenic score for sibling i in family j, PGSj
represents the mean PGS for family j, γj represents a random inter-
cept for family j, γk represents a random intercept for site k, and 1ijk
represents the independent random error for each individual i in
family j at site k. We also included the same fixed-effect covariates
(age, sex, and genetic principal components) as in our primary
models described above (not shown in equation). In this way, we
were able to partial the variance in the outcome explained by the
PGS into between-family (βB) and within-family (βW) effects. We
also included the same fixed-effect covariates (age, sex, and genetic
principal components) as in our primary models described above
(not shown in equation). Because the sample of siblings (N =
1702) was considerably smaller than the full analytic sample (N
= 5517), we derived the population-level estimates (the ‘Total’
effects) between PGS and outcomes in a sample of equivalent
size (and statistical power). See online Supplemental Methods for
additional details.

Results

Demographic descriptive statistics for the baseline analytic sample
(max N = 5517) are available in Table 1. The cognitive and non-
cognitive PGS were somewhat negatively correlated with one
another (r = −0.12, p < 2 × 10−16) in this sample.

Behavioral and sociodemographic outcomes

Cognition (Fig. 2a; online Supplemental Table S4)
The cognitive PGS was positively associated with all three cogni-
tion measures (i.e. fluid, crystallized, total score); Bs > 0.136, pfdrs
< 3.90 × 10−24). The non-cognitive PGS was associated with crys-
tallized intelligence and total scores (Bs > 0.047, pfdrs < 3.83 ×
10−9), but not fluid intelligence (B = 0.013, pfdr = 0.454). For all
three measures, the cognition scores were more strongly asso-
ciated with the cognitive PGS than non-cognitive PGS ( pdiff <
0.05). Post-hoc analyses revealed that when we covaried for SES
(family income and neighborhood deprivation index), associa-
tions were somewhat attenuated for both the cognitive and non-
cognitive PGS (online Supplemental Table S5). For example, asso-
ciations with crystallized intelligence were attenuated for both the
cognitive PGS (original Beta = 0.244, S.E. = 0.013; Beta when cov-
aried by SES = 0.220, S.E. = 0.013) and the non-cognitive PGS (ori-
ginal Beta = 0.082, S.E. = 0.014; Beta when covaried by SES = 0.061,
S.E. = 0.013).

Risk tolerance, personality, & decision-making. (Fig. 2b; online
Supplemental Table S4)
The cognitive PGS was associated with greater odds of choosing
the delayed reward (i.e. preferring the $115 in 3 months rather
than the $75 in 3 days; OR 1.076, pfdr = 0.024) and risk tolerance
(B = 0.031, pfdr = 0.044). The non-cognitive PGS was associated
with decreased UPPS-P Lack of Perseverance and BAS Reward
Responsiveness (Bs >−0.040, pfdrs < 0.016). Both the cognitive
and non-cognitive PGS were associated with decreased BAS
Drive and UPPS-P Positive and Negative Urgency (Bs >−0.081,
pfdrs < 0.008). Post-hoc analyses showed that adjusting for both
SES measures resulted in attenuation of associations (online
Supplemental Table S5; e.g. associations with UPPS-P Positive
Urgency were attenuated for both the cognitive PGS [original
Beta = −0.048, S.E. = 0.014; Beta when covaried by SES =−0.039,
S.E. = 0.015] and the non-cognitive PGS [original Beta =−0.080,
S.E. = 0.014; Beta when covaried by SES = −0.062, S.E. = 0.015]).

Substance initiation. (Fig. 2c; online Supplemental Table S4)
No associations between alcohol initiation and either the cognitive
or non-cognitive PGS were significant after multiple testing correc-
tion ( pfdr > 0.05), and these associations did not significantly differ
( pdiff > 0.05) between the cognitive and non-cognitive PGS.

Psychopathology. (Fig. 2d; online Supplemental Table S4)
The cognitive PGS was associated with decreased odds of ADHD
diagnosis (OR 0.888, pfdr = 0.008) and bipolar diagnosis (OR
0.799, pfdr = 0.036). Both the cognitive and non-cognitive PGS
were associated with lower severity of PLEs (Bs <−0.075, pfdrs <
0.003). The cognitive and non-cognitive PGS did not significantly
differ from one another in their associations with any of the
assessed mental health outcomes ( pdiffs > 0.05). When we covar-
ied for measures of SES, associations were somewhat attenuated
(online Supplemental Table S5, e.g. associations with PLE: ori-
ginal cognitive PGS Beta =−0.074, S.E. = 0.013; Beta when covar-
ied by SES =−0.060, S.E. = 0.014); original non-cognitive PGS
Beta = −0.047, S.E. = 0.014; Beta when covaried by SES =−0.036,
S.E. = 0.014).

Within-sibling analyses. (Fig. 3; online Supplemental Table S6).
Post-hoc analyses revealed that within-family variation in the cog-
nitive PGS was associated with all three cognitive outcomes after

Table 1. ABCD European ancestry baseline demographic table

Variable Mean (SD)/n (%) baseline

Sex (male) 2612(47.0%)

Age (years) 9.93(0.63)

Household income

< $49 000 658 (12.42%)

$50 000–$74 999 717 (13.53%)

$75 000–$99 999 896(16.93%)

$100 000–$199 999 2178(41.12%)

> $200 000 849(16.00%)

Highest caregiver education

Less than high school 30(0.54%)

High school degree or equivalent 183(3.30%)

Some college, associate degree 1046(18.83%)

College degree 1753(31.57%)

Master’s degree 1723(31.01%)

Doctorate/professional degree 820(14.75%)

Parental marital status

Married or co-habiting 4721(85.1%)

Widowed 41(0.7%)

Divorced/separated 620(11.2%)

Never married 164(3.0%)
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Figure 2. Associations between cognitive and non-cognitive PGS and neurocognition, risk-tolerance, personality & decision making, substance initiation, and psy-
chopathology. Blue and purple asterisks correspond to significant associations ( pfdr < 0.05) between the outcome measures of (a) cognition, (b) risk tolerance,
personality, & decision-making, (c) substance initiation, and (d) psychopathology and cognitive PGS or both PGS, respectively. Blue hashtags correspond to asso-
ciations that are significantly different for the cognitive PGS compared to the non-cognitive PGS. ADHD, attention deficit hyperactivity disorder; ASD, autism spec-
trum disorder; MDD, major depressive disorder; OCD, obsessive compulsive disorder; PLE, psychotic-like experiences.

3742 Aaron J. Gorelik et al.



Figure 3. Total, between, and within-family estimates for the associations between cognitive and non-cognitive pgs and psychosocial measures. total, within- and
between-family associations between Cognitive and Noncognitive PGS ( p < 0.05) and significant measures in the domains of cognition, substance initiation, risk
tolerance, personality, & decision-making, and psychopathology (i.e. outcomes with pfdr < 0.05 in Fig. 3 and online Supplemental Table 4). For the cognitive PGS,
black, dark blue, light blue, and purple asterisks correspond to significant total, between-, within-family, and all three associations, respectively. For the non-
cognitive PGS, red, orange, yellow, and purple asterisks correspond to significant total, between-, within-family, and all three associations, respectively.
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accounting for between-family variation (Bs > 0.043, ps < 0.020).
Within-family variation in both PGS were associated with PLEs
after accounting for between-family variation, but within-family
variation in the cognitive PGS was associated with decreased
PLE severity scores (B =−0.044, p = 0.031) while within-family
variation in the non-cognitive PGS was associated with increased
PLE severity scores (B = 0.053, p = 0.008).

Brain Structure

Global volume indices. (Fig. 4a; online Supplemental Table S7)
Both the cognitive and non-cognitive PGS were positively asso-
ciated with all (n = 9) global volumes of interest, including
whole brain, whole brain cortical volume, total left and right
hemisphere cortical volume, left and right cerebral white matter,
subcortical, supratentorial, and intracranial volume (Bs > 0.037,
pfdrs < 0.002). All associations were significantly larger for the cog-
nitive PGS relative to the non-cognitive PGS (all pdiff < 0.05).

Global white matter tracts. (Fig. 4a; online Supplemental
Table S7)
The non-cognitive PGS was positively associated with the global
measure of mean diffusivity (B = 0.029, pfdr = 0.023) but not
with the global measure of average FA. The cognitive PGS was
not associated with any global atlas tract fiber measures, but the
association for the non-cognitive PGS was not significantly stron-
ger than that observed for the cognitive PGS.

Global models covarying for SES. (online Supplemental
Table S8)
When we covaried for SES, associations with global volumes were
somewhat attenuated for both the cognitive and non-cognitive
PGS (e.g. associations with total whole brain cortical volume: ori-
ginal cognitive PGS Beta = 0.095, S.E. = 0.012; Beta when covaried
by SES = 0.073, S.E. = 0.012; original non-cognitive PGS Beta =
0.046, S.E. = 0.012; Beta when covaried by SES = 0.036, S.E. =
0.012). After controlling for SES, neither global white matter
tract remained significant ( pfdrs > 0.05).

Regional volume. (Fig. 4b; online Supplemental Table S9)
The cognitive PGS was positively associated with the following 13
regional brain volumes: (seven lateral and three bilateral: (1–2)
bilateral inferior temporal gyri, (3–4) bilateral precentral gyri,
(5–6) bilateral superior temporal gyri, (7) right (R) banks of
superior temporal sulcus, (8) R caudal anterior cingulate, (9) R
inferior parietal gyrus, (10) R middle temporal gyrus, (11) R
pars orbitalis, (12) R temporal pole, (13) left (L) rostral anterior
cingulate (B = 0.032–0.0383, pfdr = 0.005–0.035). The following
regional associations were significantly greater for the cognitive
PGS relative to the non-cognitive PGS: rh-pars orbitalis,
lh-superiortemporal, rh-middle temporal, rh-inferior parietal,
and bilateral inferior temporal volumes. The non-cognitive PGS
was not significantly associated with any regional cortical volume.

DTI-FA. (Fig. 4c; online Supplemental Table S9)
The cognitive and non-cognitive PGS were associated with one bilat-
eral white matter tract and 10 white matter tracts (one unilateral, one
interhemispheric, and four bilateral), respectively. The cognitive PGS
was positively associated with the bilateral corticospinal/pyramidal
tract (B = 0.035–0.041, pfdr = 0.001–0.005). Tracts associated with
the non-cognitive PGS included: (1–2) bilateral corticospinal/pyram-
idal, (3–4) bilateral superior corticostriatal-frontal cortex, (5–6)

bilateral superior corticostriatal-parietal cortex, (7–8) bilateral super-
ior corticostriatal, bilateral corpus callosum, and bilateral forceps
minor (Bs =−0.029–0.038, pfdrs = 0.001–0.046). Both the forceps
minor and the left superior corticostriatal-frontal cortex showed
associations with the non-cognitive PGS that were of significantly
greater magnitude ( pdiffs < 0.05) than with the cognitive PGS.

DTI-MD. (Fig. 4d; online Supplemental Table S9)
The cognitive PGS was negatively associated with the bilateral
corticospinal/pyramidal tracts (Bs = −0.035 to −0.027, pfdr =
0.003–0.026). The non-cognitive PGS was not significantly asso-
ciated with any tract MD, but its association with the bilateral cor-
ticospinal/pyramidal tracts did not significantly differ from that
observed for the cognitive PGS.

No significant regions in any neuroimaging modality showed
evidence for laterality, (i.e. estimates within one hemisphere
resided within the 95% confidence interval of the other
hemisphere).

Regional volume and DTI models covarying for SES. (online
Supplemental Table S10)
Post-hoc analyses indicated that when controlling for both mea-
sures of SES, associations between the cognitive PGS and seven
of the 13 regional brain volumes (bilateral inferior temporal, bilat-
eral precentral gyri, right (R) inferior parietal gyrus, R middle
temporal gyrus, left superior temporal gyrus) and one of the
two MD & FA white matter tracts respectively (i.e. left corticosp-
inal/pyramidal) were attenuated but remained significant, while
associations with the other six regional volumes were no longer
significantly associated. For the non-cognitive PGS, when we cov-
aried for both measures of SES, four out of the 10 FA white matter
tracts (i.e. corpus callosum, forceps minor, left (L) superior
corticostriatal-frontal cortex, L superior corticostriatal-parietal
cortex only) remained significant; however, these associations
were all reduced.

Within-sibling analyses. (online Supplemental Fig. S2;
Supplemental Table S11)
Post-hoc analyses revealed that within-family variation in the cog-
nitive PGS contributed to associations with two regional volume
measures (right hemisphere caudal anterior cingulate and pars
orbitalis) after accounting for significant between-family variation
( ps < 0.048). The non-cognitive PGS showed significant within-
family effects for the FA measure right superior corticostriate-
frontal cortex ( p < 0.034).

Discussion

Our study of phenotypic correlates of genetic propensity for cog-
nitive and non-cognitive factors during late childhood (ns =
4688–5517) revealed four broad findings: First, cognitive and
non-cognitive polygenic propensity both showed associations
with cognition scores, impulsivity, and psychopathology. As
seen for other polygenic associations with complex phenotypes,
all effect sizes for the PGS were small (non-imaging: R2 >
2.19 × 10−5; global imaging: R2 > 9.0 × 10−4; regional imaging
R2 > 9.67 × 10−4); thus, these PGS are not informative at the
level of individual prediction. However, they could be relevant
etiologically by providing insights into the differing associations
with polygenic propensity for cognitive v. non-cognitive factors
at a population level. Second, as revealed by our within-family
analyses, associations between the cognitive PGS and some non-
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Figure 4. Significant associations between cognitive and non-cognitive pgs and neural indices of interest. significant associations between cognitive and non-
cognitive PGS and significant imaging modalities including: (a) global brain indices, (b) cortical volume, (c) fractional anisotropy, and (d) mean diffusivity.
Blue, orange, and purple asterisks correspond to significant associations ( pfdr < 0.05) between the outcome measure and cognitive, non-cognitive, or both PGS
respectively. Blue hashtags correspond to associations with cognitive PGS that are of significantly greater magnitude than for the non-cognitive PGS, while orange
hashtags represent the opposite.
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imaging outcomes (i.e. cognitive performance and PLE severity
score) were consistent with direct genetic effects and/or evoca-
tive/active rGE, while the non-cognitive PGS showed potential
direct genetic effects on PLE severity score (although in the
opposite direction from the population-level estimate). Third,
the cognitive PGS was more strongly associated with greater
regional cortical volumes than the non-cognitive PGS, while the
non-cognitive PGS generally showed greater magnitude of asso-
ciations with white matter tract FA. Fourth, within-family analyses
revealed significant within-family associations between the cogni-
tive PGS and right hemisphere caudal anterior cingulate and pars
orbitalis cortical volumes, while the non-cognitive PGS had sig-
nificant within-family associations with the FA tract right super-
ior corticostriate-frontal cortex. Overall, these findings converge
with other recent data to suggest that the phenotypic correlates
of genetic liability to cognitive and non-cognitive factors under-
lying educational attainment are present during childhood,
prior to the completion of most education, and largely mirror pat-
terns in adults.

Polygenic scores for cognitive and non-cognitive factors
related to educational attainment have shared and unique
correlates

The cognitive PGS was associated with higher fluid intelligence,
crystallized intelligence, and a total combined score. The largest
association was with crystallized intelligence, mirroring a prior
ABCD study where researchers found that an intelligent PGS
was most predictive of the crystallized intelligence score
(Loughnan et al., 2023). We observed that the cognitive PGS
was associated with several behavioral traits: increased risk toler-
ance and greater odds of choosing the delayed reward, decreased
UPPS-P Positive and Negative Urgency and BAS Drive. Prior
research has shown that in children, BAS Drive is associated
with decreased inhibitory control (Vervoort et al., 2015). Thus,
the current finding of decreased BAS Drive may indicate an
increased tendency toward reserved, calculated, or cautious
decision-making, which could facilitate further educational
advancement (Almy, Kuskowski, Malone, Myers, & Luciana,
2018). Similarly, the observed association between cognitive
PGS and greater odds of choosing a delayed reward (e.g. prefer-
ring $115 in 3 months over $75 in 3 days) is consistent with
other work linking the ability to delay gratification among adoles-
cents to higher academic achievement (Lee et al., 2012; Mischel,
Shoda, & Rodriguez, 1989). Increases in Negative and Positive
Urgency, theorized to be components of a broader dimension
of impulsive action related to emotion (Billieux et al., 2021), are
known risk factors for various psychopathologies (Elliott,
Johnson, Pearlstein, Muñoz Lopez, & Keren, 2023). Thus, the nega-
tive associations between the cognitive PGS and both Negative and
Positive Urgency are consistent with the negative associations
between the cognitive PGS and decreased risk of ADHD, bipolar
disorder, and severity ofPLEs. Conversely, associations between
cognitive PGS and greater risk tolerance may reflect adaptive or
positive risk taking associated with better educational engagement
and outcomes (Duell & Steinberg, 2019, 2020).

While the non-cognitive PGS was also associated with higher
crystallized and total cognition scores (but not fluid intelligence),
associations between these outcomes and the non-cognitive PGS
were significantly smaller than with the cognitive PGS ( pdiffs =
2.2 × 10−16–1.51 × 10−12). Similar to findings with the cognitive
PGS, the non-cognitive PGS was associated with lower PLE

severity scores as well as decreased self-reported Positive and
Negative Urgency, and Drive. However, only the non-cognitive
PGS was associated with decreased Reward Responsiveness and
Lack of Perseverance. These findings may reflect a tendency for
academically high-achieving individuals to be motivated to not
be distracted (e.g. self-regulate) and focus on tasks and accom-
plishing goals (McClelland & Cameron, 2011). As such, it may
be that the genetic propensity for non-cognitive skills that con-
tribute to educational attainment may relate more strongly to per-
sonality, while cognitive skills may be more associated with overall
decision-making (e.g. taking calculated risks and weighing the
impact of rewards [immediate v. delayed]).

In contrast to phenotypic outcomes described above, neuroi-
maging measures showed notable differences in associations
between cognitive and non-cognitive PGS. Globally, all volume
measures (N = 9; Fig. 4) were associated with both the cognitive
and non-cognitive PGSs, but all associations were significantly
stronger for the cognitive PGS. Across the majority of assessed
non-global metrics, there were significant differences in the
strength of association between the two PGS. For example, bilat-
eral inferior temporal volume, a region implicated in studies of
academic achievement, showed a significantly stronger association
with the cognitive PGS (Mackey et al., 2015). Conversely, the tract
forceps minor, which has previously been implicated in executive
functioning and achievement (Loe, Adams, & Feldman, 2019),
showed a significantly stronger (negative) association with the
non-cognitive PGS. Overall, these findings suggest that genetic
propensity for cognitive skills that contribute to educational
attainment may relate more strongly to cortical volumes, while
non-cognitive factors of educational success may be better
reflected in the microstructure of the white matter tracts connect-
ing between brain regions.

Evidence for direct and indirect genetic effects on phenotypes

Using post hoc within-sibling analyses, we contrasted within- v.
between-family estimates for phenotypic correlates to determine
whether associations with the PGS might be affected by con-
founding by passive rGE or other mechanisms. The cognitive
PGS displayed significant within-sibling associations with all
three cognition measures (online Supplemental Table S6,
Fig. S4), suggesting that the associations between the cognitive
PGS and these outcomes reflect direct genetic effects and/or
evocative/active rGE. The cognitive PGS also had significant
within-sibling associations with the right hemisphere caudal
anterior cingulate and pars orbitalis measures, both of which
have been associated with the salience brain network and cogni-
tive salience (Snyder, Uddin, & Nomi, 2021). Both the cognitive
and non-cognitive PGS displayed significant within-sibling asso-
ciations with severity of PLEs; however, within-sibling differences
in the cognitive PGS were associated with decreased severity of
PLE, while within-sibling differences in the non-cognitive PGS
were associated with increased severity of PLE. This divergence
in direction of the association may be due to the PGS reflecting
different functional outcomes or features of individuals at clinic-
ally high risk for psychosis. The negative association between cog-
nitive PGS and PLE severity may reflect direct genetic effects
related to aspects of cognitive symptoms associated with psychosis
(e.g. cognitive dysfunction; Chun, Cooper, and Ellman, 2020),
which are correlated with lower EduA. The observed positive
association between greater PLE severity and non-cognitive PGS
may reflect direct genetic contributions to creativity and openness
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to experience, which have been positively genetically correlated
with schizophrenia (Duncan et al., 2018).

The non-cognitive PGS showed a significant positive within-
sibling association with right superior corticostriate-frontal cortex
FA, which is associated with many relevant pathways, including
learning and reward sensitivity (Shipp, 2017). The null within-
sibling findings for all other phenotypes for the non-cognitive
PGS suggest that associations between the non-cognitive PGS
and cognition scores and other outcomes may be due to passive
rGE (e.g. parents with greater genetic predisposition for motiv-
ation or curiosity might enroll their children in additional courses
or training) or other confounding factors that vary between fam-
ilies, such as assortative mating. Our findings for the non-
cognitive PGS contrast with a recent preprint from Malanchini
et al. (2024), which found evidence that both passive and evoca-
tive/active rGE mechanisms appear to contribute to the associ-
ation between non-cognitive genetic factors and academic
achievement in a sample of adolescents (Malanchini et al.,
2024). Our conflicting results may be due to differences in statis-
tical power, and/or potentially explained by a combination of
social, educational, and cultural differences between the partici-
pants of the ABCD study (American) and the Malanchini study
(England and Wales), which may influence related non-cognitive
factors of educational attainment (Breinholt & Jaeger, 2020;
Mendez & Zamarro, 2018).

We also note that covarying for two measures of SES
(caregiver-reported income and neighborhood deprivation
index) caused associations between the PGSs and outcomes to
become somewhat attenuated. This suggests that SES-related fac-
tors may partly explain some of the observed associations between
the cognitive and non-cognitive PGSs and outcomes in this study,
a finding consistent with potential rGE and previous demonstra-
tions of SES-related gene-environment correlations affecting gen-
etic associations (Abdellaoui et al., 2019).

Findings in middle/late childhood largely mirror findings in
adult samples

The current findings in this middle/late childhood sample largely
align with findings in Demange et al. (2021) and other majority
adult samples (Mitchell et al., 2022). Our neuroimaging results
largely mirror those of the Demange et al., as well as prior
research on academic achievement that have found that larger glo-
bal brain volumes were positively associated with PGS for educa-
tional attainment in a sample of young adults (Mitchell et al.,
2020). Given the congruent findings between previous studies
performed in samples of adults (de Zeeuw et al., 2014;
Demange et al., 2021), it may be that neural mechanisms asso-
ciated with academic achievement are developed as early as mid-
dle/late childhood and may be temporally stable until later in life
(Lövdén et al., 2020).

However, there were several domains where findings between
adolescent and adult samples partly diverged. Demange et al.
(2021) found that their cognitive factor was genetically correlated
with lower risk tolerance, whereas we observed a positive associ-
ation between the cognitive PGS and risk tolerance in this sample.
These diverging findings may be explained by age differences
across the samples. For example, in adolescents, cognitive abilities
have previously been linked to greater risk tolerance (Andreoni,
Di Girolamo, List, Mackevicius, & Samek, 2020). Another reason
for this divergence could be typical adolescent neurodevelopment
characterized by delayed cognitive control development (Shulman

et al., 2016), leading to links between genetic propensity for
higher cognitive skills and greater adaptative risk taking during
middle/late childhood that may not persist to adulthood.

Additionally, Demange et al. (2021) found negative genetic cor-
relations between the non-cognitive factor and health-risk behaviors
(e.g. substance use), whereas the current study did not. Our null
findings may be due to a combination of low endorsement of
risky behaviors in our younger adolescent sample, as well as limita-
tions of these measures in ABCD (i.e. the ABCD study has fewer
assessments of health-risk behaviors, and we only analyzed alcohol
initiation due to low endorsement of other substance use). In the
domain of psychopathology, we found that both the PGSs were
negatively associated with PLE severity scores, diverging from
Demange et al.’s observed positive relationship between the non-
cognitive factor and schizophrenia risk, as well as other studies
that have linked greater creativity (Rajagopal et al., 2023) and
other aspects of academic success to greater risk for schizophrenia
(Karlsson, 2004). However, in post-hoc within-sibling analyses, the
non-cognitive PGS score was positively associated with PLE severity,
while the cognitive PGS remained negatively associated with PLE
severity. These findings suggest that genetic propensity to cognitive
skills may capture age-specific aspects of psychosocial functioning
that are protective against development of prodromal psychosis in
this adolescent sample (Park et al., 2023). Conversely, the positive
association between within-sibling differences in the non-cognitive
PGS and PLE severity suggests that this relationship may be consist-
ent across child and adult samples when confounding factors (e.g.
passive rGE, assortative mating) are accounted for.

Differentiation of cognitive and non-cognitive factors

Demange et al. (2021) saw differences in the cognitive and non-
cognitive factors in terms of their genetic correlations with
other phenotypes (e.g. schizophrenia and personality), suggesting
some potential insights into the components of the ‘non-
cognitive’ factor. Conversely, our study only found substantial dif-
ferences between the cognitive and non-cognitive PGS associa-
tions with cognition-related outcomes and brain imaging
metrics. One potential explanation is that there may not be
enough variance in the psychopathology and health risk-related
behavior outcomes in adolescence for these differences to mani-
fest in the current sample. As such, the makeup of the ‘non-
cognitive’ factor remains unclear, complicating the ability to
interpret the observed associations. Future studies should focus
on explicating the nature of traits involved in the non-cognitive
factor, including assessing more in-depth ‘non-cognitive’ pheno-
types and other relevant characteristics that contribute to aca-
demic achievement. Studies that employ multiple PGS including
hypothesized components of non-cognitive skills (e.g. risk toler-
ance, personality, & decision-making) may be better able to dis-
tinguish the effects of genetic propensities for cognitive and
non-cognitive factors relating to educational attainment. Further
exploration across diverse age groups and subpopulations, includ-
ing adolescents and adults at varying stages of educational attain-
ment, may further elucidate how cognitive v. non-cognitive
components of educational attainment differ in their relationship
with complex phenotypes across the lifespan.

Strengths and limitations

Strengths of this study include a relatively large sample size,
assessments taken during a developmentally important time
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period (middle/late childhood), deep phenotyping across multiple
psychosocial and neuroimaging measures, and the incorporation
of within-family analyses to control for potential confounding
factors. However, this study is not without limitations. First,
this study was performed only in a European ancestry subsample
of individuals (due to the absence of available large-scale GWAS
of educational attainment or cognitive performance in
non-European ancestry samples, although small (N < 10 000)
GWAS of these phenotypes in other ancestries do exist) whose
caregivers volunteered to participate in the research study. This
limits study generalizability (Schoeler et al., 2023), which may
be especially important for better understanding potential rela-
tionships between facets of academic achievement and factors
related to health and well-being. Furthermore, continuing to
limit genetic analyses to individuals of European ancestry may
exacerbate disparities in health-related research. However, given
the small size of relevant GWAS in non-European ancestry sam-
ples, the resulting PGS would have low statistical power, and this
could potentially make the interpretation of results difficult. We
felt that the inclusion of what would have been a very under-
powered PGS to extend our analyses to other ancestries was
more likely to be harmful to those groups, especially given the
potentially sensitive nature of phenotypes like cognition and edu-
cational attainment. However, new approaches are being devel-
oped to extend PGS to all populations (Lennon et al., 2024),
even when the discovery GWAS are primarily of European ances-
try, and this is an important topic worth further discussion in the
behavior genetics field. Second, while an additional post hoc ana-
lysis was included to see whether non-cognitive and cognitive
PGS associations were changed when covarying for SES, we sug-
gest cautious interpretation of these results, as previous studies
(Akimova, Breen, Brazel, & Mills, 2021) have highlighted that her-
itable covariates can potentially lead to epidemiological biases
(e.g. collider bias). Third, the outcome measures studied were
constrained by what was available in the ABCD Study; we were
therefore unable to include potential measures of interest such
as all of the big five personality traits, which are considered to
be important to non-cognitive aspects of educational attainment
and success, but were not assessed by the ABCD Study;
Humphries & Kosse, 2017; Malanchini et al., 2024; Tucker-Drob
et al., 2016; von Stumm, Hell, & Chamorro-Premuzic, 2011).
However, we assessed aspects of the Big 5 by including the BIS
sum scale to capture components of Neuroticism. Relatedly, we
were unable to assess all the same imaging modalities that prior
papers have reported on, including mode of anisotropy. Fourth,
it is still unclear what exactly is represented by the ‘non-cognitive’
factor GWAS used to create PGS for the current study, and
whether this non-cognitive factor would differ if the input
GWASs were derived from samples of different ages (e.g. child-
hood, adolescence, older age). The authors of the original study
(Demange et al., 2021) posit that preferences of risk tolerance, per-
sonality traits, decision-making, and socially desirable behaviors
contribute to the non-cognitive factor of educational attainment
captured by their study, as evidenced by patterns of genetic corre-
lations with relevant phenotypes. However, as the authors note, the
original GWAS of cognitive performance (Lee et al., 2018) may not
have captured all relevant aspects of cognitive ability across the life-
span, and thus the separation of ‘cognitive’ v. ‘non-cognitive’ may
be incomplete. Fifth, while the post hoc within-sibling analyses
were designed to be unconfounded by environmental factors that
vary between families, it is important to note that the original edu-
cational attainment GWAS (Okbay et al., 2022) is complex as it

reflects direct and indirect genetic effects, such as genetic nurture,
along with other gene-environment correlations and assortative
mating. These factors may potentially inflate the strength of the
associations observed with the resulting PGS. Sixth, these analyses
do not control for all potential heritable components of environ-
mental covariates that could influence these results (Allegrini
et al., 2020). As such, existence of third variable confounding
should not be ruled out from our work.

Conclusion

Overall, the results of this study provide evidence that as early as
middle/late childhood, PGS for cognitive and non-cognitive facets
of educational attainment share both overlapping and unique
associations with psychosocial outcomes and neuroimaging mea-
sures. We speculate that the majority of these PGS associations are
stable across adolescence and adulthood; however, further studies
are needed before such a conclusion can be made. As the partici-
pants of the ABCD Study continue to age, this will be an invalu-
able sample in which to characterize the degree to which genetic
and environmental effects on academic achievement, psychopath-
ology, health behaviors, and neural phenotypes change across
development into adulthood.
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