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Abstract

Natural killer (NK) cells are major innate lymphocytes. NK cells do not require prior antigen 

exposure to mediate antitumor cytotoxicity or proinflammatory cytokine production. Since they 

use only nonclonotypic receptors, they possess high clinical value in treatment against a broad 

spectrum of malignancies. Irrespective of this potential, however, the transcriptional regulation 

that governs human NK cell development remains far from fully defined. Various environmental 

cues initiate a complex network of transcription factors (TFs) during their early development, 

one of which is GATA2, a master regulator that drives the commitment of common lymphoid 

progenitors (CLPs) into immature NK progenitors (NKPs). GATA2 forms a core heptad complex 

with six other TFs (TAL1, FLI1, RUNX1, LYL1, LMO2, and ERG) to mediate its transcriptional 

regulation in various cell types. Patients with GATA2 haploinsufficiency specifically lose 

CD56bright NK cells, with or without a reduced number of CD56dim NK cells. Here, we review 

the recent progress in understanding GATA2 and its role in human NK cell development and 

functions.
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I. INTRODUCTION

GATA2 is an essential transcription factor (TF) of the generation, survival, proliferation, 

and differentiation of hematopoietic stem cells (HSCs),1–3 as well as of the formation 

of blood and lymphatic vessels.4,5 This pioneer factor comprises two zinc finger (ZF) 

domains, two transactivation domains, one nuclear localization signal, and one negative 
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regulatory domain6,7 (Fig. 1A). The two ZF domains (N-terminal and C-terminal) are highly 

conserved, interacting with a network of TFs, including SPI1 (PU.1), RUNX1, TAL1, FLI1, 

and LMO2.8,9 These TFs are known to be involved in specifying early hematopoietic lineage 

commitment.9–12 In human HSCs, GATA2 forms a core heptad complex with six other 

TFs (TAL1, FLI1, RUNX1, LYL1, LMO2, and ERG) to directly impact the survival and 

differentiation of HSCs by regulating more than 1,000 target genes9,13 (Fig. 1A).

GATA2 deficiency can result in monoMAC syndrome (monocytopenia with atypical 

mycobacterial infection),14 DCML [dendritic cell (DC), monocyte, B cell, and NK 

lymphocyte deficiency],15,16 MDS/AML (familial myelodysplastic syndrome/acute myeloid 

leukemia),17 and Emberger syndrome (consisting of MDS, lymphedema, and warts from 

human papillomavirus infection).4 Although GATA2 deficiency results in various clinical 

manifestations, the major symptoms in most patients are chronic infections, including HPV, 

EBV, mycobacterium, fungal and other bacterial infections, MDS/AML, cytopenia (B cell, 

NK cell, monocyte, DC, and CD4+ T cell deficiency), and lymphedema.18 Available patient 

data suggest that GATA2 is a master regulator of human NK cell development whose 

haploinsufficiency leads to NK cell dysfunction.19

In this review, we summarize the recent progress related to the overall molecular 

mechanisms employed by GATA2 and its role in human NK cell development and functions.

II. HUMAN NK CELL DEVELOPMENT

NK cells are the major subset of innate lymphocytes, which mediate both proinflammatory 

cytokine production and cytotoxicity in response to viral infections or malignant 

transformation.20,21 The release of lytic granules containing perforin and granzymes results 

in the lysis of target cells.22,23 Antibody-dependent cell–mediated cytotoxicity (ADCC) is 

another essential mechanism in recognizing infected or transformed target cells.24,25 Since 

NK cell–mediated functions are not limited by clonotypic receptors,26,27 cellular therapies 

can be used against a broad spectrum of cancers.28,29

In spite of their clinical potential, NK cells have not been utilized to their fullest in the 

clinic. For this reason, understanding the transcriptional regulation of the development 

and functions of human NK cells is paramount in formulating effective cellular therapies. 

Customized in vitro generation of mature functional human NK cells from inducible 

pluripotent stem cells (iPSCs) provides an exceptional opportunity for individualized 

front-line cancer therapy. However, lacking essential knowledge of master transcriptional 

regulators we are limited in our ability to fully realize the clinical potential of human NK 

cells. Thus, defining the role of crucial TFs, such as GATA2, in the early commitment and 

development of human NK cells is of high clinical relevance.

Recent studies show that human NK cells develop and mature in bone marrow and 

secondary lymphoid tissues (SLTs), such as lymph nodes (LNs), spleen, and tonsils.30 

Traditionally, the differential expression of surface markers defines distinct developmental 

stages of human NK cells. We recently summarized these markers.31,32 Human NK 

cells primarily arise from self-renewing pluripotent HSCs in bone marrow.33,34 Lineage-
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negative CD34+ HSCs give rise to lymphoid-primed multipotential progenitors (LMPPs) and 

CD34+CD244+ common lymphoid progenitors (CLPs) in sequential order. CLPs commit to 

the NK cell lineage, becoming NKPs (characterized by CD117+CD127+CD122+IL-1R1+).

Immature NK cells (iNKs) express a higher level of CD56 (CD56bright) and 

IL-1R1 along with CD161 (NK1.1), CD314 (NKG2D), CD335 (NKp46), and CD337 

(NKp30).35 The maximal expression of NK1.1, NKG2D, NKp46, and NKp30 marks 

the commitment of iNKs to the transitional stage (TransNKs), which is separated 

into two substages by the expression of NKp80 (relatively immature substage a: 

NKG2D+CD337+CD161+NKG2A+CD56bright NKp80–; and relatively mature substage b: 

NKG2D+CD337+CD161+NKG2A+CD56bright NKp80+). TransNKs develop into the mature 

stage, becoming mNKs, with decreased CD56, increased CD16, and distinct expressions 

of CD158 (KIR) subtypes. The mNKs are NKp80+CD56dimCD16+KIR−/+. Expression of 

CD57 and increased KIR expression indicate terminally mature NK cells (TermNKs).35,36

Multiple cytokines in the bone marrow are responsible for the commitment, development, 

and maturation of NK cells (Fig. 2). Among these, stem cell factor (SCF), FMS-like 

tyrosine kinase 3 ligand (Flt3L), c-Kit, and IL-7 promote the early commitment of HSCs to 

CLPs.37–39 IL-15 is essential for early NK cell development and survival,40,41 and IL-2 is 

critical for survival, activation, and expansion.42–44 Synergizing with IL-15 and IL-2, IL-21 

enhances NK cell cytotoxicity.45 IL-12 and IL-18 augment IFN-γ production and promote 

the cytotoxicity of NK cells.46 TGF-β sustains the stemness of CD34+ HSCs by blocking 

their commitment to the NK cell lineage.47 However, at a later stage, it functions as a 

checkpoint to maintain NK cell immaturity.48 While these and other soluble mediators play 

obligatory roles in the development of NK cells, the activation and functions of downstream 

transcriptional regulators have been only partially defined.

III. TRANSCRIPTIONAL CONTROL OF HUMAN NK CELL DEVELOPMENT

Distinct TFs drive NK cells to transition from one stage to another in sequential order.31 

The upstream and downstream regulators of GATA2 during NK cell development need to be 

fully determined, but, limited information is available about the select few TFs that link it 

with human NK cell development (Fig. 2).

Notch proteins drive HSCs into CLPs; ID2 is a member of the inhibitor of DNA-binding 

proteins; and RUNX3 drives CLPs into the NK cell lineage. GATA2, NFIL3, and ETS1 

promote NKP transition into immature NK cells.1,16,49–51 These TFs either positively 

or negatively regulate transition to maintain balanced development. Cytokine signaling 

pathways also play critical roles, either upstream or downstream of TFs, during human NK 

cell development. The constitutive expression of ID2 enhances commitment to the NK cell 

lineage from CD34+ CLPs. High ID2 expression synergizes with IL-15 and results in an 

increased NKPs.52 RUNX3 expression starts at the NKP stage, reaching its highest level 

in iNKs and mNKs,53 and is essential for the commitment of NKPs.53 RUNX3 binds the 

promoters of KIR and NKp46 and initiates their transcription,54 which demonstrates the role 

of this TF in the terminal maturation of human NK cells.
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ETS1 is predominantly a lymphocyte-specific TF.55,56 It is first expressed in the progenitor 

stage of NK cells development and reaches its peak level in the NKP late stage.57 The 

absolute number of NK cells is significantly reduced among ETS1-deficient human cord 

blood cells, although the number of NKPs is unaltered.50 The remaining NK cells from 

ETS1 loss-of-function HSCs have reduced cytotoxicity and IFN-γ production.50 ETS1 

contributes to NK cell development and function by regulating the expression of several 

critical TFs, including GATA3, NFIL3, T-bet, BLIMP1, and HOBIT.50 Earlier studies 

reported that ETS1 binds to the promoter region of GATA2 and initiates its transcription.58

Evidence from murine models identifies distinct TFs upstream of Ets1. Notch upregulates 

the transcription of Ets1,59 while PU.1 directly inhibits it.60,61 Ets1, in turn, promotes 

transcription of IDB2 (the Id2 gene) and TBX21 (the T-bet gene).57 The activation of human 

NK cells with IL-2 and IL-15 upregulates the expression of ETS1.62 NK and NKT cells, 

but not T or B cells, highly express NFIL3 (E4BP4).63 NFIL3 plays an essential role in 

NK cell commitment from NKPs to iNKs.63 It is involved in NK cell development as 

a downstream target of the IL-15–mediated signaling pathway during the commitment to 

iNKs.64 Also, it directly binds to the promoter region of IBD2 and EOMES and activates 

their transcription.65 GATA2 binds to the promoter region of NFIL3,66 which may promote 

iNK commitment and maintain cell survival.67

Eomesodermin (EOMES) and T-bet belong to the T-box family and play obligatory 

roles during NK cell development.68–70 Without it, NK cell development is blocked at 

an immature stage.71 However, the lack of T-bet blocks EOMES before the terminally 

mature stage.72 EOMES and T-bet antagonize the each other’s expression during NK cell 

maturation.68,69,71 IL-12 and IL-15 stimulation upregulates the expression of T-bet. Both 

T-bet and Eomes are the downstream targets of IL-15R–mediated signaling.73

ZEB2 (zinc finger E-box-binding protein) plays a critical role in the TGF-β–mediated 

signaling involved in epithelial-to-mesenchymal transition through the activation of R-

Smads.74,75 Zeb2 regulates the terminal maturation of NK cells, indicating a potential 

role for TGF-β at the later stages of NK cell development.76 T-bet is required to induce 

the expression of Zeb2, which is critical to maintaining the transcriptional activity of 

T-bet, implicating a mutual regulation between these two TFs.76 Overexpression of Zeb2 

partially restores NK cell defects that result from T-bet deficiency.76 Zeb2 is downstream 

of NFIL3 during dendritic cell specification, implying that IL-15R–mediated activation 

leads to initiation of the NFIL3-Zeb2 axis during early NK cell development.77 Mutual 

transcriptional repression between Id2 and Zeb2 has been found during DC lineage 

development which may also be operative in NKPs.77 Thus, the transcriptional control of 

early NK cell development by the NFIL3-Zeb2-Id2 axis needs to be investigated.

IV. IMPACTS OF GATA2 DEFICIENCY ON IMMUNE CELLS

Patients with GATA2 haploinsufficiency possess a reduced number of CD34+ cells in bone 

marrow (BM) but maintain maturation capability of hematopoietic stem cells.78 However, 

induced pluripotent stem cells (iPSCs) derived from GATA2-deficient patients do not 

replicate the defects in committing to hematopoietic progenitors.79 Patients with GATA2 
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deficiency also show near complete loss of B cell precursors78 and reduced transitional and 

naïve B cells, while memory B cells are enriched and appeared skewed to the mature state.80

Specific loss of CD56bright NK cells is a significant and consistent feature of GATA2 

deficiency.19,80,81 T cell deficiency varies in patients. One cohort study reported that 50% of 

57 patients with the GATA2 mutation displayed reduced CD4+ T cell numbers.18 Another 

result from a cohort study, including 30 patients with GATA2 mutation, showed reduced 

naïve and central memory CD8+ T cells revealed by decreased CD27, CD62L, CD38, and 

HLA-DR.80

Interestingly, several groups have reported an increased CD3+CD56+ T cell population 

in GATA2-deficient patients.19,80,82 These NK-like T cells play an essential role in 

eliminating cytomegalovirus (CMV) infections.83 However, because the role of GATA2 in 

their development and functions has not been determined, and while the type of NK or B cell 

deficiency is well-correlated with GATA2 mutation, the developmental defects associated 

with T cell subtypes have yet to be fully characterized.

DC deficiency is highlighted in patients with GATA2 deficiency and may relate to elevated 

FLT3L in patients with GATA2 haploinsufficiency. Indeed, studies have shown the number 

of DCs to be inversely correlated with the level of FLT3L.37,84 The high elevation of 

FLT3L is a unique serological feature of patients with GATA2 mutation, and its progressive 

elevation relates to the clinical advancement of associated disorders.15,80

Both CD14+ and CD16+ monocytes are significantly reduced in patients with GATA2 

haploinsufficiency.80 In addition to dysfunctional immune cells, around 75% of patients 

who carry the GATA2 mutation develop a malignant blood disease, including MDS, AML, 

and chronic myelomonocytic leukemia (CMML).85 The acquisition of additional genetic 

abnormalities in GATA2 deficiency usually results in the rapid onset of hematological 

abnormalities with a poor prognosis for survival.86,87 These abnormalities include 

monosomy 7, trisomy 8, trisomy 21, and mutations in ASXL1, CEBPA, and other genes, 

alone or concomitant.86,88,89

To date, over 350 GATA2 genomic variants have been reported on the ClinVar website 

(https://www.ncbi.nlm.nih.gov/clinvar/; January 2021). Around 85% of them are single 

nucleotide substitutions. There are three major categories of mutations present in GATA2-

deficient patients: (1) the N-terminal ZF domain (amino acid 259–319), (2) the C-terminal 

ZF domain (amino acid 349–373), and (3) other regions (such as +9.5 intronic enhancer).90 

Somatic mutations predominately occur in the N-terminal ZF domain. GATA2sLeu321Phe is 

the most prevalent of these.91

All germline mutations are observed in the C-terminal ZF domain. The most common 

missense mutations, GATA2gThr354Met, GATA2gArg396Gln, and GATA2gArg398Trp, result in 

loss of function.17,92 Uniquely, GATA2Leu359Val is a gain-of-function mutation.93,94 The 

C-terminal ZF domain of GATA2 interacts with PU.1,95 which directly binds and drives 

the expression of FLT3 and granulocyte-macrophage colony–stimulating factor (GM-CSF)

—essential growth factors in the development of DCs.96 Mutated GATA2Thr354Met and 

GATA2Cys373Arg physically bind to PU.1 with higher affinity due to the altered C-terminal 
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ZF structure.97 Interaction between GATA2 and PU.1 results in reciprocal functional 

antagonism through regulation of their transcription and DNA binding.98,99

GATA1, another GATA family member, is a crucial TF that drives the differentiation of 

HSCs into megakaryocytes.100 While GATA2 is essential for maintaining stemness, it is 

also critical to early activation of GATA1 erythroid/megakaryocyte lineage commitment 

from HSCs. This phenomenon, known as the “GATA switch,” facilitates the displacement 

of GATA2 from the chromatin by GATA1.101–103 GATA2 can bind its own upstream 

promoter region and upregulate its transcription. Increased GATA2 activates GATA1, which 

in turn represses GATA2 expression. Both GATA1 and GATA2 are capable of autoactivating 

their own expression.104 New findings have challenged this paradigm, where high DNA 

methylation by DNMT1, not GATA2, is responsible for an inactive GATA1 locus.102,105 

Detailed study is required to determine the role of the GATA switch in the commitment of 

HSCs to the NK lineage.

One of the critical TFs in lymphocyte development, Ets1, can bind to the GATA2 promoter 

and positively regulate its expression on erythroid differentiation.58 GATA2 protein directly 

binds to the NFIL3 promoter region, a TF that is essential in developing T, B, NK, and 

dendritic cells.106,107

GATA2−/− mice are embryonically lethal and die at day 10.5 (E10.5) due to loss of vascular 

integrity and anemia.1 Following tamoxifen-induced deletion, GATA2fl/flERCre adult mice 

display depleted splenic B cells, T cells, NK cells, monocytes, and DCs, along with impaired 

DC differentiation.108 Notably, CD-49b+NK1.1+ NK cell numbers are significantly reduced 

in these mice.108 However, the extent of the reduction in defective NK cell development and 

the impaired signaling pathways is not known. Mice with GATA2 haploinsufficiency display 

a reduced number of HSCs and granulocyte-macrophage progenitor (GMP) cells as well as 

an impaired ability to differentiate to monocytes109; however, they do not exhibit defects in 

DC numbers or DC differentiation,108 the development of MDS, or leukemia.109

Further studies are required to determine if NK cells display impaired development in 

GATA2+/− mice. Overexpression of GATA2 inhibits hematopoiesis through defective cell 

cycle pathways.110 Elevated GATA2 correlates with an adverse prognosis for patients with 

AML.111,112 Thus, a fine-tuned balance of functional GATA2 protein is critical to the 

self-renewal and differentiation of HSCs into lineage-committed progenitors. Although 

GATA2fl/fl ERCre and GATA2+/− mice can mimic some GATA2-deficiency features, a 

better disease model is necessary to define the molecular mechanisms of GATA2-mediated 

transcriptional regulations.

V. ROLE OF GATA2 IN HUMAN NK CELL DEVELOPMENT

GATA2 is an essential TF in lineage commitment and early NK cell development in 

humans.16 The specific loss of the CD56bright NK cell population is a striking feature of 

GATA2-deficient patients19 with or without reduced total CD56dim NK cells.19,81,82 Earlier, 

we reported that upregulated apoptosis is potentially the mechanism behind reduced NK cell 

numbers, supported by the augmented expression of the proapoptotic genes GIMAP4 and 
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GIMAP7.35 In an in vitro culture, purified CD34+ hematopoietic precursors from GATA2-

deficient patients failed to differentiate into CD56bright NK cells but gave rise to CD56dim 

NK cells, albeit in significantly lower numbers than expected.19,81

iPSCs derived from GATA2-deficient patients do not show significant defects in 

differentiating to NK cells.79 The reasons for these differences are not understood. GATA2 is 

predominately expressed in CD56bright cells, which may indicate its vital role in maintaining 

this early immature subset.19 However, it has been shown that CD56+ NK cells only express 

GATA3 and that GATA2 is detected uniquely on HSCs.81 Thus, the expression of GATA2 

on the CD56bright NK subset requires detailed analyses to substantiate its role in early 

developmental stages.

NK cells in patients with GATA2 haploinsufficiency exhibit severe functional defects, 

including cytotoxicity of remaining CD56dim cells.19 Severe HPV or EBV infection in 

these patients further indicates dysfunctional mature CD56dim NK cells at multiple levels, 

although precise molecular defects are so far unknown. A reduced expression of effector 

molecules, such as perforin and different granzymes, could be due to a reduction in 

responsible TFs, including T-bet and EOMES.81 NK cells in these patients also express less 

PLZF, FceRg, and SYK, which define adaptive NK cells.81 Adaptive NK cells persist longer 

term, but it is not clear whether increased adaptive NK cells can protect patients from viral 

infections. NK cell development is not significantly altered in PLZF-null mice, suggesting 

other transcription factors downstream of GATA2.113 NK cells from these patients have 

lower levels of CXCR4 and dysfunctional CXCL12/CXCR4-mediated chemotaxis.35,82 

Proper functioning of the CXCL12/CXCR4 axis is essential for the bone marrow homing of 

NK cells.114

It is not clear whether impairment of the CXCL12/CXCR4 axis results in reduced cell 

numbers in the bone marrow of patients with GATA2 haploinsufficiency. As a master 

regulator, GATA2 may cooperate with a network of TFs to govern human NK cell 

development. ETS1, one GATA2 upstream regulator,58 NFIL3, a GATA2 downstream 

target,106,107 and several other TFs interacting with GATA2, such as PLZF115 and PU.1,95 

all play critical roles in NK cell development and functions. Future studies should focus on 

whether an ETS1-GATA2-NFIL3 transcriptional axis governs human NK cell development 

(Fig. 2).

VI. SUMMARY AND FUTURE DIRECTIONS

Human NK cells account for around 10%–20% of circulating lymphocytes in the peripheral 

blood. Their ability to kill malignant cells without prior sensitization indicates a promising 

role in immunotherapeutic applications. Driving the full functional potential of NK cells 

in patients or ex vivo is essential for successful clinical application. Achieving success 

in immunotherapy requires a thorough understanding of the TF network and its potential 

mechanisms of action in human NK cell development. Most known TFs of NK cells are 

based on murine models, which have not been fully replicated on human NK cells. The 

human disease conditions that specifically lack either a CD56bright or a CD56dim population 

provide a unique opportunity to understand human NK cell development.
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mNK mature NK cell
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FIG. 1: 
GATA2, its transcriptional partners, and their transcriptional role in human NK cells. (A) 

GATA2 comprises two zinc finger (ZF) domains, two transactivation domains, one nuclear 

localization signal, and one negative regulatory domain (Top). GATA2 forms a core heptad 

complex with six other TFs (TAL1, FLI1, RUNX1, LYL1, LMO2, and ERG) to directly 

impact the survival differentiation of HSCs by regulating more than 1,000 target genes 

(Bottom). (B) Multiple potential upstream and downstream factors of GATA2 and cytokines. 

This predicted pathway was assembled using findings from NK and other cell types.
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FIG. 2: 
Role of major transcription factors, including GATA2, in human NK cell development. 

Transcription factors and the specific developmental stages of human NK cells are indicated. 

GATA2 plays an essential role in the transition of NKPs into immature NKs. The role of 

GATA2 in the early commitment of CLPs into NKPs is yet to be established.
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