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Abstract 

This comprehensive review provides insights and suggested strategies for the analysis of germline variants using 
second- and third-generation sequencing technologies (SGS and TGS). It addresses the critical stages of data process-
ing, starting from alignment and preprocessing to quality control, variant calling, and the removal of artifacts. The 
document emphasized the importance of meticulous data handling, highlighting advanced methodologies for anno-
tating variants and identifying structural variations and methylated DNA sites. Special attention is given to the inspec-
tion of problematic variants, a step that is crucial for ensuring the accuracy of the analysis, particularly in clinical 
settings where genetic diagnostics can inform patient care. Additionally, the document covers the use of various 
bioinformatics tools and software that enhance the precision and reliability of these analyses. It outlines best prac-
tices for the annotation of variants, including considerations for problematic genetic alterations such as those 
in the human leukocyte antigen region, runs of homozygosity, and mitochondrial DNA alterations. The document 
also explores the complexities associated with identifying structural variants and copy number variations, under-
scoring the challenges posed by these large-scale genomic alterations. The objective is to offer a comprehensive 
framework for researchers and clinicians, ensuring that genetic analyses conducted with SGS and TGS are both accu-
rate and reproducible. By following these best practices, the document aims to increase the diagnostic accuracy 
for hereditary diseases, facilitating early diagnosis, prevention, and personalized treatment strategies. This review 
serves as a valuable resource for both novices and experts in the field, providing insights into the latest advancements 
and methodologies in genetic analysis. It also aims to encourage the adoption of these practices in diverse research 
and clinical contexts, promoting consistency and reliability across studies. 
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Introduction
Over the last 20  years, sequencing advances have sig-
nificantly surpassed traditional Sanger sequencing meth-
ods, ushering in the era of "next- or second-generation 
sequencing" (SGS), which allows for the simultaneous 
sequencing of millions to billions of short sequences in 
parallel. However, rapid technological innovations are 
already bringing us into the third era of sequencing, 
where long-read technologies enable the sequencing of 
very cryptic genomic regions.

The analysis of germline variants via SGS or third-
generation sequencing (TGS) represents a crucial field 
in human genetics and molecular medicine. These vari-
ants can significantly impact diagnosis and susceptibility 
to hereditary diseases and influence responses to medi-
cal treatments. Therefore, their accurate identification 
is essential for early diagnosis, prevention, and manage-
ment of genetic diseases, particularly rare ones.

SGS and TGS have revolutionized the ability to detect 
and characterize germline variants effectively at the 
genome level. SGS enables the parallel reading of mil-
lions of DNA fragments, allowing for high coverage and 
precise data generation. Furthermore, TGS, such as the 
PacBio system and Nanopore technologies, now offers 
the possibility of real-time reading of much longer DNA 
fragments, providing more comprehensive information 
on gene structure and variants.

However, the analysis of germline variants using these 
technologies requires rigorous adherence to guidelines 
and best practices to ensure reliable results. This includes 
careful preparation of the sample, the sequencing process 
itself, and the subsequent data analysis stages. Errors in 
variant calling can have severe consequences, leading to 
incorrect diagnoses or inadequate therapeutic decisions.

This document describes and discusses the various 
processes applied to high-throughput sequencing data 
analysis with the intent of providing key best practices 
for germline variant analysis via SGS and TGS. It also 
describes different genome-wide approaches to evalu-
ate methylated DNA (DNAm) levels. The focus is exclu-
sively on germline variations, as the characterization of 
somatic variations is beyond the scope of this review. 
For those seeking to deepen their understanding of the 
clinical application of SGS technologies, we recommend 
referring to the comprehensive guidelines developed by 
EuroGentest and the European Society of Human Genet-
ics [1]. These guidelines offer essential insights into the 
implementation, validation, and accreditation of SGS in 
clinical laboratories. The document provides practical 
recommendations, including quality assurance measures 
and a structured framework for integrating NGS into 
diagnostic workflows, ensuring accuracy, reliability, and 
standardization across laboratories.

Aim
The main objective is to review the various analytical 
tools used in the different stages of computational data 
analysis obtained from SGS and TGS, with a focus on 
the genome-wide calling of small and large germline 
variants, as well as those not commonly considered, 
such as human leukocyte antigen (HLA) genotypes, 
runs of homozygosity (ROH), and mitochondrial DNA 
(mtDNA) alterations. Targeted and comprehensive 
genomic methods for the identification of DNAm sites 
will also be explored, with a specific focus on the diag-
nosis and research of genetic diseases.

This document is intended for a diverse audience 
ranging from beginners in the field to experts inter-
ested in delving into innovative topics such as third-
generation data analysis and less-studied alterations 
related to HLA, ROH, mtDNA, and DNAm. The intent 
is to provide interesting and stimulating insights that 
can attract attention and encourage further exploration.

Methodology
The recommendations presented in this document 
are based on a comprehensive review of relevant lit-
erature, including peer-reviewed original articles, 
review articles, guidelines, comparative studies, case 
reports, methodological articles, as well as perspective 
and opinion papers. Priority was giving to the analy-
sis of original articles, review articles, guidelines, and 
comparative studies. Grey literature, manufacturers’ 
datasheets, and personal communications were not 
included. Abstracts from recent meetings (2022–2024) 
were also considered. Documents were selected based 
on their relevance to SGS, TGS and genome-wide 
methylation applications, as well as their reliability and 
significance in both clinical and research settings. Key 
information was extracted from these sources to inform 
the recommendations and strategies outlined in this 
document.

Second‑generation sequencing
The evolution of computational analyses has had a 
revolutionary impact on the application of SGS in the 
diagnosis and research of rare genetic diseases. These 
techniques have significantly improved the ability to 
detect, characterize, and interpret genetic variants, 
transforming how rare diseases are studied and diag-
nosed. Before the advent of SGS and related compu-
tational developments, identifying the genetic basis of 
rare diseases was a long, costly, and often unsuccess-
ful process. However, with SGS, it is now possible to 
sequence entire genomes or exomes rapidly and afford-
ably, generating an enormous amount of data.
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Computational analyses play a critical role in pro-
cessing these data, from aligning sequences to the 
reference genome to variant calling and annotation 
and interpretation. Advanced software and dedicated 
algorithms enable effective artifact filtering, identifica-
tion of pathogenic variants, and identification of asso-
ciations with specific genetic conditions, increasing the 
speed, accuracy, and accessibility of the diagnosis of 
rare diseases. These techniques have also opened new 
frontiers in research, facilitating the discovery of previ-
ously unknown genes associated with rare diseases and 
unveiling the molecular mechanisms underlying these 
conditions.

Overview of different SGS platforms
Several companies have developed different technologies 
with unique strengths. Illumina, Element Biosciences, 
Ultima Genomics, ThermoFisher (Ion Torrent) and 
MGI represent distinct approaches with varying tech-
nologies and applications. Illumina, the market leader, 
uses sequencing by synthesis, offering high accuracy 
with shorter read lengths and broad applications, par-
ticularly in clinical and research genomics. Platforms 
like NovaSeq provide supports whole genome sequenc-
ing (WGS) of humans, plants, and animals [2]. Element 
Biosciences’ Aviti platform also employs sequencing by 
synthesis but focuses on reducing sequencing costs while 
maintaining comparable accuracy to Illumina. Studies 
show that Aviti can generate cleaner data with fewer false 
positives than Illumina’s systems [3]. Ultima Genomics is 
a newer, disruptive platform focused on ultra-low-cost 
sequencing, aiming to reduce the cost of WGS to $100. 
However, the specifics of its novel approach are propri-
etary and still undergoing broader adoption. Ion Torrent 
is a SGS platform that uses a unique technology called 
semiconductor sequencing. Unlike other platforms, Ion 
Torrent directly detects hydrogen ions (protons) released 
during nucleotide incorporation. This process allows for 
real-time, label-free sequencing, making the Ion Torrent 
system faster and less expensive compared to some other 
platforms. genomic filed [2]. Finally, MGI (a subsidiary of 
BGI) uses DNBSEQ technology, offering DNA nanoball-
based sequencing that is known for high accuracy and 
low costs, comparable to Illumina but with unique fea-
tures like reduced duplication rates [4]. A study demon-
strated that the sequencing throughput and turnaround 
time, single-base quality, read quality, and variant calling 
were similar to Illumina HiSeq2500 data [5].

Alignment and preprocessing
This section focuses on the importance of correct 
alignment and preprocessing of data in the SGS field, 
especially in the context of mendelian diseases. These 

preliminary stages are fundamental to ensuring that the 
sequencing data analysis is accurate and meaningful. 
Through alignment, sequenced DNA fragments are cor-
rectly positioned on the reference genomic sequence of 
the studied organism, allowing for the identification of 
relevant genetic variations. Preprocessing, on the other 
hand, involves cleaning and normalizing the data to 
remove artifacts and experimental biases, thus improving 
the quality and reliability of the results.

Quality control
Illumina sequencing involves transforming original fluo-
rescence signals into "reads" (short nucleotide sequences 
obtained from the sequencing process) during the base-
calling phase. Reads are saved in text files in a standard 
format called FASTQ (.fq or  .fastq). Each read is repre-
sented by the nucleotide sequence of the DNA fragment 
from which it derives and by the quality values of each 
nucleotide (reported in the Phred logarithmic scale as the 
probability of a reading error).

Quality control (QC) and preprocessing of FASTQ files 
are essential to ensure the reliability of downstream anal-
yses, such as variant calling. Typically, QC involves the 
following:

1. Recognizing and removing any sequencing adapters;
2. Recognizing and removing any reads containing 

undetermined nucleotides ("N") for More than 10% 
of their length;

3. Recognizing and removing any reads containing low-
quality nucleotides (usually  QPHRED < 5 for more than 
50% of their length).

The  QPHRED (Phred quality) score is a metric used in 
SGS to estimate the quality of base calls. It reflects the 
likelihood that a base is incorrectly identified.

The score is calculated using a logarithmic scale, where 
a  QPHRED scores of 20 and 30 indicate a 1% and 0.1% 
probability of erroneous base call. Indeed, the higher the 
score, the higher the accuracy of the base call. Achiev-
ing Q40 significantly benefits applications requiring high 
precision, such as clinical diagnostics, rare variant detec-
tion, and large-scale population genomics, where even 
minor inaccuracies could lead to significant errors in data 
interpretation.

In accordance with the most commonly used 
approaches, different software is required for each opera-
tion, such as initial quality control, adapter trimming, 
quality filtering, and final quality control. The most 
widely used software for quality control and the concur-
rent collection of descriptive metrics on FASTQ files is 
FastQC [6], which also includes a graphical interface. For 
adapter trimming and low-quality read removal, the most 
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commonly used tools are Cutadapt and Trimmomatic [7, 
8].

As the number of sequenced samples, sequenc-
ing yields, and read lengths increase, these multistep 
approaches are becoming less applicable because they 
require continuous user verification and numerous steps 
of reading/writing files, making this phase slow and 
inefficient. Recently, programs such as AfterQC[9] and 
fastp[10] have been developed to integrate all neces-
sary steps into a single analysis. Among these, fastp has 
become one of the most widely used programs in the 
quality control phase because of its rapid execution.

Reference genome
The alignment phase (detailed in the next section) 
requires the sequencing reads and the reference genomic 
sequence of the studied organism. The reference genome 
of an organism (reference assembly) is represented by 
consensus sequences assembled (called contigs) to repro-
duce the sequences of various chromosomes as faithfully 
as possible (some chromosomal regions are difficult to 
assemble or locate).

Although the Homo sapiens genome is the best charac-
terized and best known, many efforts are still being made 
to obtain a complete (gap-free) version that can represent 
the genetic diversity of different human populations. For 
humans and other model organisms, reference assem-
blies are curated and released by the Genome Reference 
Consortium (GRC).

Currently, the most widely used versions of the human 
reference genome are hg19 (GRCh37, 2009) and hg38 
(GRCh38, 2013). Additionally, the recent publication of 
new assemblies by the Telomere-to-Telomere Consor-
tium (T2T, January 2022) and the Human Pangenome 
Reference Consortium is noteworthy. Primary versions 
of the assemblies, therefore, report the sequences of the 
canonical chromosomes (1–22, X, Y for humans), the 
mitochondrial chromosome, and various unplaced and/
or unlocalized contigs.

An uncareful choice of the reference assembly version 
will impact the results of downstream phases; therefore, 
its selection must be considered in advance on the basis 
of the study purposes. For example, including alterna-
tive haplotypes of hypervariable regions, such as the 
major histocompatibility complex (MHC) locus or the 
pseudoautosomal regions of chromosome Y, may result 
in the loss of unique mapping for some genes and thus 
reduce variant identification sensitivity. On the other 
hand, including unplaced and unlocalized contigs pre-
vents erroneous mapping of reads originating from these 
genomic regions and avoids many false-positive calls.

The general recommendation is to use the so-called 
primary versions of the assemblies (see above), unless a 

specific study objective requires the use of an extended 
or more reduced version [11]. After the files contain-
ing the reference genome sequences are downloaded (in 
FASTA format), indexing is essential. This step is critical 
in optimizing and accelerating the reading of the genome 
sequence via alignment software. Importantly, each 
alignment software requires the index file to be in a spe-
cific format. The indexing phase is necessary only once, 
unless a different reference assembly is selected or the 
mapping software is changed.

Moreover, the choice of the reference genome ver-
sion has implications for subsequent variant annotation 
phases. Indeed, variants must be annotated using data-
bases developed from the same reference genome version 
to ensure consistency and accuracy in the interpretation 
of the results.

Stages of alignment
SGS produces many short reads (100–200 bases) for 
each whole-exome sequencing (WES) experiment, 
often reaching tens of millions. These reads are stored 
in FASTQ files. Alignment (or mapping) is the process 
by which the sequence of each read is compared to the 
reference genome of the studied organism. The main 
goal is to identify the precise genomic region (including 
the chromosome, start, and end positions) from which 
each read originates. During this comparison, every mis-
match between the reads and reference sequence is also 
recorded.

The results of these alignments are commonly stored 
in BAM (.bam) files, which have become the standard for 
managing, storing, manipulating, and sharing alignment 
data. This type of file is also the starting point for various 
downstream analyses, including variant calling, which 
can involve single nucleotide variants (SNVs), copy num-
ber variants (CNVs), or structural variants (SVs).

In general, immediately after the alignment phase, the 
BAM file undergoes several processing steps, including 
the following:

• Sorting: Aligned reads are ordered on the basis of 
their genomic coordinates, facilitating subsequent 
analyses and improving data access efficiency.

• Marking PCR duplicates: Redundant reads derived 
from the same DNA molecule are identified and 
marked. These duplicate reads are generally excluded 
from downstream analyses to prevent data distortion.

• Indexing: An index file (.bai format) is created, 
allowing rapid and efficient programmatic access to 
the BAM file. This index file is crucial for numerous 
tools used in subsequent phases, such as variant call-
ing, postalignment quality control, and alignment 
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visualization, through software such as the Integra-
tive Genomics Viewer (IGV) [12].

GATK [13], one of the most widely used software pro-
grams for variant calling, recommends two additional 
preprocessing steps for BAM files before proceeding 
with variant calling [13]. The first step is the recalibra-
tion of the original base quality scores calculated from 
the primary sequencing data (BQSR—base quality score 
recalibration), whereas the second step involves local 
realignment around insertions and deletions (InDels) 
to minimize false-positive variants caused by alignment 
artifacts. Although these procedures can lead to improve-
ments, the benefits are often marginal and associated 
with significant computational burdens [14]. Therefore, 
implementing these two additional steps in the analysis 
can be considered optional [15].

Before performing downstream analyses, it is crucial 
to conduct quality control of the processed BAM files 
to evaluate essential metrics that ensure the reliability of 
the results. Sequencing-related metrics include the per-
centage of PCR duplicates, read coverage over sequenced 
regions, average sequencing depth, and percentage of 
sequenced regions covered by a minimum number of 
reads, such as 10 or 20, depending on specific depth and 
coverage requirements. Other important alignment-
derived indicators include the percentage of mapped 
reads, uniquely mapped reads, and reads mapped at 
high-quality levels.

Alignment tools
Alignments can represent a bottleneck in SGS analyses 
because of the ever-increasing volume of sequencing data 
and the time required for processing. Therefore, the con-
tinuous development of new mapping tools often seeks 
to balance accuracy and speed. An exhaustive compari-
son of the most recent alignment software was carried 
out by Donato et al. [16].

Many programs for SGS data alignment (DNA-Seq in 
this case) are open source (freely licensed). Among these, 
the most widely used software programs are BWA (and 
specifically its algorithm BWA-Mem) and Bowtie2 [17, 
18]. Owing to its high accuracy and execution speed, 
BWA-Mem is currently the most widely used alignment 
software for SGS data. Notably, recent developments in 
the BWA-Mem2 program have produced identical results 
in half the execution time, and BWA-Meme, which fur-
ther reduces the execution time compared with BWA-
Mem2, still delivers identical results [19, 20].

Post‑alignment manipulation and quality control tools
SAMtools software is typically the preferred tool for 
processing raw BAM files [21]. This software includes 

functions for sorting, marking PCR duplicates, and 
indexing BAM files. The same software can be used to 
collect descriptive metrics useful for quality control of 
the final BAM. Numerous programs have been developed 
for BAM file manipulation and quality control. Among 
these tools are Picard tools (broadinstitute.github.io/pic-
ard) and GATK [13].

Recently developed Biobambam2  [22] can integrate 
sorting, marking PCR duplicates, and indexing into a sin-
gle step, significantly accelerating the creation of the final 
BAM ready for subsequent analyses.

Key points summary
SGS has revolutionized the diagnosis and the study of 
rare genetic diseases by enabling the discovery of causa-
tive variants through rapid and affordable genome or 
exome sequencing. The improvements of SGS platforms 
and their technologies are enhancing the sequencing 
accuracy and yields while reducing costs. Computational 
tools play a critical role in analyzing this enormous data, 
improving the detection and interpretation of genetic 
variants. Proper alignment and preprocessing, includ-
ing quality control and the use of reference genomes, 
are essential for reliable analysis. Tools like BWA-Mem, 
FastQC, and SAMtools play key roles in ensuring data 
accuracy, while preprocessing steps like duplicate mark-
ing and recalibration enhance variant detection. Con-
tinuous improvements in alignment and quality control 
tools help streamline the growing complexity of sequenc-
ing data analysis.

SNV/InDel variant calling
Variant calling is a fundamental step in SGS analysis and 
is crucial for identifying genetic variations compared 
with the reference genome. This process is particularly 
relevant in biomedical research and clinical diagnos-
tics, especially in the diagnosis of rare genetic diseases. 
Genetic variants are typically classified into three main 
categories: SNVs, small InDels (typically defined as 
2–50  bp), and larger structural variants (SVs, typically 
defined as > 1  kb). This section focuses on the calling of 
germline SNVs and InDels.

Analysis stages
The input for variant calling programs is typically a BAM 
file resulting from mapping, possibly processed through 
duplicate marking and base quality recalibration. Variant 
calling is performed via a probabilistic model to distin-
guish between experimental reading errors and true dif-
ferences from the reference genome. This phase is usually 
followed by a filtering stage aimed at reducing the num-
ber of false positives. Various methods exist for filter-
ing variants, ranging from predefined quality parameter 
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thresholds to applying machine learning methods. The 
standard output format is the Variant Call Format (VCF) 
or genomic VCF (GVCF). Both formats organize infor-
mation by genomic position, with each row correspond-
ing to a position, listing the reference sequence, all 
observed alternative alleles, and experimental or bioin-
formatic algorithm results for each analyzed sample. The 
difference between VCF and GVCF is that the former 
lists only positions with differences from the reference 
genome, whereas the latter reports all sequenced posi-
tions, and it is better suited to perform joint analysis of a 
cohort in subsequent steps.

Tools for SNV/InDel variant calling
Over the years, numerous algorithms for SNV and InDel 
variant calling have been proposed. These algorithms can 
be divided into two main types: those based on a proba-
bilistic error model and those using data-driven machine 
learning methods. In the first case, the error model esti-
mates the probabilities of different genotypes. Among the 
most commonly used algorithms employing this strat-
egy is GATK-HaplotypeCaller [23]. The process used by 
GATK-HaplotypeCaller involves four stages:

1. Identifying regions with the highest probability of 
containing variants;

2. Identifying haplotypes;
3. Estimating haplotype probabilities given the reads;
4. Estimating posterior genotype probabilities.

At the end of these operations, a VCF or GVCF file 
is produced for each sample. It is possible to combine 
the calls of multiple samples in a joint call using indi-
vidual GVCF files as input. Variant calling with GATK-
HaplotypeCaller is usually followed by a filtering stage 
to reduce the number of false positives. Filtering can 
be performed by applying thresholds to the quality val-
ues of called variants or, more commonly, using Gauss-
ian mixture models or machine learning models based on 

convolutional neural networks. The entire variant calling 
and subsequent filtering procedure is described in GATK 
guidelines.

The most commonly used machine learning-based 
algorithm is DeepVariant [24]. DeepVariant involves an 
initial phase to determine a set of possible variants with 
a permissive approach similar to GATK-Haplotype-
Caller steps (1) and (2). For each identified variant, a 
tensor encoding information on bases present in reads, 
base qualities, mapping qualities, strand information, 
whether the read supports the variant or reference, and 
the presence of other differences from the reference in 
reads is defined. This information is input into a convo-
lutional neural network trained with Genome In a Bottle 
(GIAB) data, a consortium that develops genomic refer-
ences for validating genetic variants. The main difference 
between the GATK and DeepVariant approaches is that 
the latter does not require assumptions about the error 
model. Similar to other machine learning models, a suf-
ficiently large training dataset is required for its effective 
application.

Several comparative analyses of variant calling pro-
grams are available in the literature (Table 1), with one of 
the most comprehensive and recent programs at the time 
of writing reported by Barbitoff et al. [25].

The accuracy of variant calling tools is usually evaluated 
via comparisons with gold-standard variants provided 
by the GIAB consortium. Given that GIAB samples are 
typically used for training machine learning algorithms 
used for variant calling/filtering, the comparison might 
not accurately reveal overfitting. Nonetheless, DeepVari-
ant currently appears to have the best performance for 
both genome and exome data. Similar performances are 
reported for Clair3, Strelka2, and Octopus. The accuracy 
of the variant calling procedure is strongly influenced by 
the filtering stage. In particular, for GATK and Octopus, 
filtering with convolutional neural networks and random 
forests, respectively, leads to a significant drop in sensi-
tivity in exome analyses. This decrease in sensitivity is 

Table 1 Tools for SNV and InDel variant calling

Tool Version Year Input Output Link

DEEPVARIANT 1.6.0
(10/2023)

2018 BAM VCF https:// github. com/ google/ deepv ariant

STRELKA2 2.9.10
(11/2018)

2018 BAM VCF https:// github. com/ Illum ina/ strel ka

GATK4 4.5.0
(12/2023)

2018 BAM VCF https:// gatk. broad insti tute. org/ hc/ en- us

CLAIR3 1.0.5
(12/2023)

2022 BAM VCF https:// github. com/ HKU- BAL/ Clair3

OCTOPUS 0.7.4
(05/2021)

2021 BAM VCF https:// github. com/ lunte rgroup/ octop us

https://github.com/google/deepvariant
https://github.com/Illumina/strelka
https://gatk.broadinstitute.org/hc/en-us
https://github.com/HKU-BAL/Clair3
https://github.com/luntergroup/octopus
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due primarily to the filtering of InDels near coding region 
boundaries and does not significantly impact SNVs. 
These comparisons are essential for understanding the 
strengths and weaknesses of each tool, guiding the appro-
priate choice depending on the analysis scenario.

Key points summary
Variant calling is a critical process in SGS for identifying 
genetic variations like SNVs and small InDels, particu-
larly important in diagnosing rare genetic diseases. The 
process uses BAM files and probabilistic models to dis-
tinguish between sequencing errors and true genetic var-
iants, often followed by filtering to reduce false positives. 
GATK-HaplotypeCaller and DeepVariant are commonly 
used for this process, along with other tools that offer 
similar performance, such as Clair3, Strelka2, and Octo-
pus. Filtering can reduce sensitivity for InDels near cod-
ing regions, but has less effect on SNVs. These tools and 
strategies help refine the identification of genetic variants 
and guide their appropriate use in different scenarios.

Variant filtering to remove artifacts
Sequencing artifacts are variations introduced by non-
biological processes during SGS. For example, the pres-
ence of SNVs or InDels observed in sequencing data does 
not origin from the original biological samples. These 
artifacts are often difficult to distinguish from real vari-
ants, increasing the risk of false-positive and false-nega-
tive variant calls. Identifying whether a variant is real, or 
an artifact is crucial, especially in clinical contexts.

Origin of artifacts
Artifacts can arise from various stages of the SGS pro-
cess, including library preparation. For example, DNA 
damage caused by formalin and paraffin treatments can 
create artifacts, which can result in excessive DNA frag-
mentation due to prolonged storage [26]. Exposure to 
oxidation products such as 8-oxoG can also introduce 
artifactual variations [27].

PCR represents another significant source of artifacts. 
Problems such as incorrect incorporations or template 
switching, as well as biases in the representation of specific 
cell populations, can occur. Approximately 0.1–1% of bases 
may be erroneously identified due to errors in PCR cycles, 
cluster amplification, sequencing cycles, and image analysis.

Library preparation kits can influence sequencing quality. 
For example, compared with Agilent SureSelect kits, Hyper-
Plus kits tend to generate SNV and InDel artifacts [28].

Variant calling software can also produce artifacts that 
are often related to alignment errors [14]. However, many 
of these artifacts can be systematically filtered via methods 
such as the frequency hard filter  [29] and VQSR [13, 30]. 
These methods use different strategies to optimize filtering, 

but the choice of the most suitable method may depend on 
the specific variant calling software used. However, visually 
inspecting alignments for clinically relevant variants via tools 
such as Integrative IGV [12] to identify false-positive variant 
calls that may escape automatic filters is recommended.

Common types of artifacts

• Low-quality nucleotides in multiple reads: calls due to 
low-quality nucleotides in multiple reads (see alignment 
and preprocessing – quality control).

• Read–end artifacts: artifacts from local misalignments 
near InDels, where the alternative allele is observed only 
at the beginning or end of the sequence.

• Strand bias artifacts: sequences supporting the 
variant are present only on one strand.

• Misalignments in low-complexity regions, such 
as homopolymeric regions, where errors commonly 
occur in sequencing by synthesis near homopoly-
mers. After repeating the same base multiple times, 
sequencing platforms often substitute the first base 
after the homopolymer with the homopolymer base 
due to slippage phenomena.

• Misalignment in paralogous regions: misalign-
ment in regions with paralogous sequences poorly 
represented in the reference genome. This type of 
artifact typically occurs when sequences not repre-
sented in the reference genome are aligned to the 
closest paralog.

Key points summary
Variant filtering is essential to remove artifacts intro-
duced during SGS, which can lead to false-positive and 
false-negative variant calls. Artifacts originate from 
various stages of the sequencing process, such as DNA 
damage, PCR errors, and library preparation, and can 
impact variant detection. Common artifacts include 
low-quality nucleotides, read–end artifacts, strand bias, 
and misalignments in low-complexity or paralogous 
regions. Effective filtering methods like frequency hard 
filtering and VQSR are important for reducing errors, 
though manual inspection of clinically relevant variants 
through tools like IGV is recommended to catch arti-
facts that may escape automatic filters.

Visual inspection of variants and/or problematic 
regions
Visual inspection of alignments is a common practice 
to evaluate a locus in detail, especially when bioinfor-
matic analysis has not detected suspicious events or 
has not flagged the presence of a hypothesized variant. 
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Tools such as the UCSC Genome Browser, the Ensembl 
Genome Browser, and JBrowse are commonly used for 
this purpose. Among these, the IGV  [12] is one of the 
most widely used tools and is available as a desktop appli-
cation, a web application, and a JavaScript implementa-
tion that can be directly integrated into web pages [31]. 
IGV supports the visualization of files representing fun-
damental steps of SGS data analysis, from BAM, CRAM, 
bigWig, bigBed, to VCF. In addition to traditional align-
ment pileup visualization, IGV allows graphical repre-
sentation of RNA-seq profiles, genomic interactions from 
chromatin conformation analyses, and Manhattan plots. 
The ability of IGV to offer these visualizations makes it an 
essential tool in SGS workflows, particularly for verify-
ing the quality of specific sites and assessing the presence 
or absence of variants. Here are some typical examples 
where visual inspection via IGV can be particularly use-
ful for determining the quality of a specific locus.

Practical cases
In Fig. 1, the alignments of a trio (PROBAND, MOTHER, 
FATHER) are loaded into a desktop instance of IGV and 
viewed relative to the exonic sequence (RefSeq) of the 
DCLK3 gene. For each sample, the reads are stacked 
below, highlighting their orientation (5’-3’ red, 3’-5’ 
blue), while the coverage profile is shown above base-
by-base. Bases differing from the reference sequence are 
highlighted according to the changing base. The dashed 
vertical lines indicate a potential variant (T > G), but in 
several reads, G is shaded, indicating poor base quality 
(e.g., Phred-scaled quality score <  = 10) and consequently 

reduced confidence in the variant’s actual presence. The 
chromosome where the region of interest is located is 
represented at the top of the figure with a red box.

In Fig. 2, the characteristic making the variant dubious 
is not base quality but strand bias on 5’-3’ reads, clearly 
shown by IGV’s visualization.

Figure  3 shows the recurrence of an insertion (black 
horizontal bar) and a deletion (blue vertical bar) artifact 
at the same site on different reads of the three samples. 
This is attributed to misalignment due to the homopoly-
mer sequence (polyT) immediately downstream of the 
signal.

In Fig.  4, the IGV web app visualization (https:// igv. 
org/ app/) shows a low-mappability region represented 
by transparently colored reads. The BAM file parameters 
highlight an alignment quality of 0, indicating that these 
regions often harbor false-positive and false-negative 
variant calls owing to the high alignment ambiguity char-
acterizing them.

Key points summary
Visual inspection of variant alignments is a critical step 
in SGS workflows to assess variant quality, especially in 
cases where bioinformatic tools may miss or flag suspi-
cious variants. Tools like IGV, UCSC Genome Browser, 
and Ensembl Genome Browser are commonly used for 
this purpose, with IGV being a versatile tool that sup-
ports various file formats and visualizations. Visual 
inspection is particularly useful for detecting issues 
such as poor base quality, strand bias, misalignments 
in homopolymer regions, and low-mappability regions. 

Fig. 1 Reads alignment within a coding region of the DCLK3 gene showing a putative T > G variant poorly supported by the reads alignment

https://igv.org/app/
https://igv.org/app/
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This manual review helps ensure the accuracy of variant 
calls and complements automated filtering processes.

CNV/SV variant calling
This section focuses on the analysis processes for calling 
SVs, a category of genetic variant that poses a significant 
challenge in SGS. SVs include large insertions, deletions, 
translocations, inversions, and genomic duplications, 

often exceeding 1  kb in length. Unlike SNVs and small 
InDels, SVs can have a dramatic effect on genomic archi-
tecture and gene expression. However, their detection 
is complicated by their size and structural complexity. 
Additionally, SVs can occur in repeated or low-complex-
ity genomic regions, making their correct alignment and 
interpretation difficult.

Fig. 2 Reads alignment of an SGS experiment showing a potential T > G variant with strand bias calling

Fig. 3 Alignment of an SGS experiment in a trio within an intronic region flanking an exon of the TBC1D12 gene highlights misalignment issues
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Analysis stages
Similar to SNV and InDel identification analyses, the 
input for variant calling software is typically represented 
by BAM files derived from the alignment of sequences in 
FASTQ files. This process can include additional steps, 
such as removing PCR duplicates and recalibrating base 
quality scores. The standard output of these variant 
calling programs is the VCF format, providing details 
on identified genetic variants relative to the reference 
genome, including variant positions, types of genetic 
alterations, and other relevant information for research 
and clinical applications.

Following the preparatory stage of aligning sequences 
to the reference genome, algorithms for variant calling 
are used to identify specific SV types. SVs can be divided 
into two categories depending on whether the modi-
fication is balanced (no gross DNA loss) or unbalanced 
(DNA loss or gain), and their identification is based on 
different strategies capable of evaluating anomalies in the 
alignment of genomic sequences (Fig. 5).

Deletions and duplications create what are known as 
CNVs, which are unbalanced, whereas translocations 
and inversions that preserve genetic content generate 
balanced chromosomal rearrangements (BCRs). Histori-
cally, CNVs have been described as variations in genetic 
content larger than 1000 base pairs (bps). However, with 
technological advances improving the resolution of tech-
niques used to identify these variants, it has emerged 
that individuals can present variations in genetic content 
ranging from 1  bp to several megabases (Mb). Owing 
to the rapid reduction in costs, WGS has become a fea-
sible and sensitive method for detecting all types of 
SVs, including CNVs and BCRs, offering single-base 

resolution. This approach theoretically places no limits 
on the size of the SVs/CNVs that can be identified.

Tools for CNV/SV variant calling
In recent years, there has been a surge in the develop-
ment of software tools for identifying SVs and CNVs 
from WES and WGS [33, 34]. These tools exploit four 
different WGS metrics, namely, read depth (RD), split/
clip read (SR), read pair (RP), and assembly based (AB) 
methods, each of which relies on distinct information 
from sequence data [35].

• RD-based methods: These methods are based on the 
principle that the coverage depth of a genomic region 
reflects the relative copy number of loci. An increase 
in copy number results in higher than average cov-
erage, whereas a copy number loss results in lower-
than-average coverage of the region.

• SR-based approaches: These rely on paired-
end sequencing, where only one read of each pair 
aligns to the reference genome, while the other is 
unmapped or partially mapped.

• RP methods: These exploit discordant read pairs 
(DPs), where the mapped distance between read 
pairs significantly deviates from the average fragment 
size of the library, or if one or both members of the 
pair are aligned in an unexpected orientation.

• AB methods: Unlike previous approaches that 
rely on initial alignment to a reference sequence, 
these methods de novo assemble reads into contigs, 
which are then aligned and compared to a reference 
genome.

Fig. 4 Alignment of an SGS experiment in a single sample around a low-mappability region
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By leveraging different types of information, each of 
these methods presents different strengths and weak-
nesses: for example, RD-based methods can identify 
only SVs where there is a gross change in genetic con-
tent (CNVs, not BCRs). The performance of RP methods 
critically depends on the alignment algorithm’s choice, 
which can be problematic for low-complexity genomic 
regions owing to ambiguities in correctly positioning the 
reads but generally can identify both CNVs and BCRs. 
SR methods require reads spanning the SV breakpoint, 
ensuring single-nucleotide resolution, but their effective-
ness is proportional to the length of individual reads pro-
duced during sequencing. Finally, AB sequence analysis 
methods can have very long execution times and require 
high-performance computing resources, although they 
have proven more precise in identifying complex SVs. 
Some software uses a combination of all previous meth-
ods for more precise SV identification. A list of the most 
popular software in the human genomic field is provided 
in Table  2, while a schematic of identifying different 
structural variants in WES/WGS experiments and their 
complications is illustrated in Fig. 5.

The performance of these structural variant call-
ing methods is influenced by several factors, mainly the 
size of the CNV/SV and the WES/WGS data coverage. 
For example, BreakDancer[36] can detect only deletions 
larger than 100  bp. Some tools have achieved excellent 
sensitivity at the expense of very low precision; for exam-
ple, Pindel[37] exhibits the highest sensitivity among all 
tools but has a precision rate below 0.1%. Conversely, 
other tools, such as PopDel[38], adopt a more conserva-
tive approach to SV detection, achieving higher precision 
but with lower sensitivity for smaller deletion events. 
Some tools strike a good balance between precision and 
sensitivity, such as Manta [39], CLEVER [40], LUMPY 
[41], BreakDancer [36], and DELLY [42], all of which 
have precision and sensitivity rates above 40%. Addition-
ally, there are substantial differences in computational 
resource requirements and analysis execution times 
among these tools, with variations of 2–3 orders of mag-
nitude in time and necessary RAM. The primary factors 
influencing tool performance are sequencing depth and 
variant size rather than detection algorithm type (SR, RD, 
or RP).

Fig. 5 Anomalies in mapped reads and complications affect the detection of SVs. A Anomalies in mapped reads for different types of SVs. 
Sequencing reads are represented as arrows, with paired reads connected by lines. For discordant reads, a short or long insert is indicated by a red 
line, and an unexpected orientation of reads is indicated by red arrows. For split/clip reads, the clipped portion of the read is marked in orange. 
Split-read refers to a single read mapped to two distinct regions, and corresponding clipped reads are also marked in orange. For simplicity, 
only one forward mapped read is shown for split/clip-reads. B Complications in SV detection. Repetitive sequences are indicated as red boxes, 
whereas inserted sequences absent from the reference genome are indicated as orange boxes. These could come from population-specific 
sequences, mobile elements, or viral sequences Adapted from Yi et al. [32]
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In conclusion, different CNV/SV variant calling tools, 
each of which is based on distinct strategies, present spe-
cific strengths and weaknesses. To leverage these diverse 
capabilities, combining results from multiple SV identi-
fication tools into an ensemble method (also known as 
"ensemble learning") has been proposed. This approach 
has the potential to outperform individual variant call-
ing algorithms. Several ensemble approaches, such as 
Parliament2[43] and FusorSV [44], have recently been 
proposed in the literature, demonstrating improved sen-
sitivity by integrating the intersection or union of calls 
produced by different algorithms. However, establishing 
universal thresholds and rules for integrating these struc-
tural variant sets while maximizing both precision and 
variant identification remains a complex and challenging 
task.

For laboratories looking to integrate SV detection into 
routine diagnostics, we recommend referring to the 
recent guidelines published by the American College of 
Medical Genetics and Genomics (ACMG) [45]. These 
guidelines provide comprehensive recommendations 
for incorporating SV analysis via SGS, with an emphasis 
on validation, appropriate assay selection, and thorough 
reporting to ensure reliable clinical results. The ACMG’s 
guidelines serve as a valuable resource for ensuring that 
the full spectrum of structural variations is accurately 
detected and reported in clinical settings.

Key points summary
SVs, including large insertions, deletions, translocations, 
and inversions, present significant challenges in SGS due 
to their size and complexity. SV analysis involves align-
ing sequencing data to a reference genome and using 
various algorithms to identify different types of SVs. 
Common approaches to SV detection include: (1) evalua-
tion of paired-end reads orientation and abnormal insert 
size (RP), (2) the presence of split and soft-clipped reads 
at the breakpoints of SVs (SR), (3) abnormal read depths 
in CNVs (RD), or (4) de novo assembly of reads before 
alignment (AB).

Several tools, such as GROM, Manta, and DELLY, have 
been developed to detect SVs, with different degrees of 
precision, sensitivity, and computational requirements. 
Combining multiple variant calling tools using ensem-
ble approaches like Parliament2 can improve accuracy, 
though establishing optimal methods for integrating 
results remains a challenge.

Annotation of SNV/InDel/CNV variants
The objective of the variant annotation process is to pro-
vide information for their functional interpretation. This 
is a crucial step, as subsequent filtering and prioritization 
stages are based on this information. The annotations 

discussed in this section pertain to constitutional/ger-
mline genomic variants in the context of monogenic or 
oligogenic diseases, deferring to other sources the discus-
sion on somatic variant annotations for characterizing 
neoplastic lesions [46].

Analysis stages
The variant annotation procedure involves comparing 
the genomic coordinates of a variant with existing or 
specifically created annotation databases. This process 
can be based solely on the position of the variant relative 
to the reference genome or on the sequence variation it 
causes. Annotation provides details on both the variant 
and the involved gene. At the variant level, annotation 
allows for obtaining and evaluating information regard-
ing the following:

1. Variant frequency in healthy and affected individuals.
2. The predicted effect of the variant on the protein 

sequence or other functional regions.
3. The variant’s segregation among family members, if 

applicable.

In general, a critical aspect of the entire annotation 
process is the unambiguous identification of each vari-
ant. To this end, the Human Genome Variation Society 
has developed an internationally recognized standard 
for describing variants at the DNA, RNA, and protein 
sequence levels, known as the HGVS nomenclature 
(https:// hgvs- nomen clatu re. org/ stable/). This standard 
is used to report variants in clinical reports, facilitating 
comparisons with databases and other laboratories. For 
SNVs, this indication is usually unambiguous. However, 
for multinucleotide variants, insertions or deletions, and 
regions with multiple isoforms or intron‒exon junctions, 
specific rules exist to minimize errors in variant identifi-
cation and comparison.

Variant‑level annotation
Presence of  the  variant in  affected and  unaffected indi‑
viduals The purpose of this first set of annotations is to 
check whether the variant has previously been reported 
in populations or has been associated with a specific phe-
notype.

• Control databases: Data on apparently healthy indi-
viduals (controls) are currently collected from a large 
online database called gnomAD, which aggregates 
sequencing results from hundreds of thousands of 
individuals not affected by severe pediatric condi-
tions, including their age and sex at the time of the 
study. In addition to international databases, another 
important source of control subjects is internal lab-

https://hgvs-nomenclature.org/stable/
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oratory databases, which, although smaller in size, 
have the advantage of more closely representing the 
genetic background of the region where the labora-
tory operates. The purpose of these annotations is to 
exclude the pathogenicity of a variant on the basis of 
its presence in control subjects, considering disease 
penetrance, transmission model, and variant fre-
quency in controls.

• Patient databases: Genotype–phenotype associa-
tion databases can either be genome-wide, cover-
ing the entire genome, or gene-specific, and they 
may be public or proprietary. Public databases like 
ClinVar [47] (https:// www. ncbi. nlm. nih. gov/ clinv 
ar/) and OMIM [48] (http:// omim. org), collect and 
share variant data for public use, whereas proprietary 
databases, such as the Human Gene Mutation Data-
base (HGMD https:// www. hgmd. cf. ac. uk/ ac/ index. 
php) [49], which compiles known gene mutations 
associated with human disease, require paid access. 
ClinVar includes annotations on individual variants, 
collaboratively curated by researchers and laborato-
ries worldwide, while OMIM and HGMD primarily 
compile variant interpretations from the literature. 
In addition to these genome-wide sources, there are 
gene-specific databases like the Leiden Open Vari-
ation Database (LOVD https:// www. lovd. nl/) [50], 
the Clinical and Functional Translation of CFTR 
(CFTR2; http:// cftr2. org) for CFTR gene variants and 
the ENIGMA consortium for BRCA1 and BRCA2 

genes (http:// enigm acons ortium. org/) [51]. Most 
bioinformatic annotation tools automatically query 
genome-wide databases, although challenges may 
arise due to discrepancies in variant nomenclature 
[52].

Predicted functional impact 

• Effect on the protein sequence: Transcript-level 
variant annotation allows estimation of the impact 
of a given variant on mRNA and consequently on 
the protein sequence. However, the same variant 
can involve different isoforms of the same gene (or 
even different genes), resulting in different func-
tional effects on each isoform. To facilitate annota-
tion, tools usually report only the most severe pre-
dicted effect among all possible isoforms (truncating 
variant > missense variant > regulatory variant https:// 
www. ensem bl. org/ info/ genome/ varia tion/ predi 
ction/ predi cted_ data. html# conse quenc es). Another 
ambiguity arises from the chosen transcript model 
(NCBI RefSeq or Ensembl) [53]. To limit ambiguity, 
the MANE (Matched Annotation from NCBI and 
EMBL-EBI) dataset [54] was recently defined. This 
dataset provides a consensus transcriptome by asso-
ciating a single transcript and protein sequence for 
each gene, prioritizing the most medically and bio-
logically relevant transcripts.

Table 2 Main bioinformatics tools for identifying SVs freely available to the scientific community, sorted by year of publication, with an 
indication of the algorithm used: read-depth (RD), read-pair (RP), split-read (SR), discordant pair (DP), or combination of these

Tool Version Algorithm Anno Input Output Link

GASV 1.4 RP 2009 BAM Custom https:// code. google. com/ archi ve/p/ gasv/ source/ defau lt/ source

Pindel 0.2. 5b9 RP + SR 2009 BAM Custom http:// gmt. genome. wustl. edu/ packa ges/ pindel/

RDXplorer 3.2 RD 2009 BAM Custom http:// RDXpl orer. sourc eforge. net/

CLEVER 2.4 RP 2011 BAM Custom https:// bitbu cket. org/ tobia smars chall/ CLEVER- toolk it/ wiki/ Home

DELLY 0.8.2 RP + SR 2012 BAM Custom https:// github. com/ DELLY tools/ DELLY

BreakDancer 1.3.6 RP 2012 BAM Custom https:// github. com/ genome/ Break Dancer

indelMINER N/A RP + SR 2014 BAM VCF https:// github. com/ aakro sh/ indel MINER

GRIDSS 2.5.1 RP + SR 2015 BAM VCF https:// github. com/ Papen fussL ab/ GRIDSS

MiStrVar N/A N/A 2015 Fastq/BAM VCF https:// bitbu cket. org/ compb io/ MiStr Var

LUMPY 0.2.4 RP, SR, RD 2016 BAM VCF https:// github. com/ brentp/ smoove

PopDel 1.1.3 RP 2017 BAM VCF https:// github. com/ kehrl ab/ PopDel

CREST 1.0 SR 2017 BAM Custom https:// www. stjude. org/ resea rch/ labs/ zhang- lab/ crest. html

Manta 1.6.0 SR 2017 BAM VCF https:// github. com/ Illum ina/ manta

Genome STRiP 2.0 RP + SR + RD 2017 BAM VCF http:// softw are. broad insti tute. org/ softw are/ genom estrip/

Octopus 0.7.4 SR 2018 BAM VCF https:// lunte rgroup. github. io/ octop us/

Deep Variant 1.2.0 N/A 2018 BAM VCF https:// github. com/ google/ deepv ariant

Tardis 1.04 RP + RD + SR 2019 BAM VCF https:// github. com/ Bilke ntCom pGen/ tardis

GROM 1.0.3 RD 2021 BAM VCF https:// osf. io/ 6rtws/

https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
http://omim.org
https://www.hgmd.cf.ac.uk/ac/index.php)
https://www.hgmd.cf.ac.uk/ac/index.php)
https://www.lovd.nl/)
http://cftr2.org
http://enigmaconsortium.org/)
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
https://code.google.com/archive/p/gasv/source/default/source
http://gmt.genome.wustl.edu/packages/pindel/
http://RDXplorer.sourceforge.net/
https://bitbucket.org/tobiasmarschall/CLEVER-toolkit/wiki/Home
https://github.com/DELLYtools/DELLY
https://github.com/genome/BreakDancer
https://github.com/aakrosh/indelMINER
https://github.com/PapenfussLab/GRIDSS
https://bitbucket.org/compbio/MiStrVar
https://github.com/brentp/smoove
https://github.com/kehrlab/PopDel
https://www.stjude.org/research/labs/zhang-lab/crest.html
https://github.com/Illumina/manta
http://software.broadinstitute.org/software/genomestrip/
https://luntergroup.github.io/octopus/
https://github.com/google/deepvariant
https://github.com/BilkentCompGen/tardis
https://osf.io/6rtws/
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• Splicing alteration: Splicing is an inherently com-
plex process regulated by competitive interactions 
between splicing acceptor and donor sites and is 
further modulated by intronic or exonic regula-
tory elements. Genetic variants can affect any of 
these elements. Several algorithms have been devel-
oped to predict the impact of variants on splicing 
via sequence information. In general, the ability to 
predict splicing effects is greater for variants involv-
ing canonical splicing sites and significantly lower 
for other variants. To increase the predictive accu-
racy, predictions from different algorithms can be 
combined. For example, the dbscSNV database pro-
vides predictive scores for all possible SNVs located 
in consensus splicing regions (− 3 to + 8 from the 5’ 
splice site and − 12 to + 2 from the 3’ site) by integrat-
ing predictions from eight different tools [55]. The 
dbNSFP database offers predictive scores for all pos-
sible synonymous variants in the genome by integrat-
ing predictions from 43 different algorithms [56].

• Computational models for variant impact pre-
diction: Numerous methods have been developed 
to predict the functional impact of variants, aim-
ing to estimate whether a given variant can alter 
protein function or affect other functional aspects 
of the genome (as for regulatory or structural vari-
ants). In general, these methods integrate different 
information, such as phylogenetic data, amino acid 
biochemical characteristics, protein folding, and the 
involvement of functional genomic elements. Some 
explicitly refer to the impact of a missense variant 
on protein function (e.g., Polyphen and SIFT) [57, 
58], whereas others more generally assess the total 
biological impact on the organism (CADD) [59]. In 
practice, protein-related annotations allow the evalu-
ation of the impact of missense variants on coding 
genes, whereas other annotations can be applied to 
any locus. Annotation tools often report the fraction 
of tools that deem the variant functionally relevant, 
generating a prediction score. Importantly, there is 
some overlap between individual methods (e.g., more 
recent methods often integrate previous methods); 
therefore, these annotations should not necessarily 
be considered independent predictions. Addition-
ally, these annotations do not directly indicate patho-
genicity and are not specific to certain phenotypes. 
Recent advancements, particularly AI-assisted tools 
such as AlphaMissense [60]and AlphaFold[61], have 
revolutionized the prediction of variant impact by 
integrating protein structure predictions into the 
analysis. AlphaMissense pathogenicity scores have 

been made available as a public resource, and can be 
thus incorporated in variant annotation pipelines. 
These tools offer significant potential for clinical 
applications by providing high-accuracy predictions 
of the effects of missense variants on protein fold-
ing and function. However, despite their strengths, 
including improved accuracy in assessing protein 
structure, limitations remain. A recent study showed 
that AlphaMissense maintained consistent perfor-
mance across different protein types, with lower 
performance mostly due to sparse or to low quality 
training data [62], which highlights the need for cau-
tious interpretation in clinical settings.

Mutational hotspot regions: The functional role of vari-
ants may depend on the protein region where they occur, 
as it is known that in some genes, pathogenic variants 
predominantly or exclusively involve specific functional 
domains. Therefore, a variant within these regions is 
more likely to be pathogenic. In practice, hotspot regions 
are subgenic regions with a greater enrichment of patho-
genic variants than benign ones [63, 64].

Experimentally‑validated functional impact In recent 
years, high-throughput experimental techniques have 
been developed to study the functional consequences 
of large numbers of genetic variants in parallel. These 
techniques, collectively known as Multiplexed Assays of 
Variant Effects (MAVEs), allow researchers to assess the 
impact of thousands of variants on specific genes or regu-
latory regions simultaneously. Typically, MAVEs involve 
generating a comprehensive library of variants for the tar-
get region (for example, through saturation mutagenesis), 
introducing each variant into a model system, and quanti-
fying its effects on a specific molecular function.

Currently, MAVEs data are stored in two main data-
bases: MaveDB [65], which covers various functional 
regions, including coding regions and regulatory ele-
ments such as promoters and enhancers, and Splice-
VarDB [66], which focuses on assessing the impact of 
variants on splicing, including canonical splicing sites 
and deep-intronic variants. Although these resources 
do not yet cover all functional regions of the genome, 
by 2018, the number of variants validated by MAVEs 
was predicted to surpass the missense variants classi-
fied in ClinVar. As MAVE datasets continue to expand, 
they will also serve as valuable training sources for AI-
based models, further enhancing in-silico predictions 
of variant effects.
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Gene‑level annotation
For some variants, there is no known association with 
a specific phenotype. In this case, information already 
observed for known variants in the same gene can be 
considered. The main annotation is the association of 
the gene with a monogenic disease and the described 
type of Mendelian inheritance. The primary databases 
used to derive this information are OMIM [https:// 
omim. org/] and Orphanet [https:// www. orpha. net/], 
which are manually curated and contain evidence from 
the literature and reports from condition experts. They 
report the associations among phenotypes, genes, and 
transmission patterns. Another source of gene‒phe-
notype associations is genetic panels, such as those in 
PanelApp [https:// panel app. genom icsen gland. co. uk/] 
[67]. These panels are lists of genes associated with 
groups of clinical conditions (e.g., collagenopathies, 
retinopathies) and allow for the association of a gene 
with a clinical condition beyond individual diseases. 
Another gene‒phenotypic database is ClinGen [Wel-
come to ClinGen (clinicalgenome.org)] [68], which is 
also manually annotated. ClinGen also reports expert 
evaluations of the pathogenicity of specific gene altera-
tions (such as haploinsufficiency or triplosufficiency), 
which is particularly relevant for annotating deletions 
or duplications involving entire genes. In diagnos-
tics, an important piece of information is whether a 
gene has been defined as actionable, meaning it causes 
phenotypes that can be managed with preventive or 
therapeutic procedures. The most commonly used list 
of actionable genes is released by the ACMG [https:// 
www. ncbi. nlm. nih. gov/ clinv ar/ docs/ acmg/] [69]. Other 
annotations involve the biological or phylogenetic char-
acteristics of the gene, which can be used to implicate 
new genes in pathological phenotypes. These include 
transcriptomic or proteomic expression atlases [70, 
71], gene association studies [72], and phenotypes 
associated with orthologous genes in model organisms 
[https:// www. infor matics. jax. org/].

Tools for variant annotation
Several open-source tools are available for variant anno-
tation. The most popular and widely used methods are 
the Variant Effect Predictor (VEP) [73], ANNOVAR 
[74] and SnpEff [75], whose characteristics are briefly 
described in Table  3. The nonexhaustive list includes 
VAT [76], VarGenius [77], AnnTools [78], Sequence Vari-
ant Analyzer (SVA) [79], VarAFT [80], Sequence Variants 
Identification and Annotation (SeqVItA) [81], WGSA 
[82], VannoPortal [83], CruXome [84], ClassifyCNV [85], 
CAVA [86], FAVOR [87], VarNote [88], ShAn [89]. These 
tools require a list of variants as input, which are usually 
encoded in a VCF file, and return information retrieved 

from various resources and databases for each genetic 
variant present in the file (Table 3).

Currently, there is no precise indication regarding 
which annotation tools and resources to prefer; therefore, 
the choice is left to the laboratory. In guiding this choice, 
it is necessary to consider some characteristics of the 
software in relation to the skills and resources available. 
Among the main aspects to consider are as follows:

• The type of variants to annotate: most tools allow 
annotation of SNVs and InDels, whereas fewer soft-
ware allows annotation of structural variants.

• The type of output file: many tools return a VCF file 
containing annotations in the INFO field. Some tools 
(e.g., VEP) can return annotations in tabular format, 
which is easier to process.

• The flexibility of annotation resources: some software 
allows the download of widely used resources (e.g., 
population frequencies from GnomAD and 1000 
Genomes) during installation. Tools such as VEP also 
provide the ability to use and customize annotation 
resources according to the user’s needs, using custom 
files in standard formats (e.g., GFF3, bed). Addition-
ally, some tools allow the integration of external soft-
ware functions through plugins, using their output as 
an additional resource for annotation.

• The user interface: most tools have a command-line 
interface (CLI), which allows direct and flexible con-
trol of program execution. Since not all users are 
familiar with this type of interface, some software 
offers graphical user interfaces (GUIs) that simplify 
their use.

• Location of resources: some tools, such as VEP and 
ANNOVAR, can be used both locally and as web 
tools, i.e., accessing computational resources on a 
server. Similarly, the information necessary for vari-
ant annotation can be retrieved on the fly by con-
necting to databases or can be retrieved from previ-
ously installed local files. The use of remote resources 
avoids the local installation of software and annota-
tion resources, which, depending on the databases 
used, can require significant storage space. However, 
this execution mode is usually slower, and the num-
ber of variants that can be analyzed may be subject to 
limitations.

Comparative studies have been conducted to establish 
the performance of annotation tools and to highlight 
potential issues. These studies typically refer to sets of 
variants of clinical interest whose annotation is manually 
reviewed by a panel of experts.

Different annotation tools may attribute different func-
tional impacts to the same variant.

https://omim.org/
https://omim.org/
https://www.orpha.net/
https://panelapp.genomicsengland.co.uk/
https://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/
https://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/
https://www.informatics.jax.org/
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A study aimed at comparing the performance of VEP 
and ANNOVAR using the same transcriptome model[53] 
revealed that the two tools assign the same functional 
impact to 65% of genomic variants and to 87.3% of 
variants located in exons. A greater degree of discord-
ance between the two tools is thus detected for vari-
ants located in splicing sites, intergenic regions, intronic 
regions, and sites coding for noncoding RNA. In analyz-
ing the discrepancies between the two tools, the authors 
identify an effect of the prioritization algorithms (espe-
cially for frameshift and stop gain/loss variants) and 
annotation algorithms (for splicing variants) used by the 
two software programs. In most cases, where the two 
tools are discordant, manual verification indicates greater 
accuracy of VEP in annotating the functional impact.

With respect to the HGVS nomenclature, VEP and 
SNPEff appear to have comparable efficiencies [52], 
whereas ANNOVAR was found to be less accurate than 
VEP in an independent study [90].

In general, the tools are more accurate in the nomen-
clature of SNVs than in the nomenclature of insertions 
and deletions, especially when the variant is indicated at 
the transcript level. To overcome these ambiguities, it is 
preferable to always indicate variants at the genome level.

For those looking to deepen their understanding of the 
interpretation and classification of sequence variants in 
clinical settings, we recommend referring to the guide-
lines developed by the ACMG [91]. These guidelines, 
formulated in collaboration with the Association for 
Molecular Pathology (AMP) and the College of American 
Pathologists (CAP), provide a comprehensive framework 
for interpreting sequence variants, categorizing them as 
’pathogenic’, ’likely pathogenic’, ’uncertain significance’, 
’likely benign’, or ’benign’.

Key points summary
The goal of variant annotation is to provide functional 
information on genetic variants, critical for interpret-
ing and prioritizing variants in clinical and research 
contexts. The process involves comparing genomic vari-
ants to annotation databases, identifying their presence 
in healthy and affected populations, predicting their 

functional impact, and assessing potential effects on 
protein sequences or splicing. Tools like VEP, ANNO-
VAR, and SnpEff are commonly used for annotation, 
each offering different capabilities, such as handling vari-
ant types, providing flexible resources, and varying user 
interfaces. The accuracy of annotation tools can differ, 
particularly for complex variants like insertions or dele-
tions. Manual verification often indicates higher accuracy 
for VEP in functional impact prediction.

Analysis of sequencing data derived 
from mitochondrial DNA
Traditional bioinformatic analysis pipelines for SGS data 
obtained from WES and WGS allow the identification of 
various types of genetic alterations. Unfortunately, most 
tools available for the analysis and annotation of genetic 
variants are not optimized to include variants present 
in mtDNA in the output files. This is due to a peculiar 
characteristic of the mtDNA called heteroplasmy, i.e. the 
presence of more than one type of mitochondrial genome 
within a cell. In fact, unlike the nuclear genome, which 
is only present in two copies, there can be ∼1,000 to 
10,000 copies of mtDNA in most somatic cells. Thus, the 
mtDNA can exist in a state of heteroplasmy, where there 
is variation in the sequence of the different mtDNA mol-
ecules within a cell, or homoplasmy, where all mtDNA 
share the same sequence. The proportion of mutant and 
wild-type molecules is often referred to as the hetero-
plasmy percentage or heteroplasmy frequency.

Despite this, it is possible to extract this type of infor-
mation from raw SGS sequencing data (WES or WGS) 
via dedicated bioinformatic tools that can be operated 
with standard hardware and expertise already available in 
genetics laboratories conducting SGS.

Starting from the FASTQ files of samples sequenced 
via WES and WGS, it is possible to perform variant call-
ing on the mitochondrial chromosome (chrM), including 
both homoplasmic and heteroplasmic variants (even at 
low percentages > 2–3%).

Table 3 Main open-source bioinformatics tools for variant annotation

Tool Version Year Input Output Link

VEP 111 2016 whitespace-separated file; vcf; HGVS identifier; 
Variant identifiers; Genomic SPDI notation; REST-
style regions

tsv, vcf, json https:// www. ensem bl. org/ info/ docs/ tools/ vep/ 
index. html

ANNOVAR 2023 Nov 18 2010 vcf, tsv, ANNOVAR, gff3, masterVar csv, txt https:// ANNOV AR. openb ioinf ormat ics. org/ en/ 
latest/

SnpEff 5.2 (2023–09-29) 2012 vcf, bed vcf, bed https:// pcing ola. github. io/ SnpEff/

https://www.ensembl.org/info/docs/tools/vep/index.html
https://www.ensembl.org/info/docs/tools/vep/index.html
https://ANNOVAR.openbioinformatics.org/en/latest/
https://ANNOVAR.openbioinformatics.org/en/latest/
https://pcingola.github.io/SnpEff/
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Analysis stages
The alignment phases used to generate BAM files are the 
same as those used in a classic analysis pipeline for WES 
or WGS. The only difference is in aligning the reads con-
tained in the FASTQ files to the human mitochondrial 
genome (revised Cambridge Reference Sequence—rCRS, 
NCBI NC_012920.1) instead of the complete human 
genome, which uses the same commands. From the gen-
erated BAM files, it is then possible to call mitochondrial 
variants through bioinformatic tools that can be used 
locally with command strings, as described in the follow-
ing paragraph.

Tools for identifying mitochondrial DNA variants
Unlike the nuclear genome, where variants are typically 
present at expected Variant Allele Frequencies (VAFs) 
of approximately 50% (heterozygous) or 100% (homozy-
gous), mtDNA heteroplasmy poses a unique challenge. 
Heteroplasmic variants can exist at any allele fraction 
because each cell contains numerous mitochondrial 
genomes, which may differ from one another. Standard 
bioinformatic variant callers often discard low VAFs, 
assuming them to be sequencing artifacts. However, in 
mtDNA analysis, even low VAFs are significant and must 
be accurately identified. Specialized tools, often adapted 
from those used in somatic cancer mutation detection, 
are required to call mtDNA variants at all VAF levels to 
ensure comprehensive variant detection.

Only in recent years, specific programs have been 
developed for calling mitochondrial variants, each with 
slightly different characteristics, and optimized to iden-
tify types of variants peculiar to the mitochondrial 
genome (Table 4).

• Mutect2: A widely used tool particularly suitable for 
calling heteroplasmic SNV and InDel variants, ini-
tially designed for somatic variants (tumors).

• Mity: This method performs calling of heteroplas-
mic SNVs and InDels, is very sensitive for WGS data, 
performs extensive variant annotation, and has been 
validated in clinical studies. The required input is an 
aligned data file (BAM) from which homopolymeric 
regions (m.302–319 and m.3105–3109) are filtered 
[92].

• MToolBox: This tool performs calling of heteroplas-
mic SNVs and InDels and proceeds to their annota-
tion. This method is suitable for use with WGS and 
WES data, including off-target reads from WES. The 
input can be either aligned BAM files or unaligned 
FASTQ files [93].

• Mt-DNA server: A cloud-based application as part 
of the mitoverse suite, with an intuitive interface for 
heteroplasmic SNV and InDel calls. It recognizes 

and flags low-complexity regions and known nuclear 
mitochondrial DNA segments (NUMTs). It accepts 
aligned or unaligned WES, WGS, or mtDNA-only 
data as input [94].

• MitoScape: A pipeline for calling heteroplasmic 
SNVs and InDels from WGS data, primarily designed 
for complex diseases. It uses a new machine learning 
approach for extremely accurate calling and removal 
of so-called NUMTs. The performance is better than 
that of the MToolBox and Mt-DNA servers, and it 
can be used to estimate mtDNA copy number.

• MitoHPC: A pipeline for measuring mtDNA copy 
number (as a ratio of mtDNA coverage) in WGS 
data. It also calls and annotates heteroplasmic SNVs 
and InDels, performs additional circularized align-
ment, and generates an individual-specific mtDNA 
"reference" sequence, reducing the identification of 
false positive variants. Additionally, it flags homopol-
ymeric, hypervariable regions, and NUMTs [95].

• eKLIPse: Designed to identify multiple breakpoints of 
multiple deletions and generate Circos plots [96].

• MitoSAlt: This allows the quantification of dele-
tions and duplications on the basis of the analysis of 
sequences with breaks. It includes a second align-
ment phase to identify broken sequences in mapped 
and unmapped data [97]. It is particularly suitable for 
WGS data.

For those who wish to delve deeper into the role of 
mtDNA variants in human diseases and strategies for 
their analysis from SGS data, we recommend reading 
the following publications: Stenton & Prokisch [98] and 
Schon et al. [99]

Key points summary
mtDNA variants, including homoplasmic and hetero-
plasmic variants, can be identified from WES and WGS 
data using specialized bioinformatic tools. Although 
traditional sequencing pipelines do not typically include 
mtDNA in their output, variants can still be called by 
aligning reads to the mitochondrial genome. Tools like 
Mutect2, Mity, and MToolBox are optimized for detect-
ing mtDNA-specific variants such as SNVs and InDels. 
Advanced tools like MitoHPC and MitoScape offer addi-
tional capabilities, such as mtDNA copy number estima-
tion and removing false positives due to NUMTs. These 
tools support both clinical and research applications 
in analyzing mitochondrial variants linked to human 
diseases.
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HLA allele typing from SGS data
HLA class I and class II genes are the most polymorphic 
genes in the human genome. Because of this, traditional 
SGS variant calling methods often perform poorly at this 
locus located on chromosome 6. Accurate variant call-
ing in the HLA region (HLA typing) therefore requires 
specifically designed algorithms. HLA typing generally 
focuses on six classical HLA genes (HLA-A, HLA-B, 
HLA-C, HLA-DRB1, HLA-DQB1, and HLA-DPB1). In 
addition to the classical HLA genes, there are other less 
studied, nonclassical HLA genes (such as HLA-E, -F, 
and -G). HLA genes present the highest degree of poly-
morphism (the largest number of registered alleles) and 
are the most clinically relevant. Indeed, several hundred 
diseases have now been reported to occur more fre-
quently in individuals with particular HLA genotypes. 
These diseases comprise a broad spectrum of immune-
mediated pathologies involving all major organ systems, 
some malignant tumors, infectious diseases, and, more 
recently, adverse reactions to specific drugs and tumors 
[100, 101].

HLA typing methods: traditional vs. SGS
The rapid development of SGS technologies has shifted 
attention to HLA typing using exome or genome 
sequencing data (WES or WGS), rather than traditional 
HLA typing methods that focus exclusively on the HLA 
region and involve a laborious enrichment phase.

WGS and WES produce sequencing data that are not 
limited to one or two exons encoding the antigen recog-
nition domain (ARD). This allows for the identification 
of the sequences of all exons (in both WES and WGS) 
and introns and untranslated regions (in WGS only), 
often resolving the ambiguity problem. Another signifi-
cant advantage of using WES or WGS compared with 
data generated exclusively for HLA typing is the ability 
to integrate HLA typing into a broader genetic analysis. 
WGS/WES data are generated for multiple purposes and, 

in many cases, are already available, making them a more 
versatile and efficient approach.

Tools for HLA typing from SGS data
One of the first algorithms developed for HLA typing 
from SGS data was HLAminer [102]; however, new, bet-
ter-performing algorithms are continuously being pub-
lished [103]. According to a comparative study [104], the 
tools that proved most accurate were HLA-HD [105] and 
OptiType [106] for class II and class I HLA genes, respec-
tively, although tools such as T1K [107], recently pub-
lished and developed by the same author of BWA, have 
not yet been included in these comparisons and promise 
potentially superior performance.

These algorithms often start with a common phase of 
filtering out sequences, as in a typical WES/WGS dataset, 
not mapping to the region of interest. This phase allows 
reducing the file size and speeding up the typing process.

HLA typing algorithms can be roughly divided into two 
groups: de novo assembly-based methods and methods 
that directly align to a reference genome.

• De novo assembly-based methods: These meth-
ods first construct a consensus sequence for HLA 
genes from the input reads without using a reference 
genome. After the sequences have been assembled 
into consensus sequences, they are compared with 
reference HLA sequences for allele assignment. The 
algorithms that use this approach include HLAminer 
[102], ATHLATES [108], HLAreporter[109] and 
xHLA [110]. Despite being defined as de novo assem-
bly based algorithms, they still require an alignment/
comparison phase with reference HLA sequences 
such as the IPD-IMGT/HLA database (https:// www. 
ebi. ac. uk/ ipd/ imgt/ hla/).

• Direct alignment-based methods: These methods 
use various alignment algorithms, including BWA-
MEM, BOWTIE, or Novoalign, and a reference 
genome, often the aforementioned IPD-IMGT/HLA 

Table 4 Tools for mitochondrial DNA analysis

Tool Version Year Input Output Link

Mutect2 (mitochondria-mode) 4.5.0 2013 BAM VCF https:// gatk. broad insti tute. org/ hc/ en- us/ 
artic les/ 36004 24779 52- Mutec t2

Mity 1.0.0 2022 BAM VCF https:// github. com/ KCCG/ mity

MToolBox 1.2.1 2014 BAM, Fastq VCF https:// github. com/ mitoN GS/ MTool Box

Mt-DNA Server (mitoverse) 2.0.1 2016 BAM VCF,.csv https:// mitov erse.i- med. ac. at/ index. html#!

MitoScape 1.0 2021 BAM VCF https:// github. com/ larry ns/ MitoS cape

MitoHPC 9 2022 BAM .tab https:// github. com/ dpuiu/ MitoH PC

eKLIPse 2.1 2019 BAM .csv,.png https:// github. com/ doogu ypapua/ eKLIP se

MitoSAlt 1.1.1 2020 Fastq .bed,.tsv,.pdf https:// sourc eforge. net/ proje cts/ mitos alt/

https://www.ebi.ac.uk/ipd/imgt/hla/
https://www.ebi.ac.uk/ipd/imgt/hla/
https://gatk.broadinstitute.org/hc/en-us/articles/360042477952-Mutect2
https://gatk.broadinstitute.org/hc/en-us/articles/360042477952-Mutect2
https://github.com/KCCG/mity
https://github.com/mitoNGS/MToolBox
https://mitoverse.i-med.ac.at/index.html#
https://github.com/larryns/MitoScape
https://github.com/dpuiu/MitoHPC
https://github.com/dooguypapua/eKLIPse
https://sourceforge.net/projects/mitosalt/
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database. The final phase of the HLA typing pro-
cess consists of determining which HLA alleles best 
explain the sequences organized through assembly 
and/or alignment.

HLA typing tools employ various references to deduce 
HLA alleles, but most of them use the IPD-IMGT/HLA 
database and attempt to identify alleles from this data-
base that best represent the selected SGS sequences. The 
PHLAT [111] and Polysolver [112] tools use a Bayesian 
approach. ATHLATES [108] identifies alleles on the basis 
of their Hamming distance, whereas OptiType [106] uses 
an allele scoring matrix. Other tools, such as HLA*LA 
[113], use a graph data structure-based approach. Instead 
of finding the best alignment against a linear reference, 
it performs HLA allele inference by computing the most 
likely path through a graph structure.

Optimization and accuracy in HLA typing
A study from 2017 analyzed platform-specific typing 
errors for a series of tools [114]. One of the results was 
that the OptiType frequently produced typing errors for 
several classical HLA alleles. To avoid this type of bias, 
it is possible to adopt an ensemble approach that consid-
ers the predictions of multiple tools to produce an overall 
final prediction with increased accuracy.

Individual alleles do not have a constant frequency 
but differ significantly both within a population and 
between ethnic groups. The Allelefrequencies.net 
(https:// www. allel efreq uenci es. net/) website provides 
information on allele frequencies from various studies 
on the world population. This information can be used 
by typing algorithms to provide more accurate results.

Key points summary
HLA typing is crucial for identifying variants in  poly-
morphic HLA class I and II genes, which are associated 
with immune-mediated diseases, tumors, infections, 
and drug reactions. Traditional variant calling methods 
perform poorly in this highly polymorphic region, and 
specialized algorithms are required for accurate HLA 
typing. SGS-based HLA typing from WES or WGS data 
is advantageous, as it covers entire exons and introns, 
resolving ambiguities and allowing integration into 
broader genetic analyses. HLA typing tools use either 
de novo assembly or direct alignment methods, rely-
ing on reference databases like IPD-IMGT/HLA. Tools 
such as xHLA, HLA*LA, and HLA-HD are the most 
commonly used, with ensemble approaches improving 
accuracy.

Fig. 6 Homozygosity Mapping in recessive diseases. An individual affected by an autosomal recessive disease whose parents are consanguineous 
will most likely be homozygous (identical) by descent for the disease allele, as it can pass from a common ancestor through both the paternal 
and maternal lines, making the child homozygous for the mutation. The chromosomal segments surrounding the disease gene locus are shown 
with 3 marker positions on both sides. The different marker alleles are represented by different colors. Although for each parent‒child succession, 
there is the possibility of a crossover (dashed line) occurring in the parents’ gametes, there is a high probability that in the affected child, 
the consecutive markers surrounding the mutation have not recombined and are identical (homozygous) by descent (from Hildebrandt et al. [117])

https://www.allelefrequencies.net/
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Identification of regions of homozygosity from SGS 
data
ROHs are defined as tracts of the genome characterized 
by the presence of stretches of homozygous genotypes at 
consecutive polymorphic DNA marker positions. Their 
identification has historically been linked to ’homozygo-
sity mapping’, one of the most robust methods for iden-
tifying new recessive disease genes (Fig. 6). In particular, 
this method is widely used in families with declared or 
presumed consanguinity to study autozygosity, i.e., a par-
ticular type of homozygosity that results from the cooc-
currence, at a given locus, of the same allele derived from 
a common ancestor [115, 116].

ROH identification methodologies: traditional vs. SGS
Traditionally, ROH identification has been based on the 
use of microarrays with a high density of single nucleo-
tide polymorphisms (SNPs). SNP arrays allow simulta-
neous genotyping of a large number of SNPs, generally 
in noncoding regions, which have a high degree of het-
erozygosity in the general population. With the advent of 
SGS technologies, it has become possible to expand the 
map of the human genome, and today, various popula-
tion databases contain information for millions of poly-
morphisms. For example, the 1000 Genomes Project 
alone has led to the genotyping of approximately 88 mil-
lion SNPs, building a genetic map with an average dis-
tance between SNPs of 73 bp. However, the use of these 
genetic maps in the context of SGS, as an alternative to 
SNP arrays, was not immediate. The first SGS approach 
used on a large scale was targeted resequencing (pre-
sequencing panels and WES), which primarily identifies 
exonic SNPs that can be very distant from each other. 
Moreover, the algorithms and related software developed 
for SNP arrays are not ideally suited for analyzing SGS 
data owing to the background noise characteristic of this 
sequencing method.

Tools for ROH identification by SGS
In 2011, it was demonstrated for the first time that WES 
data contain a sufficient number of informative SNPs to 
allow reliable homozygosity mapping, and subsequent 
works have confirmed that ROHs can be correctly identi-
fied from these data [118–121].

Initially, software programs used for SNP array data, 
such as PLINK[122] and GERMLINE [123], were adapted 
with specific options. These programs use an algorithm 
called a sliding window that allows chromosomes to 
be scanned by moving a fixed-size window along their 
entire length in search of tracts of consecutive homozy-
gous SNPs. Another program that uses this method is 
HomozygosityMapper [124]; this was developed for SNP 

arrays but has been modified to take VCF files as input 
and output a bed file with the genomic coordinates of 
the identified ROHs. Among the advantages of this pro-
gram are ease of use, as it is web-based, provides intui-
tive graphical visualization, and uses the VCF file as input 
[124]. In contrast, to use PLINK and GERMLINE, it is 
necessary to create files in specific formats and have bio-
informatics skills.

Subsequently, several ad hoc programs were developed, 
and the use of the B allele frequency (BAF) was intro-
duced as a measure of genotypic state. BAF is calculated 
as the ratio between the number of reads carrying the B 
allele (alternative allele) and the total number of reads at 
a given polymorphic position, and its use has advantages 
over genotype analysis. In fact, BAF calculation does 
not require steps with a high computational cost, such 
as those necessary for variant calling, which is generally 
performed only for variant sites of the genome, and refer-
ence genotypes (0/0) are not reported, for which further 
analysis would be necessary [120].

The algorithm most commonly used by programs that 
employ BAF to estimate homozygosity is based on Hid-
den Markov models (HMM). The first tool that used 
this approach and was developed specifically for WES 
data was H3M2 [125]. In particular, this program uses 
a heterogeneous HMM algorithm that incorporates the 
distance between consecutive SNPs to probabilistically 
discriminate the heterozygous/homozygous state. This 
new approach has allowed the identification of ROHs of 
any size with high specificity and sensitivity, not just large 
ROHs (> 1.5 Mb) closely associated with consanguinity.

Several programs that use BAF and HMM models were 
subsequently developed (Table  5). The most commonly 
used methods are BCFTools/RoH [126], HOMWES 
[127], SavvyHomozygosity and SavvyVcfH homozygosity 
[128], Automap [129] and ROHMM [130]. All these pro-
grams process VCF files, whereas H3M2 and SavvyHo-
mozygosity require BAM files; Automap is also accessible 
via a web interface. Given the ease of use of many of these 
programs, it is advisable to include ROH identification 
in the standard pipeline. Their analysis is important not 
only in the context of consanguinity, and in this case, it 
is no longer necessary to use two tools (SNP arrays for 
homozygosity and exomes to identify variants), but it is 
useful for estimating possible undeclared or unknown 
kinships and for identifying uniparental disomies.

Key points summary
ROHs are stretches of the genome with consecutive 
homozygous genotypes, often used in homozygosity 
mapping to identify recessive disease genes. Tradition-
ally, ROHs were identified using SNP arrays, but the rise 
of SGS technologies has enabled their detection from 
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WES and WGS data. Several tools, such as PLINK, GER-
MLINE, and H3M2, can identify ROHs, with more recent 
methods incorporating BAF and HMM for improved 
accuracy. These tools provide insights into consanguin-
ity, uniparental disomies, and potential kinship, making 
them valuable additions to standard sequencing analysis 
pipelines.

Third‑generation sequencing
TGS, which is based on long-read technology, has 
recently undergone rapid development, significantly 
improving in terms of DNA library preparation and 
sequencing quality, and the major impetus for investing 
resources in optimizing TGS has been overcoming the 
limitations inherent in SGS, which are based on short 
reads. In the field of medical genetics, TGS is primar-
ily used to identify sequences characterized by SVs and 
sequences with expansions/contractions of repeated 
units (e.g., triplet expansions), which are very difficult to 
accurately  identify with short-read SGS. Consequently, 
most bioinformatic tools developed for TGS data focus 
on detecting these types of alterations. In addition to 
studies related to human genetic diseases, TGS is widely 
used in multiple fields, such as de novo genome sequenc-
ing of animal or plant organisms and microorganisms, 
including bacteria and viruses.

The use of short-read approaches can highlight sev-
eral critical issues in sequencing genome regions char-
acterized by complex rearrangements, regions with 
high homology, and a high rate of repetitions. Despite 
the use of sophisticated bioinformatic algorithms, accu-
rate mapping or assembly of sequences from regions 
characterized by SVs, repeated sequences, sequences 
with high guanine‒cytosine (GC) content, or sequences 
with multiple homologous elements within the genome 
is often impossible. These regions can be difficult to 

analyze owing to issues such as the lack of or altered 
representation of certain genomic regions during DNA 
library preparation or errors at the sequence alignment 
level, leading to subsequent errors in variant calling, 
particularly structural ones. Additionally, short-read 
SGS often results in the loss of phase information for 
multiple variants within the same gene. Another limita-
tion of this approach is its dependence on a reference 
genome, which can be problematic when detecting SVs 
in complex genomic regions that are highly specific to 
an individual or a specific population [131].

With the recent success in identifying difficult-to-
analyze DNA sequences and completing "gaps" in the 
human genome sequence [132], TGS has demonstrated 
its ability to overcome the limitations of short-read 
approaches, even in the study of human genetic dis-
eases. The main advantage of TGS lies in the generation 
of very long sequences, with average lengths exceed-
ing 10  kb, obtained from the reading of single native 
DNA molecules. These methods are based on real-time 
sequencing processes, where both DNA library prepa-
ration and sequencing occur without PCR-based ampli-
fication, thus avoiding errors and biases associated with 
this method. The absence of PCRs preserves the DNA 
in its native form, allowing TGS sequencers to detect 
base modifications, such as methylation, a possibility 
that is entirely precluded with short-read approaches.

WES is now typically chosen as a first-level test for 
many genetic diseases and has significantly advanced 
genetic testing and diagnostics, enabling the discovery 
of new disease genes at an unprecedented rate. How-
ever, for many patients who have undergone WES or 
even WGS, the genetic cause of their disease remains 
unknown. Recent TGS-based WGS studies have shown 
that a single individual’s genome can contain more than 
20,000 SVs (> 50 bp) and thousands of indels (< 50 bp), 
which have escaped detection by short-read analyses.

Table 5 Tools for ROH calling

Tool Version Year Input Output Link

PLINK 1.19 2007 Format PLINK Format PLINK https:// zzz. bwh. harva rd. edu/ plink/

GERMLINE 15.3 2009 Format GERMLINE Format GERMLINE http:// gusev lab. org/ proje cts/ germl ine/

HomozygosityMapper na 2012 Genotype BED file, visual inspection https:// www. homoz ygosi tymap per. org

H3M2 2017–20-10 2013 BAF – only BAM file BED file https:// sourc eforge. net/ proje cts/ h3m2/

BCFTools/RoH 1.19 2016 BAF TXT file https:// github. com/ samto ols/ BCFto ols

SavvyHomozygosity 1 2017 BAF – only BAM file BED file https:// github. com/ rdemo lgen/ Savvy Suite

SavvyVcfHmozygosity 1 2017 BAF BED file https:// github. com/ rdemo lgen/ Savvy Suite

HOMWES 0.107.0 2016 BAF BED file https:// github. com/ derij kp/ genom ecomb

Automap 1 2021 BAF TXT file e PDF file https:// github. com/ mquin odo/ AutoM ap/

ROHMM 1.0.4b 2022 BAF BED file https:// github. com/ gokal pcelik/ ROHMM CLI

https://zzz.bwh.harvard.edu/plink/
http://gusevlab.org/projects/germline/
https://www.homozygositymapper.org
https://sourceforge.net/projects/h3m2/
https://github.com/samtools/BCFtools
https://github.com/rdemolgen/SavvySuite
https://github.com/rdemolgen/SavvySuite
https://github.com/derijkp/genomecomb
https://github.com/mquinodo/AutoMap/
https://github.com/gokalpcelik/ROHMMCLI
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In patients affected by genetic diseases, these hid-
den variants could disrupt known or candidate genes or 
induce alterations in their expression levels. Additionally, 
SGS approaches based on short reads have several limita-
tions in capturing and sequencing GC-rich areas, which 
typically have low coverage. It is estimated that regions 
characterized by low or zero coverage with high GC con-
tent exceed hundreds of megabases and include areas 
with high gene density, potentially hosting genetic altera-
tions underlying various diseases.

PacBio sequencing
The PacBio sequencing method, also known as single-
molecule real-time (SMRT) sequencing, was the first 
nanosensor-based technology introduced by Pacific Bio-
sciences (PacBio) in the early 2010s [133]. PacBio tech-
nology exploits the properties of DNA synthesis and 
allows the identification of molecules with an average 
length greater than 10,000 nucleotides [134]. Unlike SGS 
techniques, SMRT sequencing is based on the immobi-
lization of a DNA polymerase in each well of a specially 
designed silicon chip (SMRTcell), while DNA is the 
mobile molecule [135].

Synthesis reactions are measured within thousands 
of wells containing microscopic sensors, called "zero-
mode waveguides" (ZMWs). The ZMW sensors prevent 
the propagation of light emitted by the incorporation of 
labeled dNTPs in the elongated strand, whereas a sys-
tem consisting of a laser and a camera records the sig-
nal generated by the sensors. PacBio platforms allow the 
simultaneous detection of thousands of single-molecule 
sequencing reactions. For synthesis, a special circu-
lar double-stranded DNA adapter, called SMRTbell, is 
needed; sample preparation therefore includes connect-
ing this molecule to the target DNA [135].

Over the years, many SMRT sequencers have been 
designed and marketed by PacBio; however, the first 
devices, such as PacBio RS II, have been progressively 
replaced by instruments of the Sequel System family 
that share optimized features, such as improvements in 
sequencing chemistries, automation, runtime monitor-
ing, touchscreens, integrated software and control of the 
capacity of each run. The Sequel System, the first mem-
ber of the family released in 2015, is capable of producing 
a total data output of up to 7.6  Gb [136]. The Sequel II 
system is capable of performing up to 30  h of sequenc-
ing and offers eight times the sequencing capacity of the 
previous system, with the advantages of greater accuracy 
and significantly reduced cost. The Sequel IIe system is 
PacBio’s most recent platform, which performs sequenc-
ing in 8 million ZMWs and generates up to 4,000,000 
sequences in a single run with a total output of up to 
500 Gb.

The files used for data storage are based on the "hierar-
chical data format 5" (HDF5) standard. HDF5 files con-
tain all the information generated by a sequencing run, 
including real-time kinetic characteristics, and therefore 
differ from the classic FASTQ output provided by previ-
ous generation SGS approaches; for the analysis of these 
data, the use of new bioinformatic tools is therefore nec-
essary [137]. The first step for data analysis is the con-
version of raw data into a nucleic acid sequence (base 
calling). In PacBio raw files, the translation of kinetic 
information into nucleotide sequences follows the "circu-
lar consensus sequencing" (CCS) workflow and produces 
high-precision sequences (> 99%), called HiFi [138]. 
Updates to the base calling software released in recent 
years have increased the quality of the reads produced, so 
it is expected that, together with the rapid improvement 
of technologies, further software development may still 
reduce the error rate associated with this technology. The 
quality control phase, which is based on predefined met-
rics, classifies the sequences into high- and low-quality 
reads. LongQC is a useful tool for evaluating the quality 
of reads from TGS data [139].

Nanopore sequencing
In 2015, Nanopore sequencing was commercially intro-
duced by Oxford Nanopore Technologies (ONT) through 
a portable MinION sequencer, which is slightly larger 
than a USB stick, followed by new high-yield sequencer 
models, called GridION and PromethION. The basic 
principle of Nanopore sequencing consists of passing 
a single strand of a DNA molecule through a Nanopore 
fixed on a membrane characterized by a potential differ-
ence between one side and the other. The various DNA 
strands are passed through the pore by a motor protein, 
and the conformational changes of the pore occur dif-
ferently depending on the base that passes through it. 
The passage of the bases induces an opening of the pore, 
which causes a variation in the potential with consequent 
formation of a measurable electrical signal from sen-
sors; this signal is subsequently converted into a DNA 
sequence. For Nanopore sequencing, there is no limita-
tion regarding the read length; if not the size of the DNA 
molecules themselves, good-quality DNA samples will 
yield longer sequences, whereas degraded and/or frag-
mented samples will generate shorter sequences. On 
average, in good-quality DNA samples, the sequences 
generated by this type of sequencing are greater than 
10  kb in length, but ultralong sequences greater than 
1 Mb in length have also been reported.

Among the available sequencers, MinION is the 
smallest and allows the sequencing of up to 50 Gb, with 
greater throughput, and the GridION and PromethION 
sequencers are available and are capable of sequencing 
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up to 250 Gb and 14 Tb, respectively. One of the major 
limitations of Nanopore sequencing lies in the low qual-
ity of the sequenced bases; the raw reads, in fact, gener-
ated with the R9 version flow cell, were characterized 
by an accuracy of approximately 96%, with errors repre-
sented mainly by false deletions and homopolymers [140, 
141]. Recently, however, a new flow cell, version R10, 
was developed with chemistries capable of achieving a 
sequencing performance that allows an accuracy close 
to 99%, which is very similar to that obtained with short-
read SGS methods.

Phases and tools of alignment and variant calling
At the bioinformatics level, the main alignment tools 
for sequences obtained with Nanopore technology are 
Minimap2 [142], which was developed to align sequences 
containing large insertions or deletions, and ngmlr [143], 
which was developed to align sequences characterized by 
different types of SVs. Both tools generate.bam files from.
fastq files.

With respect to variant calling, one of the most widely 
used tools is “sniffles” [143], which were developed in 
combination with the "ngmlr" aligner. It can also be used 
starting from bam files obtained with Minimap2 and 
allows the generation of VCF files containing various 
types of information, among the most important being 
the type of alteration (e.g., deletion or duplication), the 
start and end coordinates on the genome, and the num-
ber of sequences (coverage) containing such alterations. 
Recently, Straglr [144], a specific tool for identifying tan-
dem repeat expansions from alignments obtained with 
Minimap2, was developed.

Key points summary
TGS using long-read technology has advanced signifi-
cantly, overcoming limitations of short-read SGS, par-
ticularly in identifying SVs and repetitive sequences. TGS 
enables sequencing of long DNA fragments (10  kb or 
more), providing better accuracy in complex regions like 
those with high GC content or SVs. PacBio and ONT are 
the main TGS platforms, with PacBio’s SMRT sequenc-
ing and ONT’s Nanopore sequencing offering advantages 
in reading long sequences, detecting base modifications, 
and improving accuracy with recent updates. Tools like 
Minimap2 and sniffles are used for alignment and variant 
calling, and TGS is increasingly used in genetic disease 
research and de novo genome sequencing.

Techniques for identifying methylated DNA 
regions
DNAm, among the most studied epigenetic modifica-
tions, primarily involves the addition of a methyl group 
to the 5’ carbon of cytosines, generally in the context of 

a CpG dinucleotide. Analysis of the methylation state of 
specific genomic regions has diagnostic value in some 
genetic diseases (e.g., fragile X syndrome and imprinting 
disorders). Furthermore, in recent years, the analysis of 
methylation profiles at the genomic scale has also proven 
to be a useful diagnostic tool. In fact, disease-specific 
DNAm profiles, known as DNAm signatures or episig-
natures, are stably reproduced in individuals affected 
by a significant number of neurodevelopmental disor-
ders[145] and can support either the clinical diagnosis of 
patients carrying variants of uncertain significance (VUS) 
or uninformative molecular findings.

A recent study recommends the use of a standard-
ized four-level interpretation scale for episignature 
testing: negative, inconclusive, positive with moder-
ate confidence, and positive with high confidence [146]. 
High-confidence positives offer strong diagnostic evi-
dence, while moderate-confidence results suggest the 
need for further testing. Inconclusive results should be 
interpreted with caution, prompting additional investi-
gation, and negative results, while not ruling out patho-
genicity, can still support diagnosis when combined with 
other clinical data. The aim of these recommendations is 
to standardize reporting practice and enhance the diag-
nostic utility of DNAm episignature testing, thereby 
improving clinical outcomes.

Moreover, analysis of the methylation state of imprint-
ing control regions, conducted in parallel with the use of 
SGS methods, has proven useful in the diagnostic process 
of multilocus imprinting disturbances (MLIDs) [147].

Experimental methods
To date, the gold standard method for analyzing the 
DNAm state involves treatment with sodium bisulfite. 
This reagent induces oxidative deamination of unmethyl-
ated deoxycytosines to deoxyuracils, leaving methylated 
deoxycytosine residues unchanged. The DNAm state can 
therefore be examined on a genomic scale through the 
use of methylation arrays or direct DNA sequencing.

• Methylation arrays: The methylation arrays cur-
rently in use allow examination of the methylation 
state of numerous sites (850,000 with the Illumina 
EPIC BeadChip; 950,000 with the Illumina EPICv2 
BeadChip), which are mostly located in CpG con-
texts and are representative of the methylation state 
of known regions (CpG islands, promoters, and 
enhancers). To date, methylation arrays constitute 
an economical and scalable strategy for character-
izing methylation profiles in large cohorts. Methyla-
tion arrays are commonly used in epigenome-wide 
association studies (EWASs) and can also analyze 
DNA samples extracted from formalin-fixed, paraf-
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fin-embedded (FFPE) tissues. Methylation arrays also 
allow the determination of the number of gene cop-
ies in the analyzed region and can, therefore, reveal 
CNVs [148].

• Direct sequencing methods: These methods allow 
the analysis of DNAm at the whole-genome level 
(WGBS, whole-genome bisulfite sequencing) or 
specific regions of interest appropriately enriched 
through the use of restriction enzymes (reduced rep-
resentation bisulfite sequencing, RRBS) or capture 
kits (methyl capture). Despite being more costly than 
arrays are, sequencing methods offer higher genomic 
resolution, allowing determination of the methyla-
tion state of all cytosines in the regions of interest 
regardless of the sequence context.

• TGS: The introduction of TGS techniques promises 
to revolutionize DNA methylation analyses. This 
new sequencing technology allows the direct identi-
fication of modified bases, avoiding treatment with 
sodium bisulfite and associated DNA degradation.

Analysis stages
The main phases of the methylation data analysis are as 
follows:

1. Quantification of the methylation state of individual 
cytosines;

2. QC;
3. Filtering and normalization;
4. Identification of differentially methylated sites and 

regions.

Each of these steps must be adapted to the experi-
mental strategy used (array, SGS, or TGS) and therefore 
to the starting data. For arrays, the analysis starts from 
IDAT files, in which the intensity of the hybridization sig-
nal for each oligonucleotide probe present on the array is 
stored in a compressed manner. For arrays, the methyla-
tion state of individual sites is quantified as a beta value, 
i.e., as the ratio between the intensity recorded for probes 
complementary to the cytosine in the methylated state 
(M) and the total intensity of probes complementary to 
the cytosine regardless of its methylation state (U + M). 
The beta value of a cytosine ranges from 0 (uniformly 
demethylated state in all DNA molecules present in the 
sample) to 1 (uniformly methylated state).

For SGS and TGS, instead, the starting data consists of 
FASTQ and FAST5 files, which contain the nucleotide 
sequences of the sequenced molecules. In this case, the 
methylation state of a site is quantified from the frac-
tion of sequences (reads) that support the methylated 

(unconverted) and unmethylated (converted) state and 
can be expressed as a fraction of methylated molecules.

With respect to QC, one of the most important con-
trols is the bisulfite conversion efficiency, which for 
arrays can be performed by analyzing the signal intensity 
of appropriate control probes, whereas for sequencing, it 
is performed by examining the conversion efficiency of 
DNA from genomes with known methylation states (e.g., 
lambda phage).

For methylation arrays, an additional control is per-
formed on the signal‒to‒noise ratio of the experiment. 
Usually, samples containing a consistent percentage of 
probes with a low signal are eliminated, and it is verified 
that the overall distribution of the slide signal follows the 
expected bimodal distribution (i.e., with two maxima at 
0 and 1).

In the preprocessing phase, cytosines whose meth-
ylation estimate is not robust are filtered. In the case 
of arrays, cytosines that may be affected by nonspecific 
hybridization with array probes are removed (due to 
complementarity with multiple regions of the genome or 
the presence of polymorphisms). In the case of sequenc-
ing, sites with very high coverage compared with the 
average coverage are often removed, as they are affected 
by duplication artifacts and preferential amplification. In 
both experiments, sites on sex chromosomes are usually 
excluded and analyzed separately.

For methylation arrays, data normalization is par-
ticularly delicate and aims at removing the background 
noise of the experiment and removing artifacts gener-
ated by the characteristics of the array (dye bias correc-
tion and normalization of the signals of type I and type II 
probes). Furthermore, the evaluation of the batch effect 
is fundamental, i.e., the systematic differences between 
samples are not linked to biological characteristics but 
rather to experimental factors. For this purpose, both 
unsupervised clustering methods, such as principal com-
ponent analysis (PCA) and hierarchical clustering (HC), 
and supervised classification methods, such as exploit-
ing singular value decomposition (SVD) methods of the 
data, can be used. When identified, the batch effect can 
be corrected in the preprocessing phase via appropriate 
algorithms and, in any case, must be considered in subse-
quent differential methylation analyses.

At this point, one can proceed to identify, typically 
through the use of linear models, the differentially meth-
ylated sites or regions (differentially methylated probes, 
DMP, or regions, DMR) whose methylation state dif-
fers from that of a control cohort, identified taking into 
account the main covariates that can influence the epi-
genetic state of a sample (cell lineage of origin, age, sex) 
as well as the experimental batch. The DMPs/DMRs 
thus identified can constitute the starting point for 
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association analyses (epigenome-wide association stud-
ies (EWASs)) or can be analyzed from a functional point 
of view through gene-set enrichment techniques (GSEA) 
to evaluate the involvement of specific groups of manu-
ally curated genes (such as MSigDB or KEGG) or can 
be populated automatically or semiautomatically on the 
basis of controlled vocabularies (such as Gene Ontolo-
gies (GO) or Human Phenotype Ontologies (HPO)). 
Finally, the differences in methylation levels can be used 
for the  supervised classification of samples via machine 
learning methods such as support vector machines or 
random forests.

Tools for analyzing methylated regions
For the analysis of methylation arrays, multiple open-
source tools are available, mostly developed in R lan-
guage. Among the most commonly used pipelines are 
minfi [149], methylumi and, among the most recent, 
SeSame [150], ChAMP [151], and RnBeads [152], which 
allow the construction of pipelines that cover the entire 
analysis flow.

With respect to the identification of DMRs, the most 
widespread algorithms use two alternative strategies:

• Site-based aggregation: This group tests pheno-
typic associations at the level of individual CpG sites 
and subsequently defines significant genomic regions 
by aggregating significant sites within a certain dis-
tance. This procedure is implemented, for example, 
in the DMRCate package.

• Annotation-based regions: This strategy involves 
examining predefined genomic regions on the basis 
of a priori annotations (e.g., promoters and CpG 
islands) and verifying their associations with a phe-
notype, calculating a regional p value on the basis 
of various algorithm-specific functions. The first 
approach is usually more prone to identifying false 
positives from a statistical point of view [153].

For GSEA functional enrichment studies, missMethyl 
[154], methylGO and methylGSA [155] are among the 
most commonly used methods, as they have been spe-
cifically developed considering the data structure of these 
types of arrays. With respect to machine learning classi-
fiers, the most widely used packages are e1071 and Caret, 
which allow the use of the main artificial intelligence 
algorithms, including support vector machines and ran-
dom forests. Finally, for the analysis of CNVs from meth-
ylation arrays, the Conumee package can be used.

The analysis of sequencing data first involves aligning 
the sequences with the reference genome. Among the 
available programs, Bismark [156], BSMAP [157], and 
BS-Seeker2 [158] are commonly used. These programs 

generate files containing, for each site, the number of 
reads that support the methylated and unmethylated 
state. These files can be imported into R for subsequent 
analyses.

Among the R packages, RnBeads [152] and ChAMP 
[151] allow adapting functionalities developed for the 
analysis of methylation arrays to this type of data. In con-
trast, bsseq [159], DSS [160], and methylKit [161] are 
among the most commonly used packages developed ad 
hoc for the analysis of sequencing data.

Finally, some softwares (MethylExtract [162], Bis-SNP 
[163], BS-SNPer [164] and CGmapTools [165]) allow call-
ing variants from methylation data.

Key points summary
DNAm is a crucial epigenetic modification, especially in 
CpG dinucleotides, with diagnostic value in diseases like 
fragile X syndrome and imprinting disorders. The analy-
sis of DNAm profiles supports diagnosis, particularly for 
neurodevelopmental disorders and multilocus imprinting 
disturbances. Experimental methods for DNAm analy-
sis include methylation arrays and bisulfite sequencing, 
with TGS offering new capabilities for direct methyla-
tion detection without bisulfite treatment. Key analysis 
phases involve quantification, quality control, filtering, 
normalization, and identifying DMRs. Various bioinfor-
matics tools, like minfi, SeSame, and Bismark, aid in the 
analysis of DNAm data from arrays or sequencing, sup-
porting functional analysis, CNV detection, and machine 
learning for classification.

Conclusions
This document provides best practices for germline vari-
ant and DNA methylation analysis using SGS (Fig. 7) and 
TGS (Fig. 8) data. Advances in sequencing technologies 
have significantly enhanced our ability to detect, char-
acterize, and interpret genetic and epigenetic variations, 
revolutionizing human genetics and molecular medi-
cine. The transition from traditional Sanger sequencing 
to high-throughput SGS and now to long-read TGS has 
enabled the identification of complex genetic alterations, 
including structural variants and methylation patterns, 
which are crucial for understanding the genetic basis of 
hereditary diseases.

The methodologies and tools discussed herein empha-
size the importance of rigorous quality control, accurate 
alignment, effective variant calling, and comprehensive 
annotation. Each step in the sequencing data analysis 
pipeline requires careful consideration to ensure reli-
ability and accuracy in identifying genetic variants. In 
addition to variant analysis, DNA methylation profil-
ing has emerged as a vital component of the epigenetic 
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landscape, providing valuable insights into the research 
and molecular diagnosis of various genetic disorders.

Furthermore, it is essential to frame any genotyping 
process within an effective quality management system 
that maintains oversight of the entire set of processes 
carried out in the laboratory. This ensures consistency, 
traceability, and adherence to quality standards through-
out the sequencing workflow, from sample preparation 

to data interpretation, thereby minimizing errors and 
improving the overall reliability of results.

The integration of new technologies and approaches, 
such as machine learning for variant impact prediction 
and ensemble methods for structural variant calling, 
highlights the ongoing evolution and improvement in 
this field. By providing good practices and highlighting 
the most effective tools and techniques, this document 

Fig. 7 Summary of the variant calling process. Graphical outline of the proposed computational analyses for germline variant calling in short-read 
sequencing. Created in BioRender. BioRender.com/b98g706
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aims to support researchers and clinicians in their efforts 
to diagnose and manage genetic diseases. The use of SGS 
and TGS technologies, coupled with robust DNA meth-
ylation analysis, not only enhances our understanding of 
the genetic and epigenetic underpinnings of diseases but 
also opens new avenues for personalized medicine and 
targeted therapies.

As sequencing technologies continue to advance, it 
is imperative to stay updated with the latest develop-
ments and adapt best practices accordingly. The insights 
and recommendations provided in this document are 
intended to serve as a valuable resource for optimizing 
genetic and epigenetic analyses, ultimately contribut-
ing to better health outcomes and advancing the field of 
genomics.
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