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Abstract 

Objective  To conduct a systematic review of the computer vision applications that detect, diagnose, or analyse 
tuberculosis (TB) pathology or bacilli using digitised human lung tissue images either through automatic or semi-
automatic methods. We categorised the computer vision platform into four technologies: image processing, object/
pattern recognition, computer graphics, and deep learning. In this paper, the focus is on image processing and deep 
learning (DL) applications for either 2D or 3D digitised human lung tissue images. This review is useful for establish-
ing a common practice in TB analysis using human lung tissue as well as identifying opportunities for further research 
in this space. The review brings attention to the state-of-art techniques for detecting TB, with emphasis on the chal-
lenges and limitations of the current techniques. The ultimate goal is to promote the development of more effi-
cient and accurate algorithms for the detection or analysis of TB, and raise awareness about the importance of early 
detection.

Design  We searched five databases and Google Scholar for articles published between January 2017 and December 
2022 that focus on Mycobacterium tuberculosis detection, or tuberculosis pathology using digitised human lung tissue 
images. Details regarding design, image processing and computer-aided techniques, deep learning models, and data-
sets were collected and summarised. Discussions, analysis, and comparisons of state-of-the-art methods are provided 
to help guide future research. Further, a brief update on the relevant techniques and their performance is provided.

Results  Several studies have been conducted to develop automated and AI-assisted methods for diagnosing 
Mtb and TB pathology from digitised human lung tissue images. Some studies presented a completely automated 
method of diagnosis, while other studies developed AI-assisted diagnostic methods. Low-level focus areas included 
the development of a novel µ CT scanner for soft tissue image contract, and use of multiresolution computed 
tomography to analyse the 3D structure of the human lung. High-level focus areas included the investigation 
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the effects of aging on the number and size of small airways in the lungs using CT and whole lung high-resolution µ
CT, and the 3D microanatomy characterisation of human tuberculosis lung using µ CT in conjunction with histology 
and immunohistochemistry. Additionally, a novel method for acquiring high-resolution 3D images of human lung 
structure and topology is also presented.

Conclusion  The literature indicates that post 1950s, TB was predominantly studied using animal models even 
though no animal model reflects the full spectrum of human pulmonary TB disease and does not reproducibly 
transmit Mtb infection to other animals (Hunter, 2011). This explains why there are very few studies that used human 
lung tissue for detection or analysis of Mtb. Nonetheless, we found 10 studies that used human tissues (predominately 
lung) of which five studies proposed machine learning (ML) models for the detection of bacilli and the other five used 
CT on human lung tissue scanned ex-vivo.

Keywords  Human lung tissue, Tuberculosis, Image analysis, Deep learning

Introduction
Tuberculosis (TB) is an infectious disease that has been 
known for thousands of years and is caused by Mycobac-
terium tuberculosis (Mtb), which primarily affects human 
lungs and was first identified by Robert Koch in 1882 [3, 
7]. The bacteria mainly attack the alveoli and surround-
ing tissue, causing inflammation and damage to the 
lung tissue. The susceptibility of humans to TB can be 
traced back 9,000 years ago as per the findings from the 
archaeological remains in the ancient city of Atlit Yam, 
off the coast of Israel [3]. For more than a century, his-
topathological analysis depended almost entirely on two-
dimensional (2D) plane for investigation and diagnosis of 
TB [13]. “One would think that the pathology of tubercu-
losis would have been accurately described long ago and 
that science in the 21st century would have advanced far 
beyond morphologic descriptions” [11], but such is not 
the case. Despite considerable effort, we understand lit-
tle about what distinguishes individuals who progress to 
active TB from those who remain latent for decades [12]. 
According to the World Health Organization (WHO), 
Mtb is responsible for over 1.30 million deaths globally 
[31].

The human lung is a complex organ located in the tho-
racic cavity that plays a vital role in respiration and gas 
exchange. The lung is composed of various structural 
components, including the trachea, bronchi, bronchioles, 
and alveoli [17]. The trachea is the main airway that con-
nects the mouth and nose to the lungs, while the bronchi 
and bronchioles branch from the trachea and transport 
air to the alveoli [13, 17]. The alveoli are the site of gas 
exchange within the lungs, where oxygen is taken up by 
the bloodstream, and carbon dioxide is released from 
the body. The alveoli are lined with epithelial cells and 
surrounded by a network of blood vessels, enabling effi-
cient gas exchange [7]. Understanding the anatomy of the 
lung is essential for the diagnosis and treatment of TB 
[10], as it enables clinicians to identify the site of infec-
tion and assess the extent of lung damage. Additionally, 

pathological analysis of lung tissues can provide valuable 
information about the progress of Mtb infection and help 
guide treatment decisions. Refer to Fig.  1 for graphical 
presentation of TB transmission.

In the early 2000s, the explosion of multimedia use 
over the internet saw computer vision growing from the 
research area to a widely accepted technology with the 
possibility to improve the standards of living and drasti-
cally increase productivity [2]. Not long after its initial 
breakthrough was achieved by [15], with their AlexNet 
Network, computer vision began making its way into our 
daily lives. Computer Vision is a study of enabling com-
puters to understand and interpret visual information 
from static images and video sequences [2]. In computer 
vision, the majority of tasks relate to the process of pro-
curing information for event and feature extraction. The 
problem-solving methods used in computer vision are 
dependent on the nature of the data to be analysed and 
the application domain. At the core of computer vision 
is image processing - a method to perform operations on 
an image, to get an enhanced image, or to extract use-
ful information from it. It is a type of signal processing 
in which the input is an image, and the output may be 
an image or characteristics/features associated with that 
image [32]. Essentially, image processing consists of the 
following: 1) importing an image using an image acquisi-
tion tool; 2) analysing and manipulating the image; and 3) 
an output in which the result can be an altered image or 
report, based on the analysed image [36]. Image process-
ing has been in used in medical research since the early 
1970s, when image analysis techniques were developed 
to assist in the diagnosis of medical conditions [6]. Over 
the years, advances in technology and computing power 
have led to the development of increasingly sophisticated 
image processing techniques [1].

One early application of image processing in medi-
cal research was the development of tomography, which 
uses X-rays to create 3D images of the body [1]. This 
technique was first introduced in the early 1970s and has 
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since become a standard tool in medical imaging [6]. In 
the 1980s and 1990s, the advent of digital imaging and 
the development of computer algorithms for image anal-
ysis led to further advancements in medical image pro-
cessing [6, 27]. Computer-aided diagnosis (CAD) systems 
were developed to assist in the interpretation of medical 
images [36]). These systems use algorithms to analyse 
large volumes of data and identify patterns that may be 
indicative of disease. In recent years, machine learning 
algorithms have become increasingly popular in medi-
cal image processing, allowing researchers to analyse 
large datasets and identify complex patterns that may 
be missed by traditional image analysis techniques [6, 
36]. Deep learning algorithms have shown great promise 
in medical research, with applications in areas such as 
tumour detection, diagnosis, and treatment [24]. Overall, 
image processing has become an essential tool in medi-
cal research, providing researchers with powerful tools to 
assist in the diagnosis, treatment, and management of a 
wide range of medical conditions. As technology contin-
ues to advance, it is expected that image processing will 
continue to play an increasingly important role in medi-
cal research and healthcare [24, 36].

Deep learning (DL) is an example of the machine learn-
ing paradigm of feature learning [18, 24]. Iteratively, it 
improves upon learned representations of the underlying 

data with the goal of maximally attaining class separabil-
ity [4, 18]. Deep learning has had a tremendous impact 
on various fields of technology in the last few years and 
recent advances helped identify, classify, and quantify 
patterns in medical images [5]. Before deep learning, 
there were several other machine learning technologies 
that were utilised for various tasks. One of the earliest 
and most widely used technologies was decision trees 
[4, 20], which involve splitting data into partitions bases 
on certain conditions [20]. Another technology that pre-
ceded DL was artificial neural networks (ANNs), which 
were first theorised in the 1940s and later realised in the 
1960s [16]. ANNs are like DL in that they involve layers of 
nodes, but they typically have far fewer layers than deep 
neural networks [16, 38]. Other computer vision technol-
ogies that preceded or led to DL include support vector 
machines (SVMs), which are particularly useful for clas-
sification problems [21], and nearest neighbours (KNN), 
which involve finding the most similar data points to a 
given input [21, 25]. Boosting and bagging algorithms 
are also widely used techniques that have been employed 
for a variety of tasks [9]. While these technologies are 
still widely used today, DL has quickly become the domi-
nant approach for many tasks due to its ability to handle 
large amounts of complex and unstructured data [24, 
26]. Numerous review papers have been published on 

Fig. 1  Description of TB transmission
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computer vision and related techniques. However, pub-
lished reviews go out-of-date. Hence, writing an updated 
review on computer vision is important for highlight-
ing contemporary research directions and state of the 
art techniques, that can inform well-contextualised and 
effective future research in this space.

Methods and materials
This section introduces rules, methods and search crite-
ria used to retrieve relevant materials for the study. To 
summarise the article selection process and results, we 
followed the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) reporting stand-
ard which is a systematic review protocol that describes 
the rationale, hypothesis, and planned methods of the 
review [19]. PRISMA primarily focuses on the reporting 
of reviews evaluating the effects of interventions but can 
also be used as a basis for reporting systematic reviews 
with objectives other than evaluating interventions [19]. 
We explored various terms used in the literature to 
understand the trend in using computer vision applica-
tions in medical imaging. Our primary focus was on pub-
lications on digitised human lung tissue for the detection 
and/or analysis of Mtb or TB pathology, then on the stud-
ies of human lung imaged ex-vivo.

In search for the most relevant papers, we first con-
sidered the domains, which are “automatic detection of 
tuberculosis from microscopic tissue images” and “the 
analysis of digitised human lung tissue images to detect 
features of tuberculosis”. The following database plat-
forms were used to retrieve articles - ACM digital link, 
Elsevier (Engineering Village), IEEE Xplore, PubMed, and 

Springer Link. To further search for relevant studies for 
this review, we used sensitive search strategy. The follow-
ing combination of keywords and search sentences were 
used, “tuberculosis + image processing + human lung tis-
sue”, “tuberculosis + deep learning + human lung tissue”, 
“tuberculosis + microscopic images + human lung tissue”, 
“analysis and detection of tuberculosis from microscopic 
images”, “image processing techniques for tuberculosis 
analysis or detection”. The first author retrieved the lit-
erature and extracted relevant papers peculiar to the 
domains. To settle on the most relevant papers, the sec-
ond and third authors double-checked the selections.

Year of publication and title of all retrieved articles 
were captured into an Excel spreadsheet where dupli-
cated titles were identified and removed. For each data-
base used to retrieve the articles, two sets of folders were 
created; unrelated abstracts were identified and moved 
to the secondary folder of the respective database. Pub-
lications on computer-aided, image processing, and deep 
learning techniques proposed for automated or semi-
automated detection or analysis of TB using digitised 
human lung tissue images, and those on ex-vivo imaging 
of human lung tissue were considered. Articles on similar 
techniques implemented on different image modalities 
such as in-vivo Chest X-ray, Chest CT and MRI or digit-
ised image of sputum smear were excluded. A total of 165 
articles were retrieved, and 21 were found to be dupli-
cates due to the various searches that we performed from 
different databases. Thus, the total number of retrieved 
articles was brought down to 144. After careful consid-
eration, a total of 10 articles were selected for this review 
(Fig. 2 provides the breakdown). It important to note that 

Fig. 2  Database based distribution of this review paper
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the low number of publications is due to the lack of TB or 
lung studies conducted using human lung tissue.

The selected papers were segregated into two catego-
ries based on digitised microscopic images of human 
lung tissue, and images from ex-vivo CT/micro-CT scan 
of human lung tissue. Two reviewers independently 
extracted data using a standard form on Microsoft Excel - 
one spreadsheet for articles that used microscopic images 
and the other for CT/ µ CT imaging. The following infor-
mation was extracted from these articles: year of publi-
cation, geo-location, source of funding, study design, 
method of generating digital images, segmentation and 
classification techniques, computer-aided models or 
development, dataset used, model performance and vali-
dation, sample preparation and mounting, limitations 
and risk of bias, research gaps, and outcomes.

Research questions
The main objectives of this review are addressed through 
the following research questions: (1) What types of image 
processing techniques are necessary to detect or ana-
lyse Mtb or TB pathology on digitised human lung tissue 
images? (2) What types of deep learning models are used 
in the detection and/or analysis of Mtb or TB pathology 
from digitised human lung tissue images? (3) What image 

datasets are available in the study of Mtb or TB pathology 
using digitise human lung tissue images? (4) What is the 
current state of Mtb detection accuracy and TB pathol-
ogy analysis on digitise human lung tissue images?

Results
Study selection
As depicted in Fig. 3, a total of 165 articles were retrieved 
from various databases; of which 144 remained after de-
duplication, and 10 articles were included after full text 
assessment, of which 5 used digitised images of histol-
ogy slides of human tissue (predominantly lung), and the 
remaining 5 articles used images from human lung CT 
scanned ex-vivo.

Of the 10 selected articles for this review, 5 used com-
puter vision architectures to assist in reducing the time 
it takes Pathologists to diagnose TB and improve detec-
tion or diagnostic accuracy by developing automated or 
semi-automated models as either an aid to the Patholo-
gist or a standalone diagnostic system. Two of the five 
articles were published in 2022 and were conducted in 
Romania and Japan, while the remaining three were pub-
lished in 2018, 2020 and 2021 respectively from China, 
United States of America (USA), and the Republic of 
South Africa (RSA). The remaining five studies analysed 

Fig. 3  Article selection flow diagram [19]
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human lung structures using CT images generated from 
the ex-vivo scan of human lung samples. Two of the stud-
ies were conducted in RSA and Belgium and published 
in 2021. The other three were conducted in United King-
dom (UK), Canada, and France and were respectively 
published in 2019, 2020 and 2022. Yang et  al. [35] con-
ducted a retrospective study and, [29] conducted a cross-
sectional study while the others did not stipulate which 
study design was followed.

Summary of studies
This subsection briefly introduces the 10 articles that 
were reviewed, highlighting their focus areas and 
reported results. Subsequent sections will build on this 
introduction by firstly presenting the observed common 
themes among the studies ranging from methods used 
to generate digitized images to metrics used for per-
formance evaluation, then highlighting the unexplored 
research gaps.

The paper by [22] presents an artificial intelligence (AI) 
based approach for the screening and detection of myco-
bacteria in whole-slide images of human tissue samples. 
The authors used a deep learning algorithm to classify 
tissue samples as mycobacterial or non-mycobacterial. 
The algorithm was trained on a dataset of 3,096 tissue 
samples, achieving an accuracy of 96.4%. The authors fur-
ther evaluated the algorithm on an additional dataset of 
795 tissue samples, achieving an accuracy of 86.2%. Xian 
et  al. [33] paper presents a novel approach to the auto-
matic detection of MTB using AI. The authors propose 
a deep learning model for MTB detection that involves 
a combination of convolutional neural network (CNN) 
and long short-term memory (LSTM) networks. The 
model achieved an accuracy of 94.62%. The paper by 
[35] proposes a CNN-based active learning framework 
for the identification of mycobacteria in digitalised ZN-
stained human tissue samples. The framework combines 
the strengths of CNN-based deep learning with active 
learning, which involves selecting informative sam-
ples for annotation to improve model performance. The 
framework was evaluated and achieved a mean aver-
age precision (mAP) of up to 96.41%. The paper also 
includes a comparison of the proposed approach with 
other machine learning-based methods for mycobacte-
rial detection. Zurac et  al. [39] present a new AI-based 
method for identifying Mtb in ZN-stained human tissue 
samples. The authors developed a convolutional neural 
network model that was trained on a dataset of 1,880 ZN-
stained tissue samples, achieving an accuracy of 96.3%. 
The paper by [37] presents a deep-learning detection 
approach for the identification of mycobacteria in human 
pathology specimens, which the authors show to be more 
sensitive in early diagnosis of PTB when compared with 

standard bacteriology tests. The model was trained and 
validated using a dataset of 1,123 pathology specimens 
from patients with suspected PTB, achieving a sensitivity 
of 94% and a specificity of 92%. Furthermore, the results 
of the deep learning aided detection method were com-
pared with bacteriology tests in a real-world clinical set-
ting, demonstrating that the deep-learning approach was 
significantly more sensitive in early detection of PTB.

Xian et  al. [33] presented a multiscale X-ray phase 
contrast tomography dataset of a whole human left 
lung, which they acquired using the X-ray microscopy 
beamline of the Canadian Light Source synchrotron. 
The dataset contains high-resolution images of both the 
microvasculature and the alveolar structure of the lung, 
enabling investigations into the lungs’ respiratory func-
tion and diseases such as chronic obstructive pulmonary 
disease (COPD) and lung cancer. The authors described 
the techniques used to acquire and process the data, as 
well as the features of the dataset that make it useful for 
researchers in the field. They also provided examples of 
how the dataset could be used for lung imaging stud-
ies, such as generating 3D reconstructions of the lung’s 
architecture and analysing the distribution of the air 
spaces and blood vessels. Overall, the dataset provides a 
valuable resource for investigating human lung structure 
and function at a range of scales. Wells et  al. [30] used 
µ CT to analyse the granulomas (masses of immune cells) 
that form in human lung tissue because of Mtb infection. 
The authors noted that previous research on TB granu-
lomas has primarily used two-dimensional (2D) imaging 
techniques, which may not accurately represent the 3D 
structure and heterogeneity of the granulomas. Using µ
CT, the authors were able to generate high-resolution, 3D 
reconstructions of the granulomas in lung tissue samples 
from human TB patients. They found that the granulo-
mas varied significantly in size, shape, and overall mor-
phology, with some containing dense clusters of immune 
cells while others contained large area of necrotic tissue. 
Furthermore, the authors observed that the granulo-
mas showed evidence of reorganization over time, with 
changes in size and shape occurring even within a single 
sample.

In their publication, [14] describe a new imaging tech-
nique that combines two types of X-rays to create highly 
detailed 3D images of biological tissue samples, enabling 
researchers to study the structure of tissues in unprec-
edented detail. This approach, called X-ray micro-com-
puted 3D X-ray histology ( µ CT histology), uses one of 
the X-ray to create a 3D map of the tissue’s microstruc-
ture and another type to highlight specific features, such 
as blood vessels or bone. On the other hand, [28] describe 
a study that investigated the effects of aging on the num-
ber and size of small airways in the lungs. The authors 
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examined unused donor lungs from individuals across a 
range of ages and used multiple imaging and analytical 
techniques to characterise the lungs and assess the num-
ber and size of small airways. They found that the num-
ber of small airways decreased with increasing age, with 
a more rapid decline after the age of 65. The authors also 
found that the effect of small airways decreasing in size 
with age was more pronounced in female compared to 
male donors. Lastly, [8] describe a study that used mul-
tiresolution CT to assess the 3D structure of the human 
lung. The researchers used a series of images processing 
techniques and stereological methods to analyse the lung 
structure at different levels of resolution, from the whole 
lung down to the individual alveoli. The authors found 
that the lung structure varied greatly between individu-
als, and that there were significant differences between 
healthy lungs and those affected by emphysema.

Methods of generating digitised images
Samples collection
All tissue specimens from the five studies on machine 
learning methods were fixed, paraffin-embedded, sec-
tioned, and stained by acid-fast stain following the stand-
ard protocol. Some were surgical pathology samples and 

others were cytology cell block or autopsy samples. As 
summarised on Table  1, a total of 246 cases were col-
lected from the Department of Pathology, Peking Univer-
sity First Hospital [34]. Yang et al. [35] used 167 samples 
collected by bronchoscopy from the Pathology depart-
ment files at Cedars-Sinai Medical Center [35]. Pan-
tanowitz et  al. [22] used 556 whole slide images (WSIs) 
collected from the University of Pittsburgh Medical 
Center (archival cases from 2016 to 2019), and the Wan 
Fang Hospital, Taipei Medical University - Taiwan, while 
[37] collected samples from 2 autopsy cases of pulmonary 
TB, and 40 biopsy cases of undetected acid-fast bacilli 
(AFB) for training and validation, and 510 WSIs of ZN-
stained slides (110 positive and 400 negative) from the 
2010 to 2022 archival cases of the Department of Pathol-
ogy of Colentina University Hospital were used by [39].

The remaining five studies scanned human lung tissue 
ex-vivo using CT and/or µ CT scans (refer to Table  2). 
Xian et  al. [33] imaged ex-vivo an entire human left 
lung from a 94-year-old woman using the fourth-gener-
ation synchrotron source at the European Synchrotron 
Radiation Facility, while [30] analysed lung specimens 
obtained from 17 patients who underwent either a lobec-
tomy or pneumonectomy procedure for the removal of 

Table 1  Studies of automated detection of AFB on ZN-stains on human tissue

* Data not available

Studies on Tissue Xiong et al. Yang et al. Pantanowitz et al. Zaizen et al. Zurac et al.

Year 2018 2020 2021 2022 2022

Total Cases 246 167 556 84 570

Training Set (WSIs) Pos. 30 6 47 2 110

Neg. 15 27 371 40 400

Test Set (WSIs) 201 134 138 42 60

Patches Pos. 96,530 18,246 5678 506 263,000

Neg. 2,510,307 18,246 1,111,918 * 700,000,000

Pixels 32 x 32 256 x 256 32 x 32 * 64 x 64

Table 2  Studies on ex-vivo imaging of human lung tissue

* Data not available

Studies Katsamenis et al. Dragos et al. Verleden et al. Wells et al. Xian et al.

Year 2019 2020 2021 2021 2022

Specimen 2 biopsies 13 lungs 32 lungs 17 samples 1 left lung

Source Surgical Explanted lung specimens 
from organ donors

Explanted lung specimens from organ 
donors

Surgical PM

Patients Age * 25-77 yrs 16-83 yrs * 94 yrs

Fixation FFPE Inflated with air - 30 cm Inflated with water - 30cm pressure 10% formalin 4% formalin and inflated 
with water - 30cm 
pressure

Contrasting * Frozen in liquid nitrogen - 1h Frozen in liquid nitrogen Iodine - 2.5% 
Lugol’s solu-
tion

Absorption contrast
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irreversible damaged lobes or lungs; and the other two 
studies collected non-transplantable lungs from organ 
donors [8, 28]. Verleden et  al. [28] collected 32 lungs 
from patients aged between 16 - 83 years from the Uni-
versity Hospital Leuven, while [8] used 13 donor lungs 
(age range 25 - 27 years) consisting of 3 left and 10 right 
lungs from individuals with no evidence of respiratory 
disease. These lungs were collected through the Univer-
sity of Pennylvania (n = 7), University of Michigan (n = 
3), and Katholieke Universiteit Leuven (n = 3). The last 
study used two human lung tissue samples - one control 
sample from a macroscopically normal lung and a diag-
nostic surgical lung biopsy sample that was confirmed to 
have a typical interstitial pneumonia pattern by two inde-
pendent pulmonary pathologists [14].

Samples preparation and mounting
Different methods and techniques were used in sample 
preparation and mounting for the selected studies on 
human lung specimens. Samples from two studies [28, 
33] were inflated using water pressure, while another 
study [8] inflated the samples with air at a specific pres-
sure and froze them rapidly. The explanted lungs from 
[14] specimens were cooled, banged, and transported 
while inflated on ice, and then frozen at a constant pres-
sure; and the ones from [30] were fixed in formalin and 
contrast stained with iodine. In the study from [33], a for-
malin solution was instilled into the sample through the 
trachea and maintained the inflated configuration by lig-
aturing the trachea. The specimens were then immersed 
in formalin solution and subsequently dehydrated with 
ethanol. The use ethanol provided contrast for soft tis-
sues due to its lower density compared to water.

Furthermore, different methods were used for mount-
ing the samples. One study [14] used acrylic polymer cyl-
inders and polyethylene foam, another used falcon tubes 
and floral foam [30], and another used a PET jar with 
agar powder to secure the specimen [33]. The mounting 
procedures involved degassing the agar-ethanol mix-
ture to minimize the appearance of microbubbles [33]. 
In some cases, cryo-stages were used to prevent sample 
shrinkage [8, 28].

Imaging and segmentation
Slides from [34] study were scanned using KF-Pro-005 
Digital Section Scanner (Ningbo Jiangfeng Bio-informa-
tion Technology Co., Ltd., Ningbo, China). Zaizen et al. 
[37], used Motic EasyScan (Motic, Hong Kong, China). 
Different versions of the Aperio scanner (Leica Biosys-
tems) were used on 3 studies: [35] used the AT version to 
digitalise 14 slides into WSIs, [22] used the AT2 version 
in addition to Hamamatsu Nanozoomer XR, and [39] 
used GT450 in addition to a manual method consisting 

of a Microvisioneer mounted with a camera Basler Ace 
3.2MP and a Sony IMX265 Sensor. Different custom 
computer vision architectures were used in these stud-
ies, coupled with several image augmentation techniques. 
With exception of the [22] study, image augmentation 
techniques such as rotation, position shifting, mirror-
ing, saturation, contrasts, etc. [27], were applied on the 
WSIs of the other 4 studies, which eventually increased 
the set of positive patches (patches with bacilli). These 
patches were mostly separated in three groups for: train-
ing, analytical validation, and testing. To label the bacilli 
in the positive patches, [34] used the ASAP software, [37] 
made use of HALO software, and a web-based applica-
tion (aetherSlide) was used by [22], while [35] and [39] 
did not explicitly state which platform was used for patch 
labelling in their respective studies. Detailed number of 
patches are depicted on Table 1.

All X-ray imaging experiments from [33] study were 
carried out at the European Synchrotron Radiation Facil-
ity (ESRF) bending magnet beamline BM05. Without 
any additional X-ray optics, the produced polychromatic 
synchrotron beam passed through a set of filters, then 
directly used for imaging. An adjustable visible-light 
imaging optics effectively controlled the voxel size. Wells 
et  al. [30] scanned the samples over 360o with a vary-
ing voltage between 8 and 160 kV, current of 180 - 400 
mA, and scanning time ranged from 2,700 to 3,000 sec-
onds using a General Electric Phoenix v|tome|xL240 sys-
tem for µ CT imaging (2,024 X 2,024-pixel image, 16-bit 
depth) with a resolution range of 12.0-80.0 mm. Verleden 
et al. [28] on the other hand used two different scanners 
for imaging - a high resolution µ CT scanner (Skyscan 
1172, Bruker; Kontich, Belgium) was used for the frozen 
samples at -30oC (0.5 rotation step, 3 frames per rota-
tion). The scanner was operated at 40 kV and 226 µ A. 
The other six frozen, inflated right lungs surrounded by 
dry ice were scanned using an in-house developed µ CT 
system HECTOR operated at 150 µ m voxel size, 80 kV 
voltage, and target current of 208 µA.

To determine the total volume of the specimens, one 
study used CT imaging on frozen human lung samples 
[8]. The CT parameters used were 120 kV, 250 mA, and 
a 1-second exposure time [8]. For the imaging of frozen 
systematic Uniform Random (SUR) samples, a µ CT scan-
ner with parameters including 40kV, 350 uA, molybde-
num target, 500-ms exposure time, and a gain of 32 dB 
was employed [8]. Image registration was performed 
using a custom program developed in MATLAB, aligning 
the ex-vivo specimen CT scan with photographs of the 
cut specimen slices. To minimize interference from the 
cassette, another study carefully removed the FFPE lung 
tissue blocks from the histology cassettes [14]. A µ CT 
imaging was then conducted with parameters including a 
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molybdenum target, an accelerated voltage of 55 peak kV, 
and no X-ray prefiltration [14]. The filament current was 
set at 125 mA, and the source-to-object and source-to-
detector distances were adjusted to 42.1 mm and 992.0 
mm, respectively, resulting in an isotropic voxel size of 
8.48 mm. A total of 3501 projections were collected over 
a 360-degree angular range, and four frames were aver-
aged per projection to enhance the signal-to-noise ratio.

Reconstruction and analysis of 3D images
As specified by [29, 33], the data processing of X-ray pro-
jections involve three main stages: pre-reconstruction, 
reconstruction and post-reconstruction. Further, the ring 
artifacts from the detectors are addresses through two 
correction steps: prior to reconstruction, the mean of the 
projections is subtracted from them to eliminate rings 
with constant intensity, and after reconstruction residual 
inhomogeneous intensity rings are removed using a polar 
transform combined with a linear motion blurring filter 
as described in [33]. The resulting volumes are then con-
verted to a 16-bit format and later further binned to cre-
ate datasets, as mentioned in [1]. Table 3 summarises the 
tools used in ex-vivo imaging.

Studies [28, 30] used the Bruker Nrecon software 
for scan reconstruction, with [28] specifying version 
1.7.4.2. In addition to Nrecon, [28] employed the Octo-
pus Reconstruction (XRE) for 3D volume reconstruction 
with voxel size of 150 µ m. The CT datasets from [28] 
were loaded into ITK-SNAP for semi-automated 3D air-
way segmentation. This study also used NEURON studio 
to detect and classify airways from the segmented 3D air-
way model. They also used the VIDA vision software to 
analyse CT images, assessing emphysema and central air-
ways up to the tenth generation. Furthermore, [28] used 
the Bruker CTAns software version 1.18 to determine tis-
sue volume and surface density.

Following micro-CT acquisition, [14] reconstructed the 
data into 32-bit raw volume files using Nikon’s CT recon-
struction software (CTPro version V5.1.6054.18526). 
They imported the reconstructed raw data volumes 
into Fiji/ImageJ software and applied a 3D median filter 
and a 2D unsharp mask to enhance image quality. The 
resulting 16-bit CT volumes were calibrated against a 
custom-made contrast phantom containing standard his-
tology-grade paraffin wax. Grey values corresponding to 
air and wax were identified in both the sample and the 
phantom. Although [7] did not specify their reconstruc-
tion methods, they did provide information about the 
parameters used, including calculations of total lung and 
parenchymal volumes based on semi-automatic image 
segmentation, excluding the main stem bronchus and 
surrounding connective tissue.

Computer‑aided models (development)
The study from [34] developed a convolutional neural 
network (CNN) model called the TB-AI using a 45 whole 
slide images (WSIs) training set of which 30 were posi-
tive and 15 were negative, and a further 201 WSIs (108 
positive and 93 negative) for testing. The digital WSIs 
were subdivided into patches measuring 32 x 32 pixels. 
The patches utilised for both the training and testing of 
the algorithm. The model examined these patches and 
marked them as “positive” when the probability score 
exceeded 0.5. If at least one patch in a WSI was labeled 
as “positive”, the entire WSI was categorised as such. This 
approach, described in [34], is entirely automated and 
doesn’t involve human examination for classifying WSIs.

In 2020, [35] introduced an AI-assisted diagnostic 
method that combines a CNN model (Inception-V3) 
for patch-based classification and a Logistic Regression 
model for the overall WSI classification. Patches of 256 
x 256 pixels were extracted from WSIs and used to train 

Table 3  Tools used on ex-vivo Imaging of human lung tissue studies

*Data not provided

Studies Year Mounting Scanner used Reconstruction Segmentation Classification and 
Analysis

Katsamenis et al. 2019 Thin-walled stack-
able acrylic polymer 
cylinders and stabilized 
with polyethylene foam

Molybdenum target CT Pro; Nikon Fiji/ImageJ (ver. 1.51n) Amira ver. 6.1.1

Dragos et al. 2020 Cryomicro-CT stage XT H 225ST; Nikon * * *

Verleden et al. 2021 Cryo-stage Skyscan 1172 and HEC-
TOR

Bruker Nrecon (Ver. 
1.7.4.2) and Octopus 
Reconstruction

ITK-SNAP (ver. 3.7.0) NEURON Studio, VIDA 
Vision, and Bruker CTAns

Wells et al. 2021 50 ml falcon tubes 
with floral foam

General Electric Phoe-
nix v|tome|xL240

Bruker Nrecon * *

Xian et al. 2022 Agar power 
and the polyethylene 
terephthalate (PET) jar

European Syn-
chrontron Radiation 
Facility (ESRF)

PyHST2 * *
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the CNN model to detect AFB. Subsequently, a semi-
supervised active learning framework was employed 
to retrain the model using additional patches from 19 
negative WSIs. The retrained CNN model then classi-
fied patches as “positives” or “negative” from a set of 134 
WSIs (46 positive and 88 negative). The results of the 
CNN classification were used by the LR model to clas-
sify the entire slide as either “positive” or “negative.” The 
model generated a score heat map indicating the likeli-
hood of AFB, superimposed onto the WSI. Pathologists 
would then examine the regions within this heat map to 
confirm the WSI’s positivity.

Using two deep CNN models, [22] developed an algo-
rithm to screen for mycobacteria within digitised tissue 
section on slides. This dual-model approach aimed to 
filter out false-positive predictions, with the first model 
prioritising sensitivity and the second focusing on speci-
ficity. The study from [22], developped an AI-Assisted 
screening method that presented a gallery of patches 
along with their corresponding probability scores and the 
full WSI, allowing for an in-context evaluation of suspi-
cious patches. A web-based application called “aether-
Slide” was employed to annonate WSIs and generate 
training patches. The authors of [37], developed an algo-
rithm for AFB detection in tissue sections using a pre-
trained HALO AI CNN, referred to as an AI-supported 
diagnosing method. Each patch identified as potentially 
positive by the algorithm underwent evaluation by a con-
sensus of six pathologists.

Incorporating a considerably larger dataset, [39] devel-
oped an AI-based automated method of identifying 
mycobacteria in digitised tissue images using the Deep 
Neural Network (DNN) model. This model was devel-
oped by customising the RegNetX4 architecture, a Deep 
CNN known for its performance, simplicity, and speed 
[23]. This AI-assisted diagnostic method, akin to [22]’s 
platform design, presented a list of patches ordered by 
their probability scores, albeit with a larger dataset and 
an active learning approach that enhanced performance 
metrics, particularly for challenging cases.

Model performance and validation
The CNN model presented in the study by [34] under-
went two rounds of testing. During the first evaluation, 
instances identified as false positives and false negatives 
by human evaluator were subjected to re-assessment 
by two pathologists. In this initial test, seven cases were 
initially overlooked by the human evaluator, while six 
cases were deemed unsuitable due to poor scan quality. 
When compared against the double-confirmed diagnosis 
by Pathologists, TB-AI model demonstrated an impres-
sive sensitivity of 97.94%, and specificity of 83.65%. The 
models from [35], as discussed in the same paper, were 

subjected to validation using a distinct set of patches and 
achieved F1 scores of 99.03% and 98.75%. Furthermore, 
at the WSI level, the performance metrics for their pipe-
line were - 87.13% for sensitivity, 87.62% for specificity, 
and a F1 of 80.18%.

For the [22] model, clinical validation was carried out 
on 138 slides. This validation process involved blind eval-
uations conducted by two pathologists with varying levels 
of expertise. It encompassed classical microscopic slide 
examination, evaluation of the WSIs, and AI-assisted 
assessments. The model’s performance was reflected in 
an accuracy of 84.6%, sensitivity of 64.8%, and a speci-
ficity of 95.1%. In the case of the [37] method, a clinical 
test involved 42 cases, encompassing patients diagnosed 
with mycobacteriosis via bacteriological tests from 
bronchoscopy material or those who developed myco-
bacteriosis during follow-up. This method achieved per-
formance metrics of 86% sensitivity and 100% specificity. 
In the [22] method, the Pathologists evaluated a gallery 
of patches in reverse order of their probability scores in 
relation to the WSI. In contrast, the [35] method involved 
pathologists assessing a score heatmap overlaid on the 
WSI, facilitating the evaluation of suspicious areas within 
the context of specific histopathological lesions. How-
ever, [37] did not provide a precise description of how the 
Pathologist utilised the platform for diagnosis; instead, 
they mentioned that each potentially positive patch was 
examined by six Pathologists. Another study by [39] 
involved testing their model with 60 ZN slides and subse-
quent internal validation on a dataset of 286,000 patches. 
Their AI-assisted diagnosis model achieved an accuracy 
of 98.33%, a sensitivity of 95.65%, and specificity of 100%. 
For detailed statistical measures of the models’ perfor-
mance on whole slide images, please refer to Table 4.

Limitations and risk of bias
All the studies included in this review have limitations. 
First a limited number of human lung tissue specimens 
were examined from patients with different medical his-
tories and/or treatments. This also prevented the cor-
rection for multiple testing and analysis of differences in 
lung structure between - for instance men and women 
[33]. Second, the results from studies that focuses on 
diseased - TB patients [30] and pneumonia [14] may not 
represent a moderate manifestation of the disease. Third, 
studies that used specimens from organ donors could 
not know for sure whether the donors had a normal lung 
function because the baseline spirometry and occupa-
tional exposure was not provided due to the anonymity 
of organ donation [8, 28]. Despite the many advantages 
of µ CT for detailed assessment of the lung anatomy, 
it still cannot be performed in-vivo [8, 28, 30]. while 
the XPCT technique used in the study by [33] provides 
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high-resolution images, it is also associated with radia-
tion exposure, which remains a concern, particularly in 
longitudinal studies; and the dataset used is not accom-
panied by clinical metadata.

Regarding the AI model by [34], it achieved excel-
lent sensitivity in identifying most bacilli but relatively 
low specificity, leading to a substantial number of false-
positive results. Common machine learning practices 
prohibit using the test dataset twice to maintain model 
objectivity. However, [34] retested the dataset after iden-
tifying label errors in the first run. Some of the limita-
tions of ther study include the relatively small number 
of cases in the dataset, which may limit color variability 
representation in the input space. Furthemore, patholo-
gists must verify samples labeled as “positive” by TB-AI 
and review those labeled “negative” to ensure the digital 
slides meet quality standards. In [35]’s model, the genera-
tion of a score heat map overlaid on WSIs guided pathol-
ogists in analysing probable positive patched. However, 
the model’s low specificity of 87.62% indicates a high 
number of patches falsefy labeled as negative, necessitat-
ing pathologists to examina a large number of patches 
suggested as positive. Consequently, the time and effort 
required to analyse the results might surpass that of clas-
sical microscopic examination. additionally, the dataset’s 
diversity is limited. An ideal dataset should encompass 
slides or WSIs from diverse geographical locations [37, 
39]. The main limitations of [39]’s study pertain to the 
dataset’s dimensions and diversity, as well as the meth-
odology of clinical testing, which involved the research-
ers who developed the model in the validation process. 
To address these limitations, it is imperative to validate 
the algorithm using pathologists from entirely independ-
ent institutions across numerous countries, involving an 
international patient cohort.

The AI-supported pathology from [37] has proven to 
be more sensitive than bacteriological tests for detecting 
AFB in samples collected through bronchoscopy. How-
ever, this was not achieved without limitations; such that 
the study used WSI produced by a single scanner only 
and deep learning in one model, only autopsy cases of 
TB were used as AFB positive training data, and another 

potential limitation is that the proposed approach may 
detect other acid-fast bacilli species that are not Myco-
bacterium tuberculosis, potentially leading to false posi-
tives (approximately 200-500 false positives for every true 
positive). Furthermore, the proposed approaches [34, 35, 
37] rely on the quality of the input pathology specimens. 
If the specimens are of poor quality or have artifacts due 
to poor staining, they may produce unreliable results.

Research gaps
None of the studies on the WSIs explicitly identify 
any research gap; however, it is possible to infer a few 
potential research gaps based on the limitations and 
future research directions discussed in these papers. For 
instance, [22] mentioned that the algorithm’s perfor-
mance may be impacted by the quality of tissue samples 
or the presence of artifacts. Therefore, future research 
may focus on developing techniques to improve the qual-
ity of digital images for analysis or to handle the presence 
of artifacts better. [39] acknowledged that the proposed 
approach was designed to detect only acid-fast bacilli 
and may, therefore, miss the detection of non-acid-fast 
organisms. Further research may explore the feasibility of 
developing an AI-based approach that can detect a range 
of organisms, potentially using a combination of stain-
ing techniques. [35] mentioned that the accuracy of their 
method may be impacted by the quality of the stained 
samples; thus, future research may focus on developing 
techniques to improve the quality of digital images for 
analysis which could potentially improve the accuracy of 
the proposed methods.

The dataset used to train the algorithms may not be 
comprehensive or was relatively small [22, 34, 35], was 
obtained from a single institution or source [37, 39], 
limiting the generalisability and transferability [35] 
of the proposed approach. Therefore, future research 
may focus on increasing the size and diversity of the 
dataset to improve the performance and the exter-
nal validity of the proposed methods; and evaluating 
their performance on different datasets or in different 
healthcare settings. Additionally, [37] acknowledged 
that the proposed approach had limitations identifying 

Table 4  Statistical measures of the models’ performance on whole slide images

*Data not provided

Studies Year Sensitivity % Specificity % Precision Accuracy % F1

Xiong et al. 2018 97.94 83.65 * * *

Yang et al. 2020 87.13 87.62 * 87 *

Pantanowitz et al. 2021 64.8 95.1 * 84.6 *

Zaizen et al. 2022 86 100 * * *

Zurac et al. 2022 95.65 100 1 98.33 0.9778
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extrapulmonary TB, which may require further 
research to address. Zaizen et  al. [37], and [34] also 
did not compare their proposed approaches with other 
existing AI-based TB diagnosis or detection methods, 
which could help determine the relative advantage of 
the proposed approach with current options. Zurac 
et al. [39], and [37] did not explicitly discuss how their 
proposed approaches could be integrated into clinical 
workflows or evaluate its potential impact on clinical 
decision-making. Thus, future research may investigate 
the practical implementation and clinical efficacy of the 
proposed approach and analyse the cost-effectiveness 
of such implementation. Pantanowitz et al. [22] did not 
explore the use of the proposed approach in immuno-
suppressed patients, who may have a greater incidence 
of tuberculosis. Therefore, future research could evalu-
ate the potential of the proposed approach in popula-
tions with a higher risk of tuberculosis.

Although the study by [30] sheds new light on the com-
plex 3D morphology of TB granulomas, the following 
gaps still remained - (1) the study was limited to post-
mortem samples which may not fully reflect the com-
plexity and diversity of Mtb infection in humans, (2) the 
study also had a relatively small sample of TB patients; 
further studies are needed to confirm the findings and 
assess their generalisability to other TB cases, (3) the 
researchers did not investigate the impact of different 
factors such as age, gender, or co-infections, on the 3D 
morphology of TB granulomas. Future studies could 
explore these associations. (4) The study focused on pul-
monary TB, studies investigating the 3D morphology of 
granulomas in extrapulmonary TB cases are also needed. 
The study by [14] does not specifically address any 
research gap. However, it should be noted that one of the 
main limitations of the traditional histology techniques 
is that they are limited to examining thin slices of tissue, 
which can be time-consuming and may miss important 
structural features. µ CT histology offers a promising new 
approach to overcome these limitations and to provide 
more detailed and accurate 3D imaging of tissues. While 
the technique has been shown to be effective in several 
applications, further research will be needed to fully eval-
uate its potential and to optimise its use of specific tissue 
types and research questions. The study by [28] is limited 
in its cross-sectional nature and the use of donor lungs, 
which may not fully reflect the aging process in non-dis-
eased lungs. The authors recommend future longitudinal 
studies in healthy individuals to clarify the relationship 
between small airway loss and lung aging. Overall, this 
study highlights the need for continued research to bet-
ter understand the effects of aging on the lung and to 
develop effective interventions to prevent and treat age-
related lung diseases like COPD.

The study by [8] did not explicitly identify any research 
gaps either, as it was focused on presenting the findings of 
a comprehensive stereological assessment of the human 
lung using multiresolution computed tomography. How-
ever, some potential research gaps could be identified 
from the study’s findings could include: (1) future inves-
tigation of the relationship between lung structure and 
lung function in both healthy lungs and lungs affected by 
disease. (2) characterization of the changes in lung struc-
ture that occur over time in response to environmental 
exposures or therapeutic interventions. (3) Exploration 
of the potential of multiresolution computed tomography 
to monitor lung health and disease progression in clinical 
settings. Furthermore, [8] recommend that future stud-
ies of chronic lung diseases should build on the detailed 
stereological measurements of the alveoli, ducts, and 
parenchyma as reported in their study. This, they believe, 
will be crucial in trying to determine the exact changes in 
tissue pathology and microscopic lesions that cannot be 
detected by clinical CT. While the study by [33] provides 
a rich and valuable dataset that can facilitate research in 
lung biology and disease, there are still some research 
gaps: (1) the dataset is from only one left lung, and thus 
may not be generalised to all lungs. Future studies should 
include more populations to explore inter-individual 
variability, (2) the authors do not provide any clinical 
applications of the data, such as the identification on 
pathological features of the lung disease or identification 
of biomarkers for diagnosis or predicting disease pro-
gression, (3) the presented analysis did not utilise image 
analysis techniques like deep learning for automatic fea-
ture identification, where additional structures or fea-
tures could potentially be explored. These gaps highlight 
the need for further research to complement these stud-
ies and further understand lung biology and disease.

Discussion
Overall, the study by [33] presents a novel method for 
acquiring high-resolution 3D images of human lung 
structure and topology, which can benefit research in 
lung biology and disease. The findings from the study 
by [30] suggest that the heterogeneity of TB granulomas 
may have important implications for the progression and 
treatment of Mtb infection and highlight the potential 
value of 3D imaging techniques such as µ CT in the study 
of infectious diseases. Their findings, [30], open new ave-
nues for research on TB morphology but further studies 
are needed to address the stipulated research gaps and 
to deepen our understanding of TB granulomas and the 
development of novel treatment approaches. The tech-
nique presented by [14] offers a powerful tool for under-
standing the complex structure of biological tissues and 
for studying the effects of diseases or therapies on tissue 
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structure, while the findings from [28] study highlight the 
importance of better understanding the mechanisms of 
age-related lung disease and potential targets for inter-
vention. The study by [28] further suggests that small air-
way loss contributes to the physiological aging of the lung 
and may contribute to age-related lung disease such as 
COPD; while the study by [8] provides a comprehensive 
framework for understanding the complex and intricate 
structure of the human lung and may lead to new insights 
into lung disease and their treatment.

The proposed machine learning methods have sig-
nificant potential for use in clinical diagnosis and man-
agement of TB, as they provide a fast, accurate [22, 34], 
and efficient [35, 39] means of screening and detecting 
mycobacteria in digitised human tissue samples, ena-
bling early detection and treatment initiation. The pro-
posed approach by [37] has the potential to improve the 
sensitivity and specificity of PTB diagnosis and has sig-
nificant implications for public health initiatives aimed at 
preventing the spread of TB. The approach by [39] may 
also have applications in the detection of other infectious 
agents, making it a versatile tool for digital pathology. 
Despite the possibility of recall bias caused by the 7-days 
minimum washout period used between review methods 
during the clinical validation, the study by [22], reported 
a successful development and clinical validation of an AI-
based digital pathology system to screen for AFBs in ana-
tomical pathology material. It is evident that for most (if 
not all) of these studies, the authors developed their own 
image dataset using the pathological material at their dis-
posal. Hence is highly important for future research to 
focus on developing standard sample preparation docu-
ments and datasets of digitised human lung tissue images 
from different parts of the world. Such benchmark repos-
itories will enable object comparative research on com-
putational methods that enhance automated TB analysis 
and diagnosis. The findings of this study indicate that 3D 
structural lung tissue details are useful for analysing both 
the severity and progression of TB. It is therefore recom-
mended that where possible such datasets prioritise 3D 
representations, patient age information, and repeated 
samples from the same patient over time.

In response to the research questions: (1) it is evident 
that the use of a combination of image processing tech-
niques such as pre-processing techniques, segmentation 
techniques, feature extraction techniques, and classifica-
tion techniques is critical in achieving accurate detection 
and analysis of Mtb or TB pathology on digitised human 
lung tissue images; (2) several types of deep learning 
models such as convolutional neural network (CNNs), 
recurrent neural networks (RNNs), and transfer learning 
have been used for the detection and analysis of Mtb or 
TB pathology from digitised human lung tissue images. 

However, the choice of model depends on the specific 
task and the available data. (3) Several image datasets 
are available for studying Mtb or TB pathology, but most 
of these datasets contain either digitised chest X-rays 
or images of digitised images of ZN-stained sputum 
smear slides. However, it is important to note that each 
dataset has its own characteristics and limitations, and 
researchers should carefully consider the dataset that is 
most appropriate for their specific research question and 
application. Hence, the authors of the selected studies 
each built their own dataset. Lastly, (3) the current state 
of Mtb detection accuracy and TB pathology analysis on 
digitised human lung tissue images varies depending on 
the specific task, dataset, and evaluation metric used. 
However, overall, there has been significant progress in 
the development of image processing and machine learn-
ing algorithms for the detection and analysis of Mtb and 
TB pathology from digitised human lung tissue images.

Conclusion
A number of studies have reported high accuracy in the 
detection of Mtb in ZN-stained human tissue slides using 
image processing and machine learning methods. sen-
sitivity and specificity of 95.65% and 100% respectively 
have been reported using a deep learning model [39]. 
Overall, the studies in this review suggest that significant 
progress has been made in the development of image 
processing and machine learning algorithms for the 
detection and analysis of Mtb infection and TB pathology 
from digitised human lung tissue images. However, there 
are still challenges in developing accurate methods that 
can be widely applied in clinical practice.

To advance the field of computer-aided methods in 
diagnosing Mtb infection and TB pathology, a multi-
faceted approach is essential. First and foremost, there 
is a pressing need for studies that address the identified 
research gaps comprehensively. These studies should 
encompass diverse populations, including those with var-
ying disease securities, demographic characteristics, and 
geographical locations. By capturing a broad spectrum 
of data, researchers can develop algorithms that are not 
only accurate but also robust and applicable across dif-
ferent clinical scenarios. Standardization of methodolo-
gies represents another crucial aspect to consider. While 
innovation drives progress, standardization ensures con-
sistency and comparability across studies. Establishing 
common protocols for data acquisition, image process-
ing, and algorithm validation can facilitate the replication 
and validation of findings.

In addition to standardization, interdisciplinary col-
laboration is vital for advancing the field. Collaboration 
between computer scientists, clinicians, pathologists, 
and imaging experts can enrich the research process by 
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integrating diverse perspectives and expertise. By lev-
eraging the collective knowledge of multidisciplinary 
teams, researchers can develop more holistic and clini-
cally relevant solutions. Furthermore, interdisciplinary 
collaboration promotes the translation of research find-
ings into practical applications, bridging the gap between 
scientific discovery and clinical practice. Longitudinal 
studies are also crucial for understanding disease pro-
gression and treatment response over time. By tracking 
patients’ imaging data and clinical outcomes longitudi-
nally, researchers can elucidate the dynamic nature of 
Mtb infection and TB pathology. Lastly, investment 
in education and training is essential to cultivate the 
next generation of researchers in the field. By providing 
resources and opportunities for training in medical imag-
ing, machine learning, and clinical research methodolo-
gies, we can empower researchers to tackle the complex 
challenges of diagnosing Mtb infection and TB pathol-
ogy. Moreover, fostering a culture of collaboration, trans-
parency, and open science encourages knowledge sharing 
and accelerates progress towards improved diagnostic 
methods and patient care.
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