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Abstract

Exoskeletons can augment the performance of unimpaired users and restore movement in 

individuals with gait impairments. Knowledge of how users interact with wearable devices and 

of the physiology of locomotion have informed the design of rigid and soft exoskeletons that can 

specifically target a single joint or a single activity. In this Review, we highlight the main advances 

of the past two decades in exoskeleton technology and in the development of lower-extremity 

exoskeletons for locomotor assistance, discuss research needs for such wearable robots and the 

clinical requirements for exoskeleton-assisted gait rehabilitation, and outline the main clinical 

challenges and opportunities for exoskeleton technology.

Exoskeletons aiding locomotion entered the popular imagination over a century ago, 

followed by a series of early patents and prototypes1–5. Among other advances in the 

late twentieth and early twenty-first century, funding from the Exoskeleton for Human 

Performance Augmentation Program6 of the Defense Advanced Research Projects Agency 

(DARPA) of the United States enabled the development of wearable robotic devices for the 

lower extremities (in particular, the Berkeley lower-extremity exoskeleton, BLEEX7,8; the 
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Sarcos Guardian XO9; and the MIT quasi-passive exoskeleton10–13) to augment strength 

and reduce effort during the carriage of load. By taking load off the wearer and providing 

assistive joint torques during walking, these weight-bearing lower-extremity exoskeletons 

sought to increase load capacity, improve efficiency and endurance, and reduce the perceived 

difficulty of walking11, potentially benefitting military personnel, first responders and 

weekend warriors. Measuring the metabolic cost of exoskeleton-aided locomotion became 

the gold standard for quantifying wearer effort and exertion. As such, demonstrating 

metabolic cost reductions compared to walking without the robot became a major goal for 

exoskeletons designed to augment strength and performance. Despite their promise, lower-

extremity exoskeletons for performance augmentation in unimpaired users initially failed to 

demonstrate metabolic cost reductions compared with walking without the exoskeletons14–

16. Therefore, lighter-weight hardware and autonomous systems were developed and tested 

in goal-driven experiments, with single-joint systems tested to explore underlying biological 

mechanisms. These technological advances ultimately enabled exoskeletons to meet the 

envisioned objectives of reducing the metabolic cost during loaded or unloaded locomotion 

for military, industrial and recreational applications.

Alongside the development of exoskeletons to enhance the performance of load carriage, 

devices (in particular, the Lokomat17, Gait Trainer18, lower extremity powered exoskeleton 

(LOPES)19, active leg exoskeleton (ALEX)20,21 and Rutgers Ankle22) were designed to 

mechanize physical therapy for individuals re-learning to walk following spinal-cord injury 

(SCI) or stroke. Common clinical practice calls for physical therapists to manually move 

the feet and legs of non-ambulatory patients through the motions of walking to facilitate 

re-learning of movement patterns for functional improvement23. Robotic devices were 

developed to offload this burden from physical therapists and to improve patient outcomes 

by delivering precise interventions and training at optimal intensities, unconstrained by the 

limits of manual assistance. Exoskeletons initially failed to show clinical improvements 

that would justify their cost compared to traditional non-robotic gait-training methods24–30. 

However, a better understanding of the underlying biomechanics and physiology led to an 

improvement in exoskeleton design, including biologically inspired strategies for actuation 

and control31–36. For example, ‘patient-cooperative control’ has been implemented in 

devices for gait rehabilitation to allow for more individualized assistance37–43. Such ‘assist 

as needed’ approaches are particularly important for augmenting the gait of individuals with 

some residual walking function while encouraging their own contributions.

In this Review, we first synthesize key advances in exoskeleton technology in the early 

twenty-first century and highlight recent exoskeleton designs, offering clinical insight into 

how exoskeletons can improve gait rehabilitation and identifying future directions for 

wearable robots. For devices designed for unimpaired adults, we focus on gait and exclude 

research in industrial applications (unless they are particularly relevant). We then discuss 

exoskeletons aimed at reducing the metabolic cost of walking in unimpaired individuals, 

which has been a principal focus since the 1990s. For devices intended to be used for people 

with gait impairments, we exclude research reported only in animal models. Rather, we 

include representative studies of people with stroke, traumatic brain injury (TBI), multiple 

sclerosis (MS), cerebral palsy (CP), and complete and incomplete spinal-cord injury (SCI-c, 
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SCI-i). These conditions represent a range of gait impairments that require anywhere from 

full assistance (the case of SCI) to partial assistance (the case of stroke, MS, TBI and CP).

Wearable robots

The Cybathlon—a non-profit project of the Swiss Federal Institute of Technology in 

Zürich, in which people with physical disabilities compete against each other every 4 

years to complete everyday tasks using assistive technologies—has showcased a variety of 

exoskeletons used in various challenges44. Lower-extremity exoskeletons are similar to one 

another in their ability to augment human performance or restore movement; however, they 

differ in some key characteristics, such as device function and purpose.

Exoskeletons can be broadly classified as weight-bearing devices that transfer load directly 

to the ground or as joint-targeting devices that augment biological torque at a specific joint 

or joints to achieve a physiological goal. Weight-bearing and joint-targeting exoskeletons 

can either be applied for performance augmentation in unimpaired users or for movement 

restoration in the clinic for people with disabilities (Fig. 1). These exoskeletons can further 

be designed with different power sources. Autonomous devices require the user to carry a 

battery to power conventional actuators (which increases their weight). In research-focused 

systems, the power source and actuators can be placed on a freestanding offboard structure 

(tethering the wearer to a treadmill). Alternatively, passive designs, in which energy is 

collected and returned during the gait cycle, do not require any power source45. System-

level advances in both exoskeleton types have led to their increased commercial presence, 

to informative clinical investigations and to a better understanding of how exoskeletons 

influence biological processes46–51.

Weight-bearing exoskeletons

Weight-bearing exoskeletons typically span the entire lower extremity and are made of 

rigid robotic components that enable multijoint assistance and direct transfer of load to 

the ground. Such devices were initially designed to reduce metabolic cost in unimpaired 

individuals during walking. However, to transfer loads to the ground, these devices 

usually inhibit coordination between the device and the wearer, which causes a change 

in the wearer’s gait pattern (compared with their optimal pattern), limiting the ability of 

autonomous weight-bearing devices to lower the metabolic cost of walking14. Therefore, 

weight-bearing exoskeleton technologies have focused on increasing force production during 

non-ambulatory tasks, for example to enable workers to lift heavy loads for extended periods 

of time (FORTIS, Guardian XO, Hanyang Exoskeleton Assistive Robot (HEXAR)-CR5052, 

Body Extender53–55).

Autonomous weight-bearing exoskeletons can also be designed with high power to restore 

some degree of mobility in people with substantial walking impairments. Several such 

devices have achieved regulatory approval56 (in particular, Hybrid Limb Assist (HAL)57,58 

in Japan and Europe, and ReWalk59, EksoNR60,61 and Indego62 in the United States). 

Originally designed to support people with paraplegia, these devices can also be applied 

as gait-training tools for individuals with residual walking capacity49. A variety of such 
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weight-bearing exoskeletons are commercially available (the Atlas, the ExoAtlet, the Hank, 

the Mina, the SuitX, the ExoH2 and the Twiice).

These devices can further be designed with various features; for example, extended sensor 

modalities can be integrated in control loops to measure reaction forces between the wearer 

and the ground58,63, the centre-of-mass position64, or brain activity65,66. Such features 

may enable the development of weight-bearing exoskeletons with well-coordinated control, 

allowing the wearer to adapt to new environments with the ease of an unimpaired walker, 

rather than providing only predefined motions. However, their weight and size limit their 

capacity to achieve specific physiological goals, such as reducing metabolic cost, because 

the exoskeleton spans the entire lower extremity and assists multiple joints. Therefore, 

research efforts have been targeted towards the design of lightweight systems that, instead 

of transferring load directly to the ground, apply torque in conjunction with biological 

mechanisms to assist a single joint.

Joint-targeting devices

Joint-targeting devices assist a specific part of the body, enabling insights into how 

distinct biological features respond to changes in targeted exoskeleton assistance, which 

cannot be achieved with weight-bearing devices. The physiological effects of joint-targeting 

exoskeletons were first investigated using an ankle system driven by artificial pneumatic 

muscles31,32 with an offboard air compressor. By delivering assistance proportional to 

soleus surface electromyography (EMG), this device not only assisted gait, but also allowed 

fundamental investigations of the ankle’s function, in particular how passive elements in the 

ankle muscle–tendon contribute to the efficiency of walking15,34. Knowledge gained from 

these fundamental experiments greatly contributed to the design of joint-targeting devices 

that can decrease the metabolic cost of walking in unimpaired individuals with powered67–

70 and passive45 ankle assistance (Fig. 2). Joint-targeting devices for ankle assistance 

also contributed to our understanding of gait rehabilitation in people with neurological 

impairments71–75.

Offboard actuation holds an important role in investigating the responses to joint-targeted 

assistance to inform the design of autonomous exoskeletons. By eliminating the need 

for body-worn power supplies and actuators, offboard systems enable heavier and more 

powerful actuators to serve across multiple experiments76–81, making them ideal research 

systems for rapid prototyping of joint-targeting exoskeletons. The field of wearable robotics 

has greatly benefitted from offboard actuation, which has allowed the evaluation of wearer 

sensitivity to varying levels of augmentation power82, the comparison of power-inspired 

assistance versus moment-inspired assistance83,84, the investigation of the impact of the 

stiffness of elastic ankle exoskeletons, and the optimization of assistance based on real-

time measurements of metabolic cost78,85. Furthermore, offboard actuation has allowed 

one device to emulate both rigid-link and non-rigid-link exoskeletons for gait training post-

stroke86. Additionally, a commercial offboard system (Caplex) can emulate the evaluation of 

assistive strategies in real time77.

The mechanical designs and control strategies of joint-targeting exoskeletons with offboard 

actuation can be easily modified to explore the different physiological impacts of the 
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designs; however, these systems are restricted to treadmill-based studies, which may 

not reflect typical features of walking (such as changes in speed, direction or terrain). 

By contrast, autonomous systems allow the wearer to freely navigate unconstrained 

environments. The aim of joint-targeting exoskeletons is not to bear weight, hence 

autonomous devices do not require large rigid structures. However, rigid components are 

beneficial for efficiently transferring torques to the body; for example, rigid components and 

a distal actuator at the ankle decrease the metabolic cost of loaded and unloaded walking 

in unimpaired individuals69,70,87. Rigid devices have also been developed for assisting 

other joints, in particular the hip88–91 and the knee92,93, and for multijoint assistance94 (for 

example, the Cyberlegs project95). Moreover, rigid joint-targeting autonomous exoskeletons 

have been commercially developed for industrial, recreational and clinical applications, 

such as the Stride Management Assist (SMA)96–98 and the Gait Enhancing and Motivation 

System (GEMS)99,100. These autonomous bidirectional hip exoskeletons have been used 

to investigate new control schemes101–103, the augmentation of performance in unimpaired 

individuals104–106, the restoration of gait function in elderly adults107,108, improvements in 

gait and other mobility in people with CP109–111 and clinical effects post-stroke112,113.

Joint-targeting exoskeletons often feature creative designs to mitigate the high energetic cost 

of distal mass; for example, lightweight textile-based components can be applied to interface 

with the body and minimize kinematic interference. These soft exoskeletons (often called 

exosuits) sacrifice some efficiency in transmitting power to the user in exchange for light 

and minimally restrictive systems, which may be more comfortable to wear for prolonged 

periods compared with traditionally rigid exoskeletons. Soft exosuits can augment metabolic 

performance114–118 and enable post-stroke gait assistance at the ankle119–121. They have 

been commercialized (one example is the ReStore122). The textile-based Myosuit assists hip 

and knee extension with a single actuator, as well as hip flexion with a passive spring-like 

element during sit-to-stand transitions123 and walking124. A soft wearable robotic ankle-

foot orthosis with a bidirectional, tendon-driven and distally mounted actuator can assist 

plantarflexion and dorsiflexion125. A textile-based device with a ‘cross-wire’ design can be 

applied at the hip to induce turning126. The XoSoft delivers similar amounts of mechanical 

power to the ankle and hip as other devices127 but has not yet been evaluated in the clinic or 

in terms of metabolic cost reduction in unimpaired individuals.

To further reduce costly distal mass, designs based on biological mechanisms are being 

explored. The human body compensates for energy cost with passive structures such as 

tendons connected to active muscles, which can be mimicked in passive devices that rely 

only on elastic elements to reduce the cost of walking. For example, such passive ankle 

devices can reduce the metabolic cost of walking45 or running128–130. Furthermore, passive 

devices, which can be worn under clothes131, can assist the hip132 or ankle during walking.

Understanding the wearer’s response

Exoskeletons have begun to confer the wearer some of the long-hypothesized physiological 

benefits during locomotion. Devices for unimpaired users can reduce the effort of walking 

and jogging in lab-based and outdoor settings, and devices for gait rehabilitation have led to 

clinical improvements. Although the aim of devices for gait rehabilitation is to reduce the 
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metabolic cost of walking, their immediate objective is to modify the wearer’s existing 

gait pattern. Accordingly, clinically relevant metrics and functional outcomes, such as 

walking speed and spatiotemporal symmetry, are used to evaluate device benefits. Therefore, 

understanding the wearer’s response to exoskeletons is crucial to enable the design of robust 

devices, individualized assistance and widespread user acceptance.

Reduction of metabolic cost

The first demonstration of an offboard ankle-assisting exoskeleton lowering the metabolic 

cost of walking compared to unassisted walking68 made clear the promise of joint-

targeting exoskeletons. Joint-targeting devices can interface with the body through different 

approaches, and they can be designed with different actuation and control modes to assist 

a variety of joint motions, rather than just the ankle. The metabolic impact of these devices 

varies depending on whether the exoskeleton is autonomous or tethered to an offboard 

actuator, and on whether the effects of the exoskeleton are compared to walking without an 

exoskeleton (no exoskeleton) or to walking with an exoskeleton but without assistive torque 

(no assist).

Studying metabolic-cost reduction using offboard systems and comparisons to no assist 

allow for rapid iteration through experimental designs and through device and controller 

prototypes. An offboard ankle-assisting exosuit led to a magnitude of assistance delivered 

during walking that directly influenced metabolic reduction compared with no assist 

(22.83 ± 3.2%)82. Although the highest augmentation torques may achieve the highest 

metabolic reduction, well-optimized assistance profiles offer further metabolic benefits over 

fixed control strategies. Human-in-the-loop (HIL) optimization automatically individualizes 

control parameters to each participant in real time and has been shown to lead to metabolic 

reductions using offboard devices assisting the hip (17.4 ± 3.2% compared with no 

exoskeleton)85 and the ankle (24.3 ± 7.4% compared with no assist)78. Further study at 

the muscle level may provide more information on optimal profiles or device designs for 

maximizing metabolic reduction133.

For unimpaired users, the ultimate goal of autonomous exoskeletons is to reduce the 

metabolic cost of walking relative to no exoskeleton; that is, these wearable devices 

should more than offset the additional weight (including that of power sources) carried 

by the user. Therefore, exoskeletons not only have to provide assistance at the correct 

time, but also have to be sufficiently light so that their metabolic benefit overcomes the 

metabolic burden of the added weight. A landmark study of an ankle-targeting autonomous 

system showed metabolic reduction during loaded walking (8 ± 3%) compared with no 

exoskeleton69. Other autonomous exoskeletons have also led to metabolic reductions relative 

to no exoskeleton134: a passive ankle device (7.2 ± 2.6%)45, a hip exoskeleton (GEMS, 17.4 

± 2.9%)135, and a soft exosuit for hip assistance during both walking (9.3 ± 2.2%)117 and 

running (4.0 ± 1.3%)117.

These results highlight the potential of exoskeletons as assistive complements to walking; 

however, their design, manufacturing and testing remain time-consuming and resource-

consuming. In addition, predicting the efficiency of untested devices in metabolic-cost 

reduction remains challenging. The increase in metabolic cost owing to exoskeleton weight 
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can be accounted for by the augmentation factor (AF), a metric aimed at predicting the 

metabolic benefit solely on the basis of its mass and power characteristics69. The AF is 

defined as

AF = p+ + pdis
η −

i = 1

i = 4
βimi

(1)

where p+ is the average positive augmentation power, pdis is the net augmentation-power 

dissipation (pdis = 0 when p+ ≥ p−  and pdis = p+ + p− when p+ < p− ; p− is the average 

negative-augmentation power), η is the muscle–tendon apparent efficiency15, mi are the 

added device masses on each segment (trunk, thigh, shank and foot) and βi are the device-

location factors for each segment based on linear-regression equations136. When the AF was 

first introduced, only two datasets67,68, both assisting ankle plantarflexion, were available to 

estimate muscle–tendon apparent efficiency, η = 0.41, defined as

η = Average positive augmentation power
ΔNet metabolic power relative to no assist

(2)

Using data published since 2014, focusing on studies demonstrating metabolic reductions 

relative to no assist, we calculated apparent joint efficiencies for ankle plantarflexion 

(η = 0.47)68,69,87,137–139 and hip extension (η = 0.49)117,140–142. Some studies looked 

at devices that assisted multiple joints14,143–145. However, some studies did not include 

all information necessary to compute equation (1), hence we made some assumptions 

about device parameters, such as weight distribution (Supplementary Table 1). Using these 

updated apparent joint efficiencies, the AF can predict the metabolic impact of exoskeletons 

(Fig. 3) for specific modes of assistance (Supplementary Table 2). Of note, a key assumption 

of the AF is that metabolic benefit from external assistance scales linearly with the average 

amount of positive power delivered by an exoskeleton. Some studies corroborate this 

assumption, showing, for example, that the condition with the highest augmentation power 

shows the highest metabolic-cost reduction82; or that two different assistance profiles with 

similar amounts of augmentation power lead to similar metabolic reductions84. By contrast, 

empirical experiments78,83,138 and simulations146,147 have indicated that there is a point at 

which too much augmentation power may not lead to additional metabolic-cost reductions. 

Moreover, studies using passive devices have shown the potential for low-positive-power 

strategies to reduce the metabolic cost of walking45.

Interestingly, data reported for elastic ankle exoskeletons with intermediate stiffness springs 

set in parallel with the human plantar-flexors do not follow the general trend148. This study 

included actuation profiles that did not provide metabolic improvement; such actuation 

profiles were also included in another study for unpowered ankle exoskeletons45. Actuation 

profiles that do not decrease the metabolic cost of walking are not common in the 

recent literature, a gap that perhaps hides factors influencing metabolic benefit. Indeed, 
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augmentation power is not the only factor influencing metabolic improvement. To change 

the sign of equation (1), the device has to apply substantially more negative augmentation 

power than positive augmentation power, or needs to be sufficiently heavy so that its distal 

inertia overrides any benefit of positive augmentation power. In addition, various other 

factors may influence the metabolic cost.

Device-location factors136, for example, do not account for the increased energy cost 

of moving distal mass at high walking speeds148. Moreover, the AF does not consider 

potentially substantial changes in kinematics owing to exoskeleton assistance82,148. 

Although incomplete, the AF remains a surprisingly powerful indicator of metabolic 

improvement of devices that apply net positive augmentation power. Studies describing 

actuation profiles that decrease and increase the metabolic cost of walking will further 

increase understanding of device designs that make walking easier.

In addition to the AF, other modelling techniques have been used to inform exoskeleton 

design with the aim of reducing metabolic cost. High-level models such as the individual-

limbs method149 examine how each leg contributes mechanical power to the centre of 

mass150. Interestingly, high-level models have also been used to design a phase-oscillator 

controller that can reduce the metabolic cost of running compared with no exoskeleton151. 

Future approaches to predicting metabolic-cost reductions should also consider the cost 

difference in generating force with muscles crossing the hip, knee or ankle. Tools such as 

OpenSim152–154 can estimate individual muscle activations and kinetics, offering insights 

into how exoskeletons can modify muscle–tendon dynamics in ways that can either 

benefit155 or impede156 gait.

High-level models can provide information about key trade-offs in the early phases of 

device development, and more detailed musculoskeletal models can give insight into 

the biomechanical changes induced by wearable devices. To inform these models, close 

collaboration between device and simulation designers will be crucial. Experimentalists 

should provide key experimental data, such as applied device torques and powers, the 

distribution of added exoskeleton mass on the body, the resultant metabolic impact relative 

to both no exoskeleton and no assist, and raw kinetic, kinematic or muscle-level responses.

In-clinic validation

In contrast to devices designed for unimpaired users, improving walking performance in 

the clinic often does not focus on reducing metabolic cost. People with gait deficiencies 

develop atypical movement patterns that are thought to be necessary for stability, and 

devices applied to improve gait may therefore disrupt energetic efficiencies established 

through these compensations. Although metabolic cost remains important, clinical studies 

involving exoskeletons for gait assistance often focus on safety metrics to establish patient–

device agreement, as well as on efficacy metrics based on walking function and quality. Here 

we discuss outcomes from exoskeleton evaluations in clinical populations ranging from case 

studies to randomized controlled trials (RCTs).

Weight-bearing exoskeletons have been studied in a range of conditions (from complete 

SCI to stroke) requiring full to partial assistance, whereas joint-targeting exoskeletons 
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have mainly been used in conditions requiring partial assistance, such as stroke (Table 

1). Only preliminary studies have been performed for assessing acceptability and feasibility 

of wearable exoskeletons in people with SCI thus far, owing to the complex nature of 

assisting gait in this condition. In clinical studies, exoskeletons have mainly been applied to 

increase training intensities to facilitate neuroplastic changes, as shown in animal models157; 

however, certain conditions, such as complete paralysis from SCI, benefit from exoskeletons 

as an alternative means of mobility.

Several commercial devices have been examined for their clinical potential, including 

Ekso158–160 and Indego161 for SCI, ReWalk for MS162, as well as HAL163 and 

ReStore122,164 for stroke. The results have shown acceptable feasibility and safety; however, 

occurrences of non-injurious falls158 and skin issues owing to device fit (such as redness and 

minor abrasion)122,161 were noted. Although assessments of device efficacy were limited in 

these preliminary studies, speed-based outcomes improved over the course of robotic gait 

training in the case of HAL for people with subacute stroke163, Ekso for people with SCI160 

and ReWalk for people with MS162. In a multisession case study involving three participants 

with complete SCI, training with the Ekso resulted in linear increases in the number of 

steps and distances in 2 out of 3 participants, and a 2–3-fold increase in walking speed 

for all participants165. Notably, training with the ReStore resulted in a significant increase 

in unassisted maximum gait speeds of 0.07 m s−1 in 36 people with chronic stroke after a 

brief training of five sessions122, which is about a fourth of the dose of non-robotic training 

regimens, with a median dose of 20 sessions with pooled mean differences of 0.11 m s−1 

(ref. 166). Training with the Indego device resulted in an average walking speed of 0.37 

m s−1 in 32 individuals with SCI who were otherwise non-ambulatory without the device, 

after 26 visits161, which is about half the median dose of body-weight-supported treadmill-

walking regimens (50 sessions), which did not increase walking speed167. In contrast to the 

aforementioned devices designed to provide assistance during walking, the Anklebot, which 

provides isolated training of the paretic ankle joint while seated, led to the transfer of gains 

from seated training to improvements in walking speed in 29 less-impaired individuals in the 

chronic phase of stroke168.

These findings highlight the potential of robot-assisted interventions in improving clinical 

outcomes. However, larger trials with control groups are needed to fully understand the 

generalizability of these results, the practicality of these technologies in the clinic and dose-

response relationships over time. Importantly, exoskeletons must show clinically meaningful 

changes in walking performance in clinical trials. Specifically, RCTs seek to minimize 

biases in testing, thus increasing the likelihood of revealing robust effects of robotic training 

compared with conventional approaches169,170.

The effects of robotic training in people with stroke112,113,171–176 and other neurologic 

conditions, such as MS177,178 and TBI179, have been examined in RCTs. In people with 

chronic stroke, training with the SMA improved walking endurance, daily step count, 

corticomotor excitability of the paretic rectus femoris112, step length and spatial gait 

symmetry113, as compared with a control group who received non-robotic gait training 

only. Similarly, training with the Lokomat resulted in improvements in gait speed, balance 

and self-sufficiency175. Conversely, training with the Bionic Leg, a powered unilateral knee 
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orthosis, failed to show benefits in gait speed in people with chronic stroke, and showed only 

modest functional benefits relative to gait training without robotics172.

Robotics have thus far only been applied in a subset of people with subacute stroke and 

substantial gait impairments. Training with the Lokomat173 and HAL174 led to a statistically 

significant increase in functional walking independence in people post-stroke, as well 

as to tendencies to increased walking speed following training with the treadmill-based 

Gait Assistance Robot171, as compared with gait training without robotics. Although less 

explored, early stroke rehabilitation during the acute phase or inpatient care may be one of 

the most relevant applications for exoskeletons. A large number of individuals with stroke 

are admitted to the hospital, and thus an ideal therapy design at this stage may be most 

advantageous, minimizing the development of compensations.

Training with the Lokomat also resulted in improvements in walking endurance and speed 

in people with MS, compared with conventional non-robotic training178. Training with the 

Gait Trainer resulted in improvements in balance; however, this effect was not significantly 

different compared to control training without robotics177. Favourable effects with the 

Lokomat were also observed in people with TBI, with an improvement in maximum walking 

speed and step length; however, walking endurance was only improved in non-robotic 

control training179.

Owing to the limited benefit of robot-assisted interventions over conventional gait training 

thus far24,25,29,30, treadmill-based exoskeletons are not currently clinically recommended 

for gait rehabilitation therapy of people with chronic stroke, incomplete SCI or TBI180. 

Nevertheless, the outcomes of RCTs can inform future clinical-trial designs to improve 

the quality and staging of the clinical studies with regards to appropriate outcome 

measures, dose-response effects and control groups for training-effect comparisons181,182. 

The device, training paradigms and patient-inclusion criteria need to be optimized to 

maximize the benefits of exoskeletons in gait rehabilitation183. A change in clinical 

practice is only justified if new interventions lead to a substantial benefit over existing 

practice180. Therefore, an RCT must be replicated across multiple testing sites to reduce 

bias and increase generalizability, which is regarded as the gold standard for therapeutic 

interventions181.

The pathway to multicentre RCTs with robotic devices should include four phases181. 

In phase 1, preliminary experiments should be conducted to confirm the safety of the 

device and its feasibility for clinical use. Clinically relevant outcome metrics, potential 

training paradigms and participant-inclusion criteria should also be determined at this phase. 

Once these phase-1 experiments confirm user safety and suggest improvements of clinical 

outcomes, then more detailed experiments, such as case studies with several participants, 

can be conducted in phase 2 to further inform training paradigms. Small case studies 

are more appropriate for substantiating preliminary phase-1 results in clinical settings, but 

do not require data from more participants than in phase 1. Case studies should include 

measurements of clinical and biomechanical metrics to enable preliminary explanations for 

high-level functional changes, such as gait speed. To provide initial insight into how the 

device compares to conventional therapy without robotics, case studies should involve a 
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preliminary control group that receives similarly structured intervention without the device. 

In some cases, such as in the chronic phase of stroke, a crossover design can be applied; 

in this, the participants serve as their own control, and complete interventions with and 

without the device. Proper device validation in phases 1 and 2 aids in the formulation of 

the design of an RCT in phase 3 to ultimately enable evidence of intervention validity 

across multiple testing locations181 in phase 4. Therefore, if questions regarding intervention 

dosage, outcome metrics or participant inclusion remain unsolved on completion of phase 

2, phases 1 and 2 should be repeated before progressing to phase 3. Similarly, if clinical 

outcomes are substantially improved but cannot be explained by quantitative biomechanical 

evaluations, phase 2 must be extended to better understand the human–robot interaction. 

Once functional outcomes have been shown to improve with the device with respect to 

the control, and once preliminary biological mechanisms have been identified, an RCT in 

phase 3 can be performed. An RCT must be sufficiently powered and contain a formal 

control group representative of usual care, to allow for comparisons of rehabilitation effects. 

If an RCT shows positive changes in some metrics but remains overall inconclusive, then 

progression to a multicentre RCT in phase 4 should be halted. Once clinically meaningful 

average improvements are obtained with the device (compared with the control group), a 

multicentre RCT can be conducted. Clinical effectiveness from such a study would motivate 

device implementation in clinical settings.

Only few exoskeleton systems have thus far been tested following this evidence-generation 

pathway. Although RCTs have shown promising clinical benefits related to speed and 

functional independence, these effects appear to be specific to the patient population 

and to the robotic devices (spanning a range of robotic systems, designs, controllers 

and interactions with diverse patient populations and impairment presentations184). It is 

important to identify which patient population would benefit the most from the robotic 

device185, rather than assessing a robot’s generalized benefit for all users184. Similarly, 

devices should be developed that can adapt to therapy, community settings and user needs to 

understand how exoskeletons can best support rehabilitation.

Therefore, clinical trials of neurorehabilitation involving robotics have to adopt strategic 

staging181,186, akin to stepwise and iterative processes employed in the development 

of drug-based therapies186, to minimize premature entry into multicentre RCTs. A 

comprehensive evaluation of effects of exoskeletons beyond functional outcomes is 

necessary to identify the underlying mechanisms that pertain to motor recovery versus 

compensations. However, clinical trials often lack the data required to perform quantitative 

biomechanical evaluations. Clinical outcomes, such as walking-speed improvements, may 

be similar in different interventions, but the underlying neural-control strategies may be 

distinct112,113. Robotic interventions can deliver high-intensity and high-repetition practice, 

which are known drivers of neuroplasticity and which should be considered in clinical trials 

involving robotics187. Understanding neuroplasticity mechanisms can drive neurotechnology 

design for rehabilitation188, considering that common neurorehabilitation practices value 

motor recovery over compensations. Spatiotemporal measurements from onboard sensors 

could shed light on the biomechanical mechanisms that lead to functional changes189,190; 

for example, by mapping neural signals obtained by electroencephalography (EEG) to gait 

kinematics191. In addition, temporal aspects of gait training should be considered. Clinical 
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trials have thus far mainly focused on the rehabilitative potential of exoskeletons; however, 

the effective frequency and duration of training, and how long benefits may last, remain to 

be investigated185. Also, studies of assistive devices for continuous wear remain limited, but 

may allow for rehabilitation beyond the clinic and encourage community participation.

Component technology

Control

Accurate joint-angle estimation has proven invaluable in planning assistance. Most rigid 

systems use encoders on actuated joints to determine joint angles; however, devices 

without rigid joints cannot rely on encoders and thus must use other sensors (for example, 

inertial measurement units; IMUs192,193) to determine joint angles. IMUs are lightweight, 

inexpensive and easy to integrate into robotic systems, but also particularly sensitive to 

their physical alignment with biological joints (a challenge that rigid devices do not 

face). Furthermore, orientation measurements from IMUs suffer from inherent inaccuracies 

owing to bias (a constant offset compared to the true IMU orientation) and drift (a 

history-dependent change in orientation), which render measurements unusable within 

minutes if left uncorrected. Therefore, ensuring consistent alignment without first making 

precise measurements is difficult, hence IMU-based joint angles can be highly variable 

depending on placement. Importantly, asking wearers to take precise measurements each 

time they put on an exoskeleton hinders commercial applications, for which usability 

is crucial. Misalignments can be corrected by optimization algorithms that automatically 

estimate the location of the IMU relative to a biological joint, greatly improving joint-angle 

estimation accuracy194–197. Integrating these algorithms with wearable devices may enable 

the development of controllers that leverage joint-angle estimates for targeted assistance 

without requiring rigid joints. Such motion sensing could also be a valuable tool in the 

evaluation of a wearer’s kinematic performance outside of laboratory settings and could 

allow for the assessment of interventions at home or in the community. Furthermore, small 

IMUs worn during walking could inform an algorithm that determines the primary joint (or 

joints) at which a person experiences a gait deficit, along with the severity of that deficit. A 

clinician could then recommend a device appropriate for this specific deficit.

Exoskeletons are often controlled by applying actuation profiles as a function of the 

gait cycle (a standard time-normalized period that stretches from one heel strike to the 

next). Thus, parallels can be drawn between controllers, biological kinematics and kinetics. 

Heel-strike events can be assessed via the measurement of the foot switch, by placing an 

instrumented insole inside the shoe. Although simple in their design, foot switches often 

have issues related to sizing (the sensor must align well with both the heel and the ball of 

the foot) and durability (loading well exceeds body weight with every stride). Alternatively, 

IMUs can be used to detect heel strikes82,124. Detection of gait events is easiest with IMUs 

placed at the ankle, where the impact from a heel strike is most apparent. The cyclical 

nature of the gait cycle can also be leveraged by identifying measures in the phase plane 

that remain invariant across walking speeds198,199. Devices not targeting the ankle can be 

equipped with an adaptive oscillator99,100,105–108,200, which takes cyclic measurements of 

the hip angle to estimate the gait cycle. Instead of measuring the gait cycle, devices can 
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also be designed to actuate in reaction to specific events as they occur119. Recent work has 

used machine-learning techniques to automatically detect the gait cycle using sensors at the 

hip201,202 and ankle203, adapted to different terrains and walking speeds.

The cyclical nature of walking enables the detection of repeated phases; however, gait 

initiation, termination, speed changes or turns can happen at any point during the gait 

cycle and are thus more challenging to detect. Therefore, exoskeletons often rely on 

sensor input to measure intent of movement and to predict the wearer’s motion before it 

occurs, to appropriately adjust assistance. However, detecting intent of movement is distinct 

from activity classification, in which heuristic methods or machine-learning techniques are 

used to identify activities beyond level-ground walking (such as walk-to-run transitions; 

or walking on terrains such as ramps or stairs204,205). Similar to detecting the gait 

phase, the intent of stepping can be detected using IMUs that measure joint angles and 

angular velocities206 and that estimate the centre-of-mass position64. Other motion-sensing 

modalities have also been integrated with lower-extremity exoskeletons to detect the intent 

of movement; for example, surface EMG can be applied to measure muscle activity and 

to administer proportional assistance at the ankle35. Myoelectric control can be further 

extended by integrating intricacies, such as adaptive gains137, and has been shown to be 

feasible in post-stroke gait207 across variable speeds208. However, surface EMG measures 

muscle activation rather than muscle motion, which may limit its ability to predict user 

intention. Alternatively, ultrasound imaging can be applied to sense differences in muscle 

dynamics for the detection of motor intent209. Such real-time estimation of muscle–tendon 

kinematic behaviour could be incorporated in exoskeleton-control schemes210. Although 

more common in upper-extremity exoskeletons, EEG for intent detection has also been 

explored in gait-related applications211. The NeuroRex was the first lower-extremity 

exoskeleton to integrate a brain–machine interface into its control loop, detecting a wearer’s 

motion intention to assist with sit-to-stand65 and walking66.

In functional electrical stimulation (FES), electrical impulses are delivered to a given 

muscle to generate involuntary contraction and to facilitate movement in paralyzed or 

weak limbs212–214. However, such external stimulation saturates muscle activation and can 

rapidly induce muscle fatigue, which increases the metabolic cost of walking compared 

with walking with an exoskeleton215. However, electrical stimulation can be combined 

with mechanical assistance. Although more common in upper-limb exoskeletons, electrical 

stimulation can also be integrated in lower-extremity exoskeletons to create hybrid systems 

for gait assistance216, particularly in people with paraplegia. The Vanderbilt Exoskeleton 

was the first hybrid system for paraplegic individuals. This hip-and-knee joint-coupled 

exoskeleton contains a push-button control to stimulate the quadriceps and to generate hip 

flexion and knee extension62. Kinesis, a knee-ankle-foot exoskeleton, similarly combines 

FES and mechanical assistance to balance the power contribution of the exoskeleton and 

muscle stimulation. Here, the closed-loop control of FES is based on EMG-estimated 

muscle fatigue217. Such hybrid systems are promising for promoting neuroplasticity 

because FES interfaces directly with the neuromuscular system and exoskeletons enable 

high training intensity. Hybrid FES–exoskeleton systems have mainly been explored for 

paraplegic applications thus far but may also benefit populations with more residual 

volitional contribution, such as people post-stroke.
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Actuators

Actuator choice for exoskeletons is targeted towards limiting the distal mass and its costly 

metabolic impact218. Accordingly, actuators have been designed to minimize weight and to 

maximize power. For example, conventional motors can be applied to actuate rigid links and 

to establish sophisticated interfaces between exoskeletons and the body104,219,220. Bowden 

cables, which can transmit forces from a heavy actuator to lighter-weight distal components, 

have been applied in both autonomous117,118,145 and offboard devices77,79,82,85,115. 

Alternatively, McKibben-type pneumatic artificial muscles can distally apply sagittal-plane 

assistance34, with updated versions demonstrating metabolic benefit67,68,138,207. Other 

artificial-muscle technologies have also shown promise for reducing drop foot in people 

post-stroke221. Such soft inflatable actuators have been integrated into research devices 

for lateral ankle support222,223 and in commercial devices for recreational knee-injury 

prevention224. As a semi-active extension of a passive exoskeleton45, a proof-of-concept 

electroadhesive clutch has been designed to actively engage or disengage a spring when 

voltage is applied across a stack of thin electrode sheets225,226. These contrast with 

traditional mechanical clutches, which require a physical latch to engage or disengage a 

spring, requiring much more elaborate mechanisms. Electrostatic clutches could allow for 

the design of passive joint-targeting exoskeletons that adapt to changes in speed, movement 

and the environment.

Simulation of forward dynamics

High-fidelity simulations are an important tool for estimating the metabolic benefit 

of exoskeleton devices. Empirical techniques, such as HIL optimization, can optimize 

assistance in response to real-time measurements. In addition, the simulation of forward 

dynamics can be applied to analytically estimate the impact of exoskeletons, primarily in 

unimpaired users, but also in rehabilitation227. Forward-dynamics simulation can aid in 

the prototyping of new designs or modes of assistance, and in gaining insight into the 

biological mechanisms leading to empirical results. For example, exoskeletons have had 

limited success in lowering the metabolic cost of running; however, a simulation applying 

ideal torque actuators in seven different configurations to a running model228 could confirm 

experimentally observed phenomena, such as a decrease in muscle activation at unassisted 

joints115. A simulation of walking with heavy load suggested, somewhat surprisingly, 

that hip-abduction assistance could lower the metabolic cost of walking more than (the 

well-studied) ankle plantarflexion; however, this result remains to be experimentally 

confirmed153.

Machine learning for patient selection

Machine-learning techniques will allow researchers and clinicians to more efficiently 

identify people who could benefit from wearable devices. Machine learning can be applied 

to identify deficits in individuals and to predict the response to robotic interventions; this 

has been shown in upper-limb exoskeletons and could also be applied to lower-limb devices. 

For example, in upper-limb rehabilitation, an artificial neural network could predict changes 

in clinical scores throughout an 80-day exoskeleton-enabled training period in people post-

stroke229. Similarly, baseline data from individuals with MS have been used to predict 
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changes in clinical measures after 8 weeks of conventional rehabilitation230. A combination 

of movement presentations and demographic data has allowed for the subgrouping of 

patients to identify deficits in individuals231,232 and to find characteristic mechanisms that 

can explain differences between subgroups within a larger clinical population. These data-

driven methods can also distinguish between categories of impairments233, and automated 

subgrouping methods can be applied to recruit representative participants for in-depth 

studies (for example, by using machine learning for patient selection234).

Outlook

Advances in exoskeleton technology at the system and component levels have contributed 

to the design of exoskeletons that are ready for clinical integration. Commercial devices are 

now available for clinical rehabilitation, and Food and Drug Administration (FDA)-approved 

exoskeletons can return walking ability to individuals who otherwise are unable to walk. 

Various research-grade exoskeleton devices have contributed to the understanding of the 

mechanisms by which users can leverage exoskeleton technology. However, clinical and 

commercial acceptance of exoskeletons remains limited; large-scale RCTs have shown 

inconclusive results, causing some clinical guidelines to recommend against the use of 

exoskeletons in gait-training applications for chronic stroke, SCI-i and TBI180. Moreover, 

the vision for recreational exoskeletons to extend walking capacity of unimpaired users 

remains to be fulfilled, and the driving factors for users to choose exoskeletons remain an 

important consideration.

Unimpaired users

Advances in sensing technologies and their integration with wearable devices will help 

reveal biological mechanisms to enable optimized control. For example, ultrasound 

imaging has been used with a soft exosuit to reduce the metabolic cost of walking by 

detecting instantaneous changes in muscle function and by modulating exosuit assistance 

accordingly210. Similar technologies could enable wearable devices to quickly adapt to 

individual wearers or unknown environments. Small body-worn sensors can measure 

muscle–tendon forces in real time in vivo235; if implemented in wearable robots, they 

could offer a metric of user effort and provide insight into how wearable devices can 

offload stress on soft tissue. Lightweight wearable sensors could be combined with 

exoskeletons to adapt body-worn devices to a range of activities, environments and wearers, 

by estimating kinematics during movement, as already demonstrated in the upper extremity 

with a soft sensing shirt236. Indeed, recent work with a joint-targeting autonomous ankle 

exoskeleton used wearable sensors and a data-driven model to predict the metabolic benefit 

of a particular control configuration. Using HIL optimization, exoskeleton assistance was 

adapted as the wearer walked outside the lab237. Real-time inverse-dynamics feedback has 

further been applied to show that healthy adults can accurately target a specified amount 

of ankle power238. Although limited to an instrumented treadmill and not yet suitable 

for autonomous exoskeletons, similar approaches may increase the understanding of how 

exoskeletons, which often augment the production of ankle power, interact with the body. 

Recent work has also used machine-learning techniques to estimate hip moments without 

requiring an instrumented treadmill239.
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In addition to sensing modalities, new approaches to actuation and control can be integrated 

into exoskeletons. Muscle-inspired technologies, such as fibre-based actuators240 and other 

compliant actuators218, would enable soft actuators with an efficiency similar to biological 

actuators. Adding machine-learning techniques on top of more conventional control schemes 

such as adaptive oscillators may allow devices to quickly adapt to changes in walking 

condition241. The availability of more commercial devices will certainly contribute to a 

better understanding of the physiological impact of exoskeletons. Furthermore, accurate 

metabolic-cost estimates have to be implemented as real-time input to exoskeleton-control 

schemes to better prescribe assistance and to maximize individual metabolic-cost reductions. 

Ultimately, long-term investigations will be required to determine the relation of metabolic-

cost reduction to a reduction in injury risk, an increase in wearer performance and an 

improvement in recreational capacity. These are especially important factors because it is 

unclear how sensitive individual wearers are to changes in metabolic cost242. Additional 

work may extend beyond metabolic cost to incorporate user preferences to rapidly adapt 

assistance to particular individuals and walking conditions243.

Patient populations

Multicentre RCTs are informative but are time-consuming and resource-consuming, which 

is not conducive to rapid prototype development244,245. Collaborations between clinicians 

and exoskeleton designers will enable targeted case studies with a small number of selected 

participants to inform biological mechanisms that warrant larger clinical trials and drive 

changes in functional outcomes, to enable the design of optimization algorithms for 

individualized assistance. Understanding disconnects between device function and clinical-

trial goals, and quantifying challenges in clinical implementation will be instrumental in 

directing future studies. Importantly, patients should be included in the design of well-

controlled case studies to understand how the devices can improve engagement in the 

clinical process, for example by following policies established for pharmaceutics246.

Rehabilitation studies with exoskeletons typically have the aim of demonstrating clinical 

efficacy (for example, an increase in walking speed) in a broad patient population, 

which is often divided into ‘responders’ and ‘non-responders’. A thorough understanding 

of the biomechanical and neurological mechanisms contributing to clinical outcomes in 

each subgroup would allow for the grouping of participants before recruitment. For 

example, machine-learning approaches may be applied to help clinicians prescribe a type 

of exoskeleton or a particular mode of assistance that will most probably improve walking 

for an individual user. Industry-wide standards for reproducibility that benchmark device 

comfort and utility will also give clinicians a clearer understanding of what clinical changes 

to expect247–249.

Online optimization methods that can identify optimal assistance profiles in healthy 

individuals78,85,250 may also apply to clinical populations. However, HIL techniques 

typically demand long experiment times, often requiring hours of continuous walking. For 

widespread application in the clinic, efficient automatic tuning algorithms will be needed 

that can tailor exoskeleton assistance to a single user.
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Using kinematics data from an individual’s prior walking sessions with an exoskeleton may 

enable exoskeleton-assistance tuning without online optimization. This strategy has been 

employed for people post-stroke walking with an ankle-assisting wearable robot, where 

their pre-recorded walking data were used to selectively apply either positive or negative 

augmentation power251. However, to define optimal clinical outcomes, more than a single 

biomechanical objective is required. Therefore, appropriate clinical objectives that can be 

measured by devices need to be defined to be able to automatically modulate exoskeleton 

assistance to an individual patient’s goals. Warm-starting HIL algorithms with baseline data 

may enable devices to adapt to exoskeleton users as their gait changes across environments 

or with time. It may also be possible to predict the impact of robotic exoskeleton training 

before completing a full protocol, although such approaches have been validated only in the 

upper limb252. Ideally, the rehabilitation goals set by patients and clinicians will be achieved 

by automatic tuning of wearable-device settings. Individualizing assistance by tailoring 

physical designs to particular wearers through modular systems that can quickly switch from 

one target joint to another has proven encouraging in an early feasibility study253.

In addition to efficient patient selection, the temporal changes in the interaction between 

an individual and an exoskeleton need to be understood to be able to tailor individual 

training regimens. Neuromuscular studies provided insight into how individuals adapt to 

new environments, including the influence of wearable devices on ankle impedance254. 

This knowledge could be integrated in robotic rehabilitation. Studies of upper-limb 

rehabilitation have shown that it may be possible to distinguish between motor learning 

and adaptation to a device. Such data would allow for the interpretation of changes in 

response to training with an exoskeleton to address baseline impairment255. Locomotor-

adaptation studies using the split-belt treadmill have revealed that people post-stroke showed 

improvements in gait symmetry after training with error augmentation in the short-term256, 

which can be extended to long-term retention by increasing training257 and translated 

to overground environments258. Furthermore, learning outcomes may be improved by 

appropriate intervention scheduling259 through intermittent exposure and by increasing 

the variability of training through the introduction of perturbations260,261. Challenging 

the user is also important, and an ‘optimal’ challenge may maximize retention261; for 

example, increasing propulsion demands using inclined split-belt treadmill training improves 

gait symmetry post-adaptation more than flat split-belt treadmill training in people post-

stroke262; also, high-intensity robot-assisted gait training increases walking speed263. 

In addition to implicit learning pathways, rehabilitation schemes often also incorporate 

explicit learning through task-specific instructions or biofeedback, which are known to 

improve learning and rehabilitation outcomes264,265. Further investigating these variables in 

exoskeleton-enabled rehabilitation and long-term exoskeleton use will enable the design and 

development of training regimes that promote neuromotor recovery.

Interaction between clinicians and patients is often limited, with supervised therapy in the 

United States typically ending 6 months after a stroke, despite evidence of the benefits 

of long-term exercise266–268. The American Physical Therapy Association, an advocate 

of telehealth practices, recognizes the potential of expanded access to physical-therapy 

services269. Telehealth practices have been widely used in response to the COVID-19 

pandemic and may continue to be applied. Determining how gait training is administered 
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and monitored outside of the laboratory and the clinic becomes increasingly important270. 

Exoskeletons have the potential to be remote gait-training tools that supplement in-person 

therapy.

Devices designed for remote use could include real-time biometric monitoring of the 

wearer’s response; for example, skin-adhering flexible sensors can measure vital signs271. 

In addition to monitoring wearer safety, such sensor systems may be especially valuable in 

home or community environments for device control; that is, to modulate assistance and to 

encourage more user effort; or for user feedback, for example by providing a summary of 

exertion during walking. Integrating wearable sensors272 into wearable devices will enable 

more individualized and robust exoskeleton control, and improve remote-activity monitoring 

and performance reporting.

Ensuring user safety is a key exoskeleton-design consideration for unsupervised or 

remotely supervised community-based or home-based gait training. Unlike upper-extremity 

training, gait training inherently incurs a fall risk. Importantly, for gait training with a 

powered exoskeleton, wearer instability must be limited in the case of device failure. The 

unsupervised use of exoskeletons requires the design of streamlined devices that can be 

donned and operated by the wearer. Especially at the ankle, designers may wish to introduce 

additional active degrees of freedom to promote natural joint motion without sacrificing 

stability273. Improvements in adaptability and comfort will make future exoskeletons not 

only tools for gait training, but also all-day wear devices that increase the performance 

of everyday walking. To determine the fit and comfort during extended wear, metrics are 

needed that quantify device component fit274, and techniques are required to quantify the 

pressure exerted by exoskeleton attachments275. In addition, the human–machine interface 

needs to be closely monitored, in particular for users with reduced sensation in their 

impaired lower extremities.

Advances in exoskeleton technology will allow the integration of wearable devices in the 

daily lives of patients, clinicians and recreational users. Pioneering work in exoskeleton 

technology revealed how exoskeletons interact with (and modify) the basic physiological 

mechanisms of walking. This physiological understanding has made it possible for wearable 

robotic exoskeletons to reach clinical use. We believe that new component technologies will 

underpin the next decade of wearable robotics, and envision that exoskeletons will become 

an integral part of daily life.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Examples of autonomous exoskeletons.
a, Weight-bearing applications in unimpaired users. b, Joint-targeting applications in 

unimpaired users. c, Weight-bearing applications in clinical populations. d, Joint-targeting 

applications in clinical populations.
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Fig. 2 |. Timeline of exoskeleton design and function.
Key developments in exoskeletons for gait assistance from 2000 to present. Green boxes and 

illustrations denote weight-bearing exoskeletons meant for unimpaired populations, yellow 

denotes weight-bearing exoskeletons for clinical applications, blue denotes joint-targeting 

devices for unimpaired populations, and pink denotes joint-targeting devices for clinical 

populations.
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Fig. 3 |. AF versus metabolic improvement of wearable exoskeletons.
The shapes indicate the condition to which metabolic improvement was compared. The 

dashed grey line is the identity line. Only bilateral exoskeleton and exosuit level-ground 

walking experiments (for which data to calculate AF are available) are compared.

Siviy et al. Page 34

Nat Biomed Eng. Author manuscript; available in PMC 2024 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Siviy et al. Page 35

Ta
b

le
 1

 |

C
lin

ic
al

 tr
ia

ls
 in

 th
e 

pa
st

 7
 y

ea
rs

D
ev

ic
e 

na
m

e
P

op
ul

at
io

n
T

yp
e 

of
 t

ri
al

L
ev

el
 o

f 
ev

id
en

ce
N

St
ud

y 
ty

pe
R

ef
.

W
ei

gh
t-

be
ar

in
g 

de
vi

ce

L
ok

om
at

T
ra

um
at

ic
 b

ra
in

 in
ju

ry
R

C
T

Fo
rm

al
 c

on
tr

ol
 g

ro
up

16
G

ai
t s

pe
ed

a
17

9 

G
T

1
M

ul
tip

le
 s

cl
er

os
is

R
C

T
Fo

rm
al

 c
on

tr
ol

 g
ro

up
32

G
ai

t s
pe

ed
17

7 

L
ok

om
at

C
hr

on
ic

 s
tr

ok
e

R
C

T
Fo

rm
al

 c
on

tr
ol

 g
ro

up
18

G
ai

t s
pe

ed
a

17
5 

L
ok

om
at

M
ul

tip
le

 s
cl

er
os

is
R

C
T

Fo
rm

al
 c

on
tr

ol
 g

ro
up

16
G

ai
t s

pe
ed

a
17

8 

B
io

ni
c 

L
eg

C
hr

on
ic

 s
tr

ok
e

R
C

T
Fo

rm
al

 c
on

tr
ol

 g
ro

up
20

G
ai

t s
pe

ed
17

2 

G
A

R
Su

ba
cu

te
 s

tr
ok

e
R

C
T

Fo
rm

al
 c

on
tr

ol
 g

ro
up

26
G

ai
t s

pe
ed

 a
nd

 in
de

pe
nd

en
ce

a
17

1 

L
ok

om
at

Su
ba

cu
te

 s
tr

ok
e

R
C

T
Fo

rm
al

 c
on

tr
ol

 g
ro

up
28

G
ai

t s
pe

ed
 a

nd
 in

de
pe

nd
en

ce
17

3 

H
A

L
 (

si
ng

le
-l

eg
)

Su
ba

cu
te

 s
tr

ok
e

R
C

T
Fo

rm
al

 c
on

tr
ol

 g
ro

up
32

G
ai

t s
pe

ed
 a

nd
 in

de
pe

nd
en

ce
17

4 

H
A

L
Su

ba
cu

te
 s

tr
ok

e
Sa

fe
ty

 a
nd

 f
ea

si
bi

lit
y

W
ith

in
-s

ub
je

ct
 c

om
pa

ri
so

n
18

G
ai

t i
nd

ep
en

de
nc

e
16

3 

E
ks

o
C

om
pl

et
e 

sp
in

al
-c

or
d 

in
ju

ry
Sa

fe
ty

 a
nd

 f
ea

si
bi

lit
y

W
ith

in
-s

ub
je

ct
 c

om
pa

ri
so

n
8

Sa
fe

ty
 a

nd
 f

ea
si

bi
lit

y 
G

ai
t s

pe
ed

15
8 

E
ks

o
C

om
pl

et
e 

sp
in

al
-c

or
d 

in
ju

ry
Sa

fe
ty

 a
nd

 f
ea

si
bi

lit
y

W
ith

in
-s

ub
je

ct
 c

om
pa

ri
so

n
7

Sa
fe

ty
 a

nd
 f

ea
si

bi
lit

y 
G

ai
t i

nd
ep

en
de

nc
e

15
9 

E
ks

o
C

om
pl

et
e 

sp
in

al
-c

or
d 

in
ju

ry
Sa

fe
ty

 a
nd

 f
ea

si
bi

lit
y

W
ith

in
-s

ub
je

ct
 c

om
pa

ri
so

n
3

G
ai

t s
pe

ed
16

0 

R
ew

al
k

M
ul

tip
le

 s
cl

er
os

is
Sa

fe
ty

 a
nd

 f
ea

si
bi

lit
y

W
ith

in
-s

ub
je

ct
 c

om
pa

ri
so

n
13

Sa
fe

ty
 a

nd
 f

ea
si

bi
lit

y 
N

o 
fu

nc
tio

na
l o

ut
co

m
es

16
2 

E
ks

o
C

om
pl

et
e 

sp
in

al
-c

or
d 

in
ju

ry
E

ar
ly

-s
ta

ge
 p

ilo
t

W
ith

in
-s

ub
je

ct
 c

om
pa

ri
so

n
3

G
ai

t s
pe

ed
 a

nd
 in

de
pe

nd
en

ce
a

16
5 

In
de

go
Sp

in
al

-c
or

d 
in

ju
ry

Sa
fe

ty
 a

nd
 f

ea
si

bi
lit

y
W

ith
in

-s
ub

je
ct

 c
om

pa
ri

so
n

32
Sa

fe
ty

 a
nd

 f
ea

si
bi

lit
y 

G
ai

t i
nd

ep
en

de
nc

e
16

1 

H
2

C
hr

on
ic

 s
tr

ok
e

Sa
fe

ty
 a

nd
 f

ea
si

bi
lit

y
W

ith
in

-s
ub

je
ct

 c
om

pa
ri

so
n

5
G

ai
t s

pe
ed

19
1 

Jo
in

t-
ta

rg
et

in
g 

de
vi

ce

SM
A

C
hr

on
ic

 s
tr

ok
e

R
C

T
Fo

rm
al

 c
on

tr
ol

 g
ro

up
50

G
ai

t s
pe

ed
11

2 

SM
A

C
hr

on
ic

 s
tr

ok
e

R
C

T
Fo

rm
al

 c
on

tr
ol

 g
ro

up
50

G
ai

t s
pe

ed
a

11
3 

R
ob

ot
-a

ss
is

te
d 

A
FO

C
hr

on
ic

 s
tr

ok
e

R
C

T
Fo

rm
al

 c
on

tr
ol

 g
ro

up
20

G
ai

t s
pe

ed
 a

nd
 in

de
pe

nd
en

ce
a

17
6 

R
ew

al
k 

R
es

to
re

C
hr

on
ic

 s
tr

ok
e

Sa
fe

ty
 a

nd
 f

ea
si

bi
lit

y
W

ith
in

-s
ub

je
ct

 c
om

pa
ri

so
n

44
Sa

fe
ty

 a
nd

 f
ea

si
bi

lit
y 

G
ai

t s
pe

ed
12

2 

A
nk

le
B

ot
C

hr
on

ic
 s

tr
ok

e
E

ar
ly

-s
ta

ge
 p

ilo
t

W
ith

in
-s

ub
je

ct
 c

om
pa

ri
so

n
29

G
ai

t s
pe

ed
16

8 

Po
w

er
ed

 a
nk

le
 e

xo
sk

el
et

on
C

er
eb

ra
l p

al
sy

Sa
fe

ty
 a

nd
 f

ea
si

bi
lit

y
W

ith
in

-s
ub

je
ct

 c
om

pa
ri

so
n

5
G

ai
t i

nd
ep

en
de

nc
e

10
9 

Po
w

er
ed

 a
nk

le
 e

xo
sk

el
et

on
C

er
eb

ra
l p

al
sy

E
ar

ly
-s

ta
ge

 p
ilo

t
W

ith
in

-s
ub

je
ct

 c
om

pa
ri

so
n

7
G

ai
t s

pe
ed

11
0 

Nat Biomed Eng. Author manuscript; available in PMC 2024 November 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Siviy et al. Page 36

D
ev

ic
e 

na
m

e
P

op
ul

at
io

n
T

yp
e 

of
 t

ri
al

L
ev

el
 o

f 
ev

id
en

ce
N

St
ud

y 
ty

pe
R

ef
.

R
ew

al
k 

R
es

to
re

C
hr

on
ic

 s
tr

ok
e

E
ar

ly
-s

ta
ge

 p
ilo

t
W

ith
in

-s
ub

je
ct

 c
om

pa
ri

so
n

5
G

ai
t s

pe
ed

 a
nd

 in
de

pe
nd

en
ce

a
16

4 

Fu
nc

tio
na

l o
ut

co
m

es
 in

cl
ud

ed
 c

om
m

on
ly

 r
ep

or
te

d 
m

ea
su

re
s 

of
 g

ai
t s

pe
ed

 (
ty

pi
ca

lly
 b

as
ed

 o
n 

a 
10

-m
-w

al
k 

te
st

) 
an

d 
ga

it 
in

de
pe

nd
en

ce
 (

ba
se

d 
on

 f
un

ct
io

na
l a

m
bu

la
to

ry
 c

la
ss

if
ic

at
io

n 
or

 le
ve

l o
f 

ph
ys

ic
al

 
as

si
st

an
ce

 r
eq

ui
re

d)
. N

, n
um

be
r 

of
 p

ar
tic

ip
an

ts
.

a W
ith

 q
ua

nt
ita

tiv
e 

bi
om

ec
ha

ni
ca

l o
ut

co
m

es
.

Nat Biomed Eng. Author manuscript; available in PMC 2024 November 05.


	Abstract
	Wearable robots
	Weight-bearing exoskeletons
	Joint-targeting devices

	Understanding the wearer’s response
	Reduction of metabolic cost
	In-clinic validation

	Component technology
	Control
	Actuators
	Simulation of forward dynamics
	Machine learning for patient selection

	Outlook
	Unimpaired users
	Patient populations

	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Table 1 |

