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Introduction
The existence of biological effects resulting from non-thermal 
exposure to static or extremely low frequency (ELF) magnetic 
fields is undeniable; however, it remains a topic of ongoing 
debate. Investigating the impact of electromagnetic (EM) 
fields on neuronal activity poses significant challenges. The 
biological effects triggered by electric or magnetic fields can be 
examined independently or in conjunction by applying an EM 
field. Numerous variables come into play, including the broad 
spectrum of frequencies, varying field strengths, signal wave-
form, signal duration, field application duration and the shape 
of the signal. Additionally, the development of experimental 
models presents considerable diversity, encompassing in vitro 
or in vivo studies involving animals or human volunteers. This 
diversity significantly complicates efforts to consolidate results 
into one or a few unified models.

Experimental data have progressively converged to identify 
the cell membrane as the primary target structure for the inter-
action of ELF electromagnetic fields with living organisms.1-4 
The cell membrane’s capacity to amplify biological signals has 
been elucidated through various physical models incorporating 
non-linear mechanisms.5-8

Moggia et al9 present experimental studies aimed at estab-
lishing that among the various explanatory mechanisms 
involved in the interaction between biological membranes and 
external EM fields, ligand-receptor binding stands out as the 
pivotal process. While the Langevin-Lorentz model remains 
prevalent in the study of cell receptors,10,11 there has been 
ongoing development and refinement of this model over the 
last two decades.

In recent years, numerous studies have utilized magnetic 
fields to modulate cell activity by targeting cell-surface 
receptors. An applied magnetic field has been shown to 

modify Notch receptors, initiating receptor signaling.12 For 
E-cadherin, low magnetic forces have been observed to 
cluster the molecule, thus initiating F-actin assembly.13 A 
similar mechanism has been employed to mechanically 
deflect and activate inner ear hair cells by targeting mem-
brane glycoproteins.14 Magnetic field displacement of the 
hair bundle has been found to increase intracellular calcium, 
indicating the activation of the hair cells.15 Magnetic activa-
tion of endogenous receptors has also been utilized to 
enhance stem cell differentiation.16 Other studies have 
employed magnetic fields to investigate the role of mechani-
cal force on neurons. Tay et al17 cultured cortical neurons 
and discovered that, in the presence of a magnetic field, a 
mechanical force in the piconewton range was exerted on 
the neurons, increasing intracellular calcium by targeting 
membrane calcium channels. Magnetic fields have also been 
employed to regulate apoptosis. Cancer cells, expressing 
high levels of the DR4 death receptor, have shown cluster-
ing upon application of magnetic fields, subsequently acti-
vating caspase-8 and caspase-3, ultimately leading to cell 
death.17

The synapse, also known as the synaptic cleft, refers to the 
space containing the extracellular fluid situated between the 
pre- and postsynaptic neurons. Its diminutive size, approxi-
mately 20 nm wide, facilitates effective neurotransmitter-
receptor binding. Fast responses at these synapses are mediated 
by ligand-gated ion channels (LGICs).18

The duration, amplitude, and frequency of synaptic responses 
are determined by the kinetics of channel opening, closing, and 
desensitization. Binding to LGICs entails a specific and reversi-
ble reaction, as it typically involves weak interactions (such as 
ionic bonds, Van der Waals forces, and hydrogen bonds) between 
the receptor and ligand.2,19
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Naundorf et al discovered that key features of spike initia-
tion dynamics -such as the spike-time pattern- cannot be 
explained by the original Hodgkin-Huxley (HH) model. They 
analyzed the action potential dynamics in cortical neurons by 
in vivo, in vitro, and computational models20; and found that 
the spike onset was 10 times greater than the one predicted by 
the original HH model. Unlike the original HH model, in 
which the channel opening and closing are independent pro-
cesses, they proposed a model based on the cooperative action 
of sodium channels.

While the Naundorf et al model elucidates spike onset 
characteristics not accounted for in the original HH model, 
more comprehensive explanations have emerged in recent 
years. In 2009, Colwell et al introduced a HH-type model 
incorporating a stochastic term attributed to background syn-
aptic activity. They utilized the path integral formalism to 
derive an analytical formula that correlates onset speed with 
onset potential.21

In the Colwell HH model, the dynamics of neuron mem-
brane potential (V ) are described as follows,

	 C dV
dt

I I I Im syn Na K L� � � � 		  (1)

	 I g t V E g t V Esyn e e I I� � � �� � � � � �� � 	 (2)

where the input current is implicitly included in equation 
(1) as an initial condition of the differential equation.

Background synaptic activity is modeled by assuming that 
synaptic conductance is stochastic, comprising excitatory con-
ductance ( ge ) with a reversal potential Ee  and inhibitory con-
ductance (gI) with a reversal potential EI . The conductances 
g te ( ) and g tI ( ) are represented by white Gaussian noises, with 
noise diffusion coefficients De and DI  respectively. Colwell 
et al examined the correlation between voltage threshold varia-
tion and onset speed, enabling them to elucidate the findings of 
Naundorf et al.

The voltage threshold is defined as the membrane potential 
value at which dV

dt
mV
ms

��� . As a result of stochastic synaptic 
background activity, a voltage distribution arises where the 
voltage threshold is attained. The action potential is triggered 
when V  reaches V *, where V * represents an unstable equilib-
rium of the aforementioned equation in the absence of noise. 
Below V *, the membrane potential returns to its resting state, 
while above V *, a spike can be initiated. Anastassiou et al have 
studied the problem of spike-timing control through external 
electromagnetic fields, we provide a more detailed explanation 
in the Supplemental Information section. Hence, in his model, 
the enhancement in coding properties stems from the stimulus 
input not arising from stochastic fluctuations but from a deter-
ministic external field. Nonetheless, the model proposed by 
Anastassiou et al is purely phenomenological. Here, our aim is 
to establish a mechanistic model aligned with the one we will 

detail in subsequent sections, potentially enabling us to broaden 
the findings for studying temporal coding within local neural 
networks.

In this paper, we propose a modified HH model based on 
Colwell’s advancements. In our model, the noise term arises 
not only from a stochastic component but also from a deter-
ministic one, which encompasses the synapse-induced mag-
netic field. We adjust the Bell equation, expressing the bond 
half-life time, to account for the dynamics of neurotransmit-
ters. The paper is structured as follows: firstly, we introduce a 
physical framework to examine the influence of magnetic fields 
on biological dipoles under physiological conditions. Secondly, 
we establish a connection between ligand-receptor binding and 
the synapse-induced magnetic field, deriving the explicit solu-
tion for synaptic conductance. Finally, we analyze the variation 
in postsynaptic spike timing as a function of magnetic fields 
and the stability analysis of the solutions.

Methods
Ionic conductance properties and parameters

The ionic conductances, excluding the leakage current gL, 
which was assumed constant, are described by the following 
equations (3) to (4) for potassium conductance and (5) to (7) 
for sodium conductance,

		  g g nK K� � , 			   (3)

		
dn
dt

n nn n� �� � �� �� , 		  (4)

		  g g m hNa Na� � , 			   (5)

		  dm
dt

m mm m� �� � �� �� , 		  (6)

		  dh
dt

h hh h� �� � �� �� , 		  (7)

where � � � � �n n m m h, , , ,  and βh are free parameters and gK  
and gNa  represent the maximum ionic conductances. The 
dimensionless variables m n,  and h  describe the open proba-
bility of ion channels (and thus the expected fraction of the full 
ionic conductance across the membrane at a given time and 
voltage), while the α  and β  terms denote rate constants.

After selecting rate parameters α  and β  for various clamped 
voltages, Hodgkin and Huxley empirically proposed functions 
capable of explaining the voltage dependency of these param-
eters, resulting in the following equations (8) to (9) for potas-
sium conductance and (10) to (13) for sodium conductance,
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All HH’s conductance data were sourced from Marom and 
Abbott.22 Given the absence of computers in 1952 for con-
ducting numerical solutions, HH’s numerical algorithm was 
designed for manual calculations using the tools available at 
the time. The numerical method employed in this study is 
known as Euler’s method.23 All simulations using Euler’s 
method were performed using a contemporary implementation 
in MATLAB,24 equipped with metadata tags to facilitate 
adjustment of the α  and β  parameters (equations (4), (6), and 
(7)) through a fitting algorithm. Similarly, the constants in 
equations (8) to (13) were replaced with free, externally adjust-
able variables as outlined in equations (14) to (19), thereby 
introducing 5 free parameters for the voltage-dependent potas-
sium conductance gK  and 9 free parameters for the voltage-
dependent sodium conductance gNa .

When fitting the limited six-parameter form of the 
model (equations (4), (6), and (7)), the rate parameters 
� � � � �n n m m h, , , , , and βh are defined by the protocol to be 
constants, which are set by the fitting algorithm. When fit-
ting the full 14-parameter voltage-dependent model, these 
six rate parameters are in turn parametrized according to the 
following equations (14) to (15) for potassium conductance 
type and (16) to (19) for sodium conductance, with the 14 
free parameters set by the fitting algorithm,
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h�
, and k

h� �  are free parameters.

Membrane potential properties and parameters

All membrane potential data were sourced from Marom and 
Abbott.22 The voltage differential between the cell’s interior 
and the synapse influences both the excitatory synaptic 
response (EPSP) and spike generation. Under resting condi-
tions, a neuron typically maintains a membrane potential of 
approximately ���mV  (ranging from ���� to ���mV ), with 
the interior of the cell being negatively charged relative to the 
external environment (ie, V V V Vt R in out� � � � � �� ��mV ).

The membrane potential of the neuron is contingent upon 
the disparate concentrations of K +  and Na+ ions on either 
side of the membrane, as well as the varying membrane per-
meability to these ions, with K +  exhibiting significantly 
higher permeability.

Potassium ions (K +) are predominantly concentrated within 
the cell’s interior, with a concentration reaching approximately 
150 mM ( K

i
��

�
�
� ), while outside the cell (  K

e
��

�
�
� ), it typically 

remains around 4 to 5 mM. By employing the Nernst equation, 
we can calculate the equilibrium potential of the equivalent 
electrochemical cell,
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Here, kB  represents the Boltzmann constant, T  denotes the 
absolute temperature, F  stands for the Faraday constant, and 
z  signifies the number of electrons transferred in the electro-
chemical reduction reaction (which is ��). At the mentioned 
physiological concentrations, Ek is approximately ���mV .

Conversely, Na+ ions have an internal concentration of 
� ��� mM and an external concentration of ���mM, resulting 
in an equilibrium potential ENa  of approximately ���mV . 
K +  and Na+ ions possess opposing electrochemical gradients, 
with the gradient for K +  ions driving outward currents (posi-
tive current) from the cell, while that for Na+ ions pushes them 
from the external to the internal cell space (negative current). 
The significantly higher membrane permeability to K +  ions 
maintains the membrane potential at a depolarization level 
equivalent to the equilibrium potential for K +  ( ���mV ). 
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Sodium-potassium channels act as electrical pumps for the 
neuron membrane.

The neuron expends metabolic energy to uphold the mem-
brane voltage at a less depolarized level of ���mV . This func-
tion is carried out by biochemical electrogenic pumps that 
transport K +  ions from the external to the internal cell space 
and Na+ ions in the opposite direction, against their electro-
chemical gradients. These pumps, known as Na+/K + pumps, 
rely on the ATP biochemical conversion of energy and establish 
the resting membrane potential (a potential where the net cur-
rent crossing the membrane is 0A ) at V t VR( ) � � ���mV . At 
this level, the voltage-dependent conductance for Na+ and K +  
ions (GNa� and GK , respectively) is inactivated ( 0S ), and the 
resistance to these ions can be considered infinite (factoring in 
the pump action), resulting in respective currents of are 0 A 
( I INa K� � �  in equation (1)). GNa  and GK  undergo rapid 
increases for membrane potentials depolarized to almost 
���mV , which can be deemed an activation threshold value 
(Vth=Vr � � � � � ��� �� �� ��mV mV ).

At the threshold level (Vth � ���mV ), there is a rapid mem-
brane depolarization triggered by a negative net current result-
ing from the swift inward movement of Na+ ions. This is 
attributed to the significantly higher driving force at this poten-
tial level for this ion. Specifically, the ionic current can be repre-
sented as Iion= G V t Eion ion( � � � , where the driving forces 
generating the respective Na+ and K + currents are calculated as 
follows: V t E mVNa� � � � � � �� � � ��� �� ���mV mV ; V t E mVK� � � � � � �� � � ��� �� ��mV mV

V t E mVK� � � � � � �� � � ��� �� ��mV mV .
The negative, inward total current not only governs the 

rapid rise phase of the spike but also contributes to the syn-
aptic current. This current initiates depolarization of the 
membrane potential, reaching and often surpassing 0mV , 
leading to overshooting potentials of ���, ���mV  at the 
spike peak. As the membrane potential ( )V t� �  enters positive 
territory, the driving force on Na+ ions diminishes while that 
on K +  ions increases. The net current definitively reverses 
direction at the spike peak (���, ���mV ), and the membrane 
begins repolarization as the K +  ion battery approaches the 
ion equilibrium potential ( ���mV ). This repolarization is 
facilitated by the rapid inactivation of Na+ conductance (GNa� 
returning swiftly to 0S ). Subsequently, the energy-depend-
ent work of the Na+/K +  pump restores the resting potential 
value (Vr � ���mV ), completing the spike cycle. The mem-
brane dynamics, encompassing both spike and synaptic activ-
ity, can be likened to an electrical circuit operating in 
accordance with the aforementioned parameters and follow-
ing the dynamics outlined in the HH model.

The sole distinction, from an electrical standpoint, between 
synaptic response and spike generation lies in the driving force 
behind the synaptic current. Unlike spike generation, where the 
driving force stems from the disparity between membrane volt-
age and the ion-specific equilibrium potential, excitatory recep-
tors (primarily AMPA receptors) constitute nonspecific ionic 

channels. Consequently, the net current is determined by the 
synaptic conductance (dependent on neurotransmitter-recep-
tor binding) and a nonspecific synaptic equilibrium potential, 
typically around ���mV . This signifies that membrane poten-
tials exceeding ���mV  result in inward currents (negative and 
depolarizing), while those below produce outward currents 
(repolarizing), primarily due to outward flow of K +  ions from 
the cell. This framework offers a straightforward explanation 
for the dynamics of neuron membrane voltage.

Physical Derivation of the Model
Electric dipole moment of neurotransmitters under 
physiological conditions

Finite electric dipoles typically consist of two-point charges of 
equal magnitude: a negative charge ( −q ) and a positive charge 
(q), with the relative position vector 



d  extending from the first 
to the second. Therefore, we define the electric dipole moment 
as follows,25

			 




p q d� � 		  (21)

The point dipole moment is obtained in the limit as q ��  
and d ��. Thus, the expressions in equation (24) can be 
derived directly from Tsang,26

	
� � �p a d d cos ak k� �� �� �

�
�

�
�

�
��

�

� �

� � �� �
� �sin 	 (22)

here, a  represents the radius of the electric dipole, assuming 
the dipole as a spherical particle, and ��  denotes the surface 
charge density.

Sivasankar et al27 determined the value of �� for neurotrans-
mitters under physiological conditions and obtained an average 

value of �� �
�

. mC
m

 (range � ��� ). Assuming a neurotransmitter 

size of a = 3A


(and �� �
�� �� . mC

m
),28 we obtain a dipole 

moment (p) value of � ��� �� ��. � �� m C . Antosiewicz and 
Porschke29 determined the dipole moment (p) value for neuro-
transmitters in aqueous solution at physiological pH and 
obtained a range of variation of � �� �� ���� � � �� m C .30

Dynamics of electric dipoles in magnetic f ields

A current element Idl  immersed in a magnetic field B  will 
experience a force dF  given by,31

		  dF I Bdl� � 		  (23)

The current I  in equation (26) is attributed to electrons 
moving within the medium and is referred to as conduction 
current. We can adapt equation (23) to explicitly address 
charges moving in free space, constituting what is known as a 
convection current. A charge q  moving with velocity v is equiv-
alent to a current element Idl qv= , thus we obtain,

		  F qv B� � ( )�� 		  (24)
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When a charged particle encounters a static field at right 
angles, it undergoes a force known as the Lorentz force, which 
alters the particle’s motion into uniform circular motion around 
the magnetic field lines. According to Newton’s second law, the 
radial force acting on the particle is F m a q v Br r� � � � �� , 
where v v sin� � � �  represents the velocity component perpen-
dicular to the magnetic field. The radial or centripetal accelera-

tion is given by a v
r

w rr � � ��
�

� , where r  is the radius of the 
circle and w is the angular velocity of the charged particle 
orbiting with mass m. The parallel component of velocity, 
v v cos


� � � , remains unaffected by the presence of B . 
Therefore, when a particle enters a magnetic field at an angle 
to the magnetic field lines, it follows a helical path around the 
magnetic field lines, with v



 unchanged and v⊥ causing the 
circular motion (Figure 1).32

The energy principle can be applied to derive force distribu-
tions. To develop a simple model for force density distribution, 
we require the expression for the force on an electric dipole in 
polarizable media, which can be derived from the Lorentz 
force law. The force on a stationary electric charge is governed 
by the Lorentz law with a frequency of zero. Considering two 
charges q  of opposite polarity separated by a vector distance d , 
the total force on the dipole is the sum of the forces acting on 
the individual charges.

			   f qE= 			  (25)

where E  is the electric field. The total force on the dipole is 
the sum of the forces acting on the individual charges, given by,

		  f q E r d E r� �� � � � ��� ��		  (26)

Unless the electric field at the location r d+  of the posi-
tive charge differs from that at the location r  of the negative 
charge, the separate contributions cancel each other out. To 
derive an expression for the force on the dipole in the limit 
where the spacing d  of the charges is small compared to 
distances over which the field varies appreciably, equation 
(26) is expressed in Cartesian coordinates. The field at the 

positive charge is then expanded about the position of the 
negative charge. Thus, the x  component is,

f q E x d y d z d E x y z

q
E x y z d E

x
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x x
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	 (27)

The first and last terms cancel each other out. In a more 
concise notation, this expression is thus represented as,

		  f p Ex x� �� 		  (28)

where we have identified the dipole moment p qd= . The 
other force components are derived similarly, with y  and z tak-
ing the place of x. These 3 components are then summarized in 
the vector expression,

		  f p E� �� 		  (29)

Time-scale hierarchy in complex systems

In dynamics involving far-from-equilibrium irreversible pro-
cesses, the relax integrability function tends to converge toward 
stable asymptotic configurations. The relaxation time is contin-
gent upon the dissipative process parameters operating at each 
level. Neuronal time scales exhibit dynamism, with a succession 
of relaxation times discernible, each succeeding level character-
ized by an increase in magnitude33,34:

1.	 Microsecond scale, associated with the rearrangement of 
ionic concentrations and reactive phenomena in tissue 
electrolytes.

2.	 Hundreds of microseconds scale, associated with the 
activation of sodium channels and subsequently with 
calcium channels involved in membrane excitation.

3.	 Millisecond scale, associated with the membrane time 
constant, pulse and stimulation duration, and electro-
chemical double layer polarization at the membrane-
electrolyte interface.

4.	 Hundreds of milliseconds scale, associated with the 
mechanisms of activation and inactivation of membrane 
channels related to recovery phenomena.

5.	 Minute scale, involved in membrane adaptation phe-
nomena (slow excitability variations dependent on ionic 
accumulation in regions where transport processes are 
disturbed).

The differences in the numerical order of characteristic 
relaxation times among hierarchical scales in dissipative sys-
tems often enable simplification of their description by apply-
ing 2 connecting scale principles. First, on a particular time 
scale, the variables of the higher time scale can be treated as 

Figure 1.  (a) Trajectories of charged particles in a magnetic field and (b) 

a charged particle with a velocity component parallel to a magnetic field 

and another perpendicular to it, moves in a helical path around the field 

lines.
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constant parameters (as their relaxation times are significantly 
greater). Second, the variables of the lower time scale can be 
disregarded (as their relaxation times are much smaller).35

Suppose we have an electric dipole initially at rest within a 
static vertical magnetic field. The movement of the dipole 
depends on the EM field configuration, specifically on the 
electric potential Ve� � generating the field, rather than the 
magnetic field itself, which remains constant. Zemped et al 
investigated the effect of small extracellular fields on spike-
time variation. Although they did not propose an explanatory 
mechanism, they provided an experimental model to refute a 
potential explanation based on the resonant properties of neu-
rons.36 In their studies, they applied magnetic fields in the mil-
litesla (mT) range, and the voltage measurement was 
approximately 2 mV, with a range of 1 to 5 mV. We will use this 
value in the following calculation.

While the magnetic field may not be conservative, the EM 
field as a whole is conservative. Therefore, applying the princi-
ple of conservation of energy to a dipole positioned in a region 
of potential Ve , the potential energy 

p
d

Ve⋅  is converted into 
kinetic energy.

	 �
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Taking p m C� � ��� ��� �� ��. ; d a meters kg� � � � � � � � � �� � �� � � �� � �� � ��� ���� �� ��; m
d a meters kg� � � � � � � � � �� � �� � � �� � �� � ��� ���� �� ��; m , V mVe � �  and a synaptic 

cleft width of ��nm,  we obtain a vz value of �� ���. meters
s

37 
and a transit time of � �� � �� �� �. ( . )ns s� � .38

Therefore, the electrical potential associated with extremely 
weak static magnetic fields induces temporal variations in neuro-
transmitter dynamics at a much lower time scale, from a hierar-
chical perspective, compared to what is typical in classical studies 
of chemical synapses. This suggests that the very weak synapse-
induced magnetic fields may serve as fine control mechanisms in 
shaping the overall process of postsynaptic spike-time patterns.

Dynamics of hybrid multiscale systems: Combining 
deterministic and stochastic elements

Deterministic and stochastic hybrid systems no longer evolve 
with a deterministic trajectory in the parameter space, but 
rather with a certain probability distribution defined within 
that same space. A general formulation for these systems is 
based on nonlinear differential equations incorporating both a 
stochastic noise term, which models fluctuations, and a deter-
ministic term.39,40 The statistical properties of the noise com-
pletely define the system through its stochastic differential 
equation (SDE). This additive noise, resulting from fluctuation 
timescales and system response time, is typically assumed to 
have zero correlation time (white noise). Additionally, there 
may be an additional source of fluctuations arising from envi-
ronmental influences, known as external noise.

The most common assumption regarding the stochastic 
term present in the SDE is that it follows a normal distribu-
tion, meaning it is Gaussian. In many systems, noise represents 
the influence of random factors whose cumulative effect, 
according to the central limit theorem, converges to a Gaussian 
distribution. White noise intensity is constant in the frequency-
domain. Its correlation function is defined as follows,41

		  � � �( ) ( )t D tt t� �� �� �� 		  (31)

Here, the parameter D represents the intensity of the noise. 
White noise represents the extreme case of a stochastic force evolv-
ing at an exceedingly rapid pace. From a physical standpoint, this 
indicates that the fluctuation time scale is significantly smaller 
compared to typical system response times. This heuristic approxi-
mation method is used to account for internal fluctuations and 
serves as a starting point for expanding the analysis to include 
external fluctuations in oscillating and excitable systems.

In a region of local instabilities in phase space induced by 
external stochastic influences, such as thermal motions or fluc-
tuations in boundary conditions, a particle can be significantly 
affected by a deterministic force field. The existence of deter-
ministic chaos is not a prerequisite for this phenomenon. If a 
deterministic force field is sufficiently strong and persistent, 
deviations from a stochastic trajectory can be profound, leading 
to predictable, even deterministic trajectories that are asymp-
totically stable. The outcome is noisy behavior that would not 
be observable without the influence of deterministic dynamics 
but cannot be sustained by deterministic dynamics alone.

The probability distribution P x t( , ) for systems with white 
noise follows a Fokker-Planck equation. Technically, white 
noise is a random signal where the values of the signal at 2 dif-
ferent times are not statistically correlated. However, white 
noise serves as an approximation of true noise, as real systems 
subjected to external fluctuations typically do not have a zero-
correlation time. The most effective approach to address this 
issue is to model the random signal as an Ornstein-Uhlenbeck 
noise, which is a Gaussian noise characterized by a correlation 
function that decreases exponentially, expressed as,42

		  � �
�

�( ) ( )t Dtt
t t

� �
�

� �

e 		  (32)

The parameters D and τ  represent the intensity and the 
noise correlation time, respectively. White noise corresponds to 
the limit as τ  approaches zero.

Extended kinetics of the ligand-receptor bell model 
incorporating synaptic magnetic f ields

The temporal evolution of the reversible chemical reaction 
between 2 reactants A and B , forming the product AB  
(A B AB� � ), can be described by the equation,

	 d AB
dt

k A B k ABon off
[ ]

� �� �� � �� �� � �� �� 		  (33)
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Here, A�� ��, B�� ��, and AB�� �� represent the concentrations of 
the reactants and product, respectively. kon and koff  denote the 
association and dissociation rate constants, which govern the 
kinetics of the interaction. kon is influenced by the diffusive 
properties of the molecules and depends on factors such as dis-
tance and orientation. On the other hand, koff  is linked to the 
bond half-life time, denoted as � � � ��koff

�
,43 providing insights 

into the specificity and spontaneity of the reaction,

		  k A eoff

G
k TB� �
�� �

		  (34)

In this equation, A  represents the Arrhenius constant, kB  
stands for the Boltzmann constant, T  denotes the absolute 
temperature, and �G �  represents the activation free energy of 
the reaction under standard conditions.

In our study, we introduce a theoretical model rooted in 
mechanics force fields theory to simulate the impact of mag-
netic forces on molecular interactions, particularly chemical 
bonds. When an external force is exerted, it alters the activation 
energy of the chemical reaction. The Bell model establishes a 
relationship between the magnitude of the force and the dis-
sociation constant of the reaction,44

		  k F k eoff off

F x
k TB� � � � � �

�
�

�

�

�
��

�

�
��

�

�

		  (35)

In the equation, F  represents the external force, koff� �
�
 

denotes the equilibrium dissociation rate constant when the 
external force on the system is zero, and xβ represents the acti-
vation energy of the chemical reaction. Rewriting the equation 
in terms of the bond half-life time,

			 
� �

�

� �
�

�
� e

F x
k TB

		  (36)

where �� �

�
� � ��koff . If we incorporate the typical parameters 

of LGIC-type binding into equation (39),45 we derive ��
���� �  

seg. In this context, we suggest employing a slightly adjusted 
version of the Bell equation that incorporates the synapse-
induced magnetic field B , expressed as,

			 
� �� �

�

�
� e

B p
d

k TB
		  (37)

Here, p and d  represent the dipole moment and the diam-
eter of the neurotransmitter, respectively.

Neuron models that integrate alpha function 
conductance-based synapses

Synaptic noise acts as the primary origin of membrane poten-
tial fluctuations in neurons and plays a significant role in shap-
ing their integrative behaviors, including synaptic conductance. 
Destexche and Rudolph-Lilith46 conducted a review of experi-
mental synaptic noise measurements and formulated a model 
grounded in stochastic noise processes.

Figure 2.  Synaptic conductance analytic solutions using the alpha-

function model at different synapse magnetic field values (B ).

A common approach to estimating the alteration in con-
ductance within the postsynaptic neuron is through the alpha 
function model. In numerous synapses, the progression of syn-
aptic conductance undergoes a finite-duration phase. The 
alpha function delineates this phase of conductance progres-
sion as not infinitely rapid, implying it possesses a finite rise 
time,

		  g t t es

t

� � �
�

�
� 		  (38)

It is worth noting the similarity between equations (32) 
and (38), which validates the application of stochastic-
deterministic noise theory to conductance-based synapses. 
Consequently, we can express the kinetics of synaptic con-
ductance as follows,

		  g g t t eg gsyn syn s syn

t

� � � � � �
�

�
� 	 (39)

Hence, we eventually deduce a membrane potential dynam-
ics equation rooted in the Colwell HH model, integrating the 
synapse-induced magnetic field,

		  I g t V t Esyn syn syn� � � � � ��
�

�
� 	 (40)

Here, Esyn denotes the constant voltage source.
Figure 2 depicts the temporal progression of synaptic con-

ductance ( g tsyn � � ) for different magnitudes of B .

Results and Discussion
Cell membrane proteins can be arranged as a kind of electric 
amplifiers, such as is used in electronics. Every periodic cur-
rent can be analyzed using Fourier series as a sum of a con-
stant component (DC) and alternating components. These 
are entirely transformed by the transformer, all in the same 
ratio, while the DC component induces no voltage across 
the secondary. Consequently, the transformed voltage is, 
except for the transformation factor, identical to the initial 
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voltage, minus its mean value—(Figure 3a)—(the trans-
formed voltage has a zero-mean value).

The phase shift ( )��  is contingent upon both the phase (φ) 
and the magnitude of the disturbance. For extremely brief per-
turbations, ��  remains zero across the entire phase spectrum. 
This domain corresponds to the oscillation’s refractory zone, 
wherein no effect is observed regardless of the phase value of 
the applied disturbance. Beyond this zone, the disturbance 
consistently induces a phase shift, the magnitude of which 
hinges on the phase value. At the boundary between the refrac-
tory and sensitive zones, there exists a discontinuity in ampli-
tude directly influenced by the intensity of the disturbance. 
This discontinuity underscores the excitability nature of the 
system.

From the perspective of alternating current circuit theory, 
it’s feasible to manipulate the phase of the resulting electric 
current (the initiation timing) by adjusting the amplitude of 
the sinusoidal potential at the moment t � � when the circuit 
closes. Let’s consider a capacitor (cell membrane), initially in 
an open circuit, perturbed by a sinusoidal voltage U U sinwt� �  
at t � � (corresponding to the periodic extracellular EM distur-
bance associated with the induced magnetic field). Initially, the 
current remains zero until the circuit is closed, and begins to 
rise as the capacitor charges. However, this represents a tran-
sient regime primarily due to the non-zero resistance of the 
capacitor (the duration of this transient regime is approxi-
mately of the order of RC, where R and C denote the resistance 
and capacitance of the capacitor). Subsequently, the steady 
state is achieved, where the current leads the voltage. In other 
words, the EM signal doesn’t manifest instantaneously but 
undergoes a transient phase (Figure 3b)).

A single excitatory synapse, such as a glutamatergic synapse, 
which accounts for nearly 90% of synapses in the cortex, gener-
ates a current ranging from 5 to 110 pA, with an average of 

25 pA, and a maximal conductance of 700 to 1000 pS (ranging 
from 0 to 1000 pS). The reliability of a synapse to elicit or 
influence spikes depends not only on its conductance but also 
on its proximity to the spike initiation point, typically located 
near the soma where the axon emerges, and often distant from 
the synapse itself. At most, a single synapse produces 100 pA at 
the origin, with a local membrane potential variation of less 
than 3 to 5 mV, insufficient to surpass the threshold for firing. 
As the potential wave travels from the origin to the soma, 
where the spike is generated, these values decrease due to den-
dritic cable properties. Typically, a synaptic event occurring in 
the dendritic tree induces less than 0.5 mV in membrane 
potential, which, when added to the resting level, fails to reach 
the threshold. These observations lead to a significant conclu-
sion: firing a spike necessitates the temporal integration of cur-
rents arriving from multiple synapses.

A post-synaptic current intensity of �� ��� A  generates a 
magnetic field near the dendrite, at the external cranial base, of 
approximately �� � � ��� ��� �� �fT fT( )femtotesla Tesla . Con
sequently, this field is undetectable, as current sensors typically 
necessitate a minimum field strength of ��� fT . To register 
this field with a sensor, a simultaneous contribution of 1 million 
post-synaptic currents would be required.

In a recent study,47 we explored the induced magnetic fields 
within living tissues. Our findings suggest that if we acknowl-
edge the presence of off-diagonal terms in the synapse conduc-
tivity tensor, an exogenous EM field can indeed trigger a 
synapse magnetic field, thereby altering neurotransmitter 
dynamics.

Hence, the following question emerges: Could an exoge-
nous EM field, generating a weak synapse magnetic field 
(�� ���� fT) , potentially modify the temporal patterns of 
postsynaptic action potentials? Presently, there is limited 
research exploring the connection between magnetic fields and 

Figure 3.  In (a), we can observe the decomposition of a rectified alternating current (primary current) into a direct current (untransformed) and a rectified 

alternating current with zero average offset. In (b), the phase shift of the intensity of a sinusoidal alternating current due to an external disturbance is 

presented, in this case, a magnetic field.
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synapses. Nevertheless, a few studies have investigated the 
impact of magnetic fields within the mT range on action 
potential patterns.48-50

When applying a continuous input of 1 μA , while main-
taining the remaining chemical-physical variables constant, but 
altering the magnetic field within the range of � ��� �. � mT , 
we observe a nonlinear variation in spike timing with increas-
ing B  (Figure 4a)). Changes in spike timing directly correlate 
with fluctuations in bond half-life and, consequently, neuro-
transmitter dynamics. As a result, magnetic fields at the syn-
apse induce a time-varying spike pattern (Figure 4b)). 
Additionally, we have modeled the scenario with a continuous 
input of 5 μA , considering magnetic field values ranging from 
� ��� ��. � mT  in Figure 5. As we may observe in Figure 4b the 
postsynaptic spike-time results are highly non-linear, resulting 
from a number of non-linear voltage dependent currents acting 

in context. Instead of instantiating these complexities, we 
focused on making the analysis of the results as simple as pos-
sible and relegated ourselves to establish the qualitative 
conclusions.

Anastassiou et al51,52 investigated the impact of spatially 
inhomogeneous extracellular electromagnetic fields on neu-
rons, specifically focusing on alterations in spike timing. They 
observed that extracellular magnetic fields, within the same 
order of magnitude as those utilized in our study, induced 
changes in somatic membrane potential of less than 0.5 mV 
under subthreshold conditions. Furthermore, they conducted 
simultaneous recordings from up to 4 patched neurons located 
proximally to each other. Their findings suggest that despite 
their small magnitude, these magnetic fields could significantly 
influence spike timing, aligning with the theoretical outcomes 
of our study.

We can analyze the stability of disturbances within the 
framework of stable oscillator theory. Figure 6 illustrates the 
phase shift among identical oscillators with matching periods, 
initially synchronized, upon application of a continuous cur-
rent input of 100 μA , albeit with varying B  values. The spike 
trains could be represented like a sine wave, its amplitude is 
represented on vertical axis and time on horizontal axis. As we 
have previously discussed (Figure 3b), this process has an initial 
phase with highly unstable behavior (transient phase, varying 
in duration depending on the magnitude of the applied mag-
netic field) with many artifacts due to the large number of non-
linear equations involved. So, in Figure 6 we focused on the 
difference between the first spikes of the spike trains corre-
sponding to the different applied magnetic fields ( )�� .

Figure 4.  Numerical simulation of the model with input driving current of 1 μ A and induced magnetic fields of 0.001, 0.1, 1, 2.5, and 5 mT. In (a) membrane 

voltaje time-variation. In (b) time-varying spike pattern.

Figure 5.  Numerical simulation of the model with input driving current of 

5 μ A and induced magnetic fields of 0.001, 1, and 10 mT.
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Stability analysis of the spike-timing model based 
on bi-dimensional dynamic systems

Our modified HH model is a dynamic system consisting of the 
state variables V n myh, , , governed by a 4-dimensional system 
of ordinary differential equations. This HH model can be 
reduced to a 2-dimensional model and still produce the same 
action potentials.

The system state is a 2-dimensional vector ( , )V n  in the 
phase plane R2 because the current exhibits instantaneous acti-
vation kinetics, such that its conductance can be considered 
maximal, m∞ , over most of the time interval. Activation kinetics 
for n are much slower and therefore need to be defined by its 
derivative.

First, we need to establish the equilibrium points to study 
the nullclines of the state variables. A nullcline is the set of 
locations in the phase plane where the state variable is at rest. 
In this system, it would correspond to the conditions V � � and 
n � �.

The intersections of these nullclines will be the points where 
none of the state variables are changing, thus indicating mem-
brane equilibrium. In Figure 7, we observe the cubic-shaped 
nullcline for V  in red and the sigmoid-shaped nullcline for n in 
green. Their intersection is the equilibrium point for this 
model.

Unlike 1-dimensional systems, stability cannot be deter-
mined solely by the slope of the V vsV .  curve. Often, a local 
linear analysis can determine the stability of an equilibrium 
( , )u w0 0 , in 2 dimensions. We know from linear algebra that 2 
nullclines can be approximated by their linearizations near the 
equilibrium. We use the Jacobian matrix, A , at the equilibrium 
to obtain the eigenvalues and eigenvectors.

Now we will analyze the stability of the equilibrium point of 
I INa p k, +  (Figure 7), which was approximately at V mV� ��� . 
The partial derivatives required for the elements of the Jacobian 
matrix are as follows,
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The corresponding value of n can be computed using the 
equilibrium value of V  in equation ( )�� . The equilibrium 
coordinates are �� ��� � ���, .  The Jacobian matrix is as 
follows,

		  A �
� �

�
�

�
�
�

�

�
�
�

� ��� ���
� ����� �

,
, 		  (45)

Figure 7.  Representation of the nullclines of the model with I pA��  

and B mT� � . The curves appear to have an equilibrium point 

approximately at V mV� ��� .

Figure 6.  Numerical simulation of the model with input driving current of 

100 μ A and induced magnetic fields of 0.001 and 1 mT.
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The trace of the matrix is Tr A� � � �� ����,  and the deter-
minant A � � ���, . Finally, we can calculate the eigenvalues 

for this equilibrium point using Tr A Tr A A� � � � �� � �
�

�

�

. 

The eigenvalues for V � ��� are � �� �� � ��, , i . Since they 
have a negative real part, this corresponds to an equilibrium 
point with asymptotic stability; more precisely, to a stable spiral 
point.

Next, in Figure 8, we can observe trajectories in the phase 
plane with different initial values of continuous current inputs 
(1 and 10 μA ) but with different B  values (0.1, 1, 2, 5, and 
10 mT), corresponding to the external magnetic field, while 
maintaining the same initial value for the potassium activation 
variable, n. We can appreciate that all trajectories follow a sub-
threshold path toward equilibrium. We can see that this model 
does not have a fixed threshold for membrane potential. All 
action potentials shown are transient; they all return to equilib-
rium values.

Figure 9 shows the emergence of the limit cycle between the 
values of I � ���� ��� μA, corresponding to an external mag-
netic field B mT� � . Limits cycles exhibit repetitive patterns 
of stationary movement in contrast to critical points, which 
represent equilibrium states. By definition, a solution γ ( )t  is 
called periodic with period p when it satisfies � �t p t�� � � ( ), 
for all t , but � �t m t�� � � ( ), when m p< . In 2-dimensional 
linear systems, the only possible periodic trajectories are cent-
ers, where 2 purely imaginary eigenvalues appear. However, the 
center is not considered an ideal model for many cyclic pro-
cesses due to its structurally unstable nature; any variation in 
the system parameters can alter its dynamic structure, changing 
its behavior. Nevertheless, nonlinearity can lead to stable cyclic 
behaviors that persist despite small changes in the system 
parameters. These are limit cycles, phenomena exclusively 

associated with nonlinear systems. Finally, note that in the cap-
tion of Figures 8 and 9, the lines with other colors correspond 
to the same lines as in Figure 7.

STDP, or Spike Timing-Dependent Plasticity, is a phe-
nomenon whereby the precise timing of neuronal spikes influ-
ences both the direction and magnitude of synaptic strength 
alterations.53,54 Often regarded as the fundamental learning 
rule governing synapses, STDP has undergone successive 
refinements to address predictive limitations. In proposing an 
alternative fundamental principle, we suggest that exogenous 
or endogenous EM fields induce changes in crucial biochemi-
cal intermediates, such as neurotransmitters, serving as more 
direct triggers of plasticity mechanisms. The modulation of 
chemical synapses by STDP is dictated by the temporal dis-
crepancy between pre- and postsynaptic neuronal firing, essen-
tially the synchronization between neurons.55 Concurrently, 
the magnetic coupling among neurons can enhance signal 
exchange and foster global synchronization within the neural 
network.56,57

We have observed that the mechanism underlying the tem-
poral information processing of a neuron is determined by a 
non-linear current-voltage relationship associated with the 
interactions between the exogenous EM field and certain pro-
teins within the excitable membrane. Therefore, the variability 
of the spike timing of a neuron would be strongly influenced by 
extracellular EM fields in close proximity to a bifurcation 
point. However, we have demonstrated that within the range of 
I � �� ����A  and B mT� �� �� , there exist equilibrium 
situations that would ensure precise control of the STDP 
mechanism.

Conclusions
Cognitive neuroscience has revealed a direct correlation bet
ween structural connections throughout the brain’s temporal 
hierarchical levels. Considering that all cognitive functions 

Figure 8.  Representation of various action potential trajectories with different continuous current inputs and different B  values: (a) I ���A  and (b) 

I ����A .
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exhibit temporal characteristics, it is conceivable that the accu-
rate estimation of transient alterations within specific temporal 
hierarchies is crucial for interpreting information from weak 
periodic endogenous or exogenous stimuli, such as static or 
extremely low-frequency magnetic fields. Thus, investigating 
the effects of magnetic fields on spike-time dynamics and their 
influence on other core cognitive functions may shed light on 
fundamental processes in typical cognition and their dysregu-
lation in neuropsychological and mental disorders.

The EM field theory enables the determination of fields at 
the mesoscopic scale based on the morphological properties 
and bioelectrical tissue parameters at the microscopic scale. In 
this study, structural and functional intricacies are simplified by 
delineating 2 domains (internal and external neuron spaces), 
characterized by a set of interconnected fields governing the 
movement of charged particles within a magnetic field.

Estimating synaptic conductance for any noise correla-
tion time remains an unresolved issue. While we outline a 
physical framework with simplifying assumptions to aid in 
understanding or predicting phenomena, obtaining data 

from experimental or quasi-experimental studies would be 
valuable and insightful.

We establish a connection between the STPD phenome-
non and equations that depict the movement of neurotrans-
mitters under an induced magnetic field. Our findings 
uncover the pivotal role of EM fields in governing the precise 
timing of pre- and postsynaptic spikes. This timing intricately 
shapes the outcomes of the STDP rule, while the propagation 
delay of neural signals significantly influences the connectiv-
ity patterns and dynamics of neural networks.58,59

The macroscopic study of complex phenomena such as 
STPD is based on the application of constitutive equations 
to a supposedly continuous model subject to given con-
straints. These equations arise from the incorporation into 
conservation relationships (mass, momentum, energy.  .  .) of 
phenomenological laws known as kinetics, which connect 
the various currents therein (diffusion, chemical reaction 
rates, stresses, heat.  .  .) with corresponding state variables 
and their spatial derivatives (Fick’s law, chemical kinetics, 
Fourier’s law.  .  .).

Figure 9.  Representation of various action potential trajectories with different continuous current inputs and B  = 5 mT: (a) I �����A , (b) 

I � ����A , (c) I � ����A , and (d) I � ����A .
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In the particular case of STPD, the mechanisms generating 
instability are the autocatalytic transport of ions across excita-
ble membranes in nerve cells or positive or negative feedback 
between neurons. Metabolic oscillations result from the control 
of enzyme activity, while oscillations in protein synthesis result 
from genetic regulation. The common point of biological 
rhythms in our study is that they have an exogenous origin. 
They possess all the properties of dissipative structures, in the 
sense that they exhibit a phenomenon of temporal self-organi-
zation under conditions of non-equilibrium. It is the internal 
regulatory mechanisms of biological systems that, through the 
bias of nonlinear kinetics, lead to instability phenomena associ-
ated with the emergence of periodic behaviors beyond the 
bifurcation point. In our case, within the physiological param-
eter range of intensity ( I � �� ����A ) and magnetic field 
( B mT� �� �� ), the temporary dissipative structures (spike-
timing) of action potentials associated with the STPD mecha-
nism manifest rhythmic characteristics in the form of limit 
cycles around a stable steady state, resulting from nonlinear 
effects due to catalytic actions in associated chemical, physical, 
and biological processes.

Our approach to predicting timing changes in spike induced 
by magnetic fields can be extended to local neural networks. In 
fact, some authors consider extracellular EM field oscillations as 
a marker of neural network oscillations.60-62 It is even suggested 
that information contained in the oscillations of endogenous 
extracellular potentials could provide particularly relevant 
insights into the temporal coding of network activity.63,64 This 
offers promising prospects regarding potential therapies for 
pathological neural synchronization, such as in the case of 
Parkinson’s disease, for example. The results may suggest that, 
by appropriately choosing the delay time, a mechanism of con-
trol like STPD through locally applied external EM field to a 
neural subpopulation could suppress global neuron synchroni-
zation. The coupling mechanisms of network activity to exoge-
nous EM field are not an alternative to classical approaches but 
complementary mechanisms that take into account the spati-
otemporal characteristics of the involved EM field.

A fresh perspective on the macroscopic system, arguably one 
of the most debated topics in neuroscience research, emerges 
from examining the average synaptic activity time in neural 
networks through the lens of path integrals. This approach 
offers insights into the partial understanding of asymptotic 
behavior on a microscopic scale. In the long run, it becomes 
imperative to delve into the topological equations governing 
neural temporal hierarchical levels, an area where analytical 
findings are scarce. This poses an issue of exceptional interest, 
as theoretical conjectures supported by experimental evidence 
indicate that neural networks retain information over time-
scales corresponding to their anatomical hierarchy.
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