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ABSTRACT

Identification of tissue-specific gene regulatory
networks can yield insights into the molecular basis
of a tissue’s development, function and pathology.
Here, we present a computational approach designed
to identify potential regulatory target genes of photo-
receptor cell-specific transcription factors (TFs).
The approach is based on the hypothesis that genes
related to the retina in terms of expression, disease
and/or function are more likely to be the targets
of retina-specific TFs than other genes. A list of
genes that are preferentially expressed in retina
was obtained by integrating expressed sequence
tag, SAGE and microarray datasets. The regulatory
targets of retina-specific TFs are enriched in this set
of retina-related genes. A Bayesian approach was
employed to integrate information about binding
site location relative to a gene’s transcription start
site. Our method was applied to three retina-specific
TFs, CRX, NRL and NR2E3, and a number of potential
targets were predicted. To experimentally assess the
validity of the bioinformatic predictions, mobility
shift, transient transfection and chromatin immuno-
precipitation assays were performed with five pre-
dicted CRX targets, and the results were suggestive
of CRX regulation in 5/5, 3/5 and 4/5 cases, respect-
ively. Together, these experiments strongly suggest
that RP1, GUCY2D, ABCA4 are novel targets of CRX.

INTRODUCTION

Understanding of the regulatory networks controlling retinal
gene expression will probably provide insights into the

molecular basis of retinal development, function and disease.
Development of network models requires knowledge about the
transcription factors (TFs) involved, the target genes that are
regulated by these factors, and the interactions of the products
of these genes with other downstream and upstream genes.
Traditionally, the identity and nature of TF-DNA regulatory
element interactions have been studied by wet-lab-based
approaches, usually analyzing one gene at a time. Among
the approaches that have been employed are affinity chroma-
tography and related protein purification methods, yeast
one-hybrid cloning, electrophoretic mobility shift assays
(EMSAs), protein–DNA cross-linking studies, DNase I foot-
print analysis and chromatin immunoprecipitation (ChIP).
More recently, a method termed ChIP-chip, which combines
techniques of ChIP and microarray (chip), has been developed
to determine TF binding locations on a genomic scale (1,2).
Although advances have certainly been made in using these
approaches to identify retinal regulatory factors and elements
(3,4) and a number of TF mutations associated with retinal
disease have been identified (5–12), our overall knowledge of
retinal regulatory networks is still rather limited.

With the goal of ultimately developing more comprehensive
and accurate models of retinal regulatory networks, we have
been trying to apply and further develop computational
approaches to the analysis of retinal gene expression datasets.
As a specific model, we have so far focused on identification of
the regulatory targets of CRX (13,14), and to a lesser extent on
NRL (15–17) and NR2E3 (10,18,19). These TFs are predom-
inantly retina-specific and play an important role in retinal
development, function and pathology. We have concentrated
on CRX, not only because of its biological importance but also
because significant experimental data is already available
related to its regulatory targets. For example, microarray and
SAGE analysis have been performed comparing gene expres-
sions between Crx null (�/�) and wild-type mice (20,21).
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Increasing efforts are being made to utilize bioinformatics
to complement laboratory-based methods in the analysis of
transcriptional regulatory networks. Due to the relative sim-
plicity of its genome, many of these efforts have focused on
yeast (1,22–24), but some have also explored mammalian
systems (25–28). The difficulty of predicting regulatory tar-
gets based on TF binding sites is largely due to the fact that TF
binding sequences are short and often degenerate. The short
sequences of binding motifs by themselves do not appear to be
sufficient for appropriate and specific protein–DNA recogni-
tion in vivo. A full understanding of recognition mechanisms is
likely to require information on protein–protein interactions
and chromatin structure. Two widely used computational
methods that can increase prediction specificity are phylogen-
etic footprinting and identifying cis-regulatory module. Phylo-
genetic footprinting is based on the observation that functional
binding motifs are more often located on evolutionarily con-
served regions (26,29–31). The method of identification of cis-
regulatory modules assumes that clusters of binding motifs of
related TFs are more likely to be functional than a solitary
binding motif (25,32–36).

Here, we propose a complementary method to enrich for
potential target genes of a tissue-specific TF. The method is
based on the reasonable hypothesis that most genes that are
regulated by retina-specific TFs are related to the retina in
terms of expression, function or disease. Instead of searching
for TF targets from the entire genome, we have concentrated
on the subset of genes that are retina-related. This idea is
actually quite intuitive. When researchers experimentally
hunt for target genes of tissue-specific TFs, the genes relevant
to the tissue are often the good candidates to be examined.
Like other computational methods for target enrichment, this
approach will miss some true positives since some targets of
retina-specific TF may not be specifically expressed in retina,
or may not have a known retinal function. However, the
important question here is how much we gain in specificity
by losing a certain amount of sensitivity. Based on the results
from our computational and experimental work, our approach
seems to provide a reasonable balance.

Identification of a set of retina-related genes, however, is not
trivial. A large proportion of retina-related genes are retina-
enriched genes that are preferentially expressed in the retina
compared to other tissues. A number of groups have utilized
a variety of approaches to identify such retina-enriched
genes (37). These studies have been somewhat successful,
in that they have identified interesting retina-specific genes
(21,38–44), but they have also been limited by technical
and interpretive problems (45). One manifestation of these
problems is that only a surprisingly small portion of the
identified retina-enriched genes overlaps across the studies,
suggesting significant error rates in at least some of the indi-
vidual studies (46). One approach to reducing the overall error
rate is to integrate data across the independent studies. In this
paper, we proposed a score-based integration approach to
identify retina-enriched genes.

This identification of genes preferentially expressed in
retina turned out to be useful in enriching for the targets of
retina-specific TFs. We identified 591 retina-related genes,
which is �35-fold reduction in prediction space from the
entire human genome (20 000–25 000 genes) (47). Among
the 591 retina-related genes, we identified 169, 166 and

97 putative targets of CRX, NRL and NR2E3, respectively.
A significant fraction of known targets was recovered in our
predictions. Furthermore, we applied a Bayesian approach to
rank these targets for prioritizing the experimental validation.
Finally, we performed a set of experiments (EMSA, transient
transfection and ChIP) on five genes which were predicted as
novel targets of CRX. Three of them yielded positive results in
all experiments, strongly suggesting that they are indeed novel
targets of CRX, and that the inclusion of expression data into
TF target predictions can yield reasonable specificity.

MATERIALS AND METHODS

EST, SAGE and microarray datasets

Expressed sequence tag (EST) data were obtained from
NCBI’s UniGene dataset (http://www.ncbi.nlm.nih.gov/
UniGene). SAGE data was obtained from NCBI GEO
(Gene Expression Omnibus) website (http://www.ncbi.nlm.
nih.gov/GEO). Microarray data was from Chowers et al.
(46). Additional EST and SAGE data was extracted from
public domain cDNA libraries (NCBI). Only non-
normalized libraries from normal tissues were included in
the analysis (‘non-normalized’ and ‘normal’ were used as
key words for library searching). Two sets of reference
libraries were constructed to compare with the retina libraries.
One represented libraries from normal brain tissues (including
different subregions such as cortex, pineal gland and cerebel-
lum), and the other represented ‘pooled’ libraries from a vari-
ety of normal tissues including liver, kidney and brain. The
library numbers of (retina, brain, ‘pooled’) for EST are
(3,14,74), for SAGE (4,8,32) and for microarray (5,2,4).
The detailed description of each library can be found in the
Supplementary Materials. The gene expression levels for the
EST and SAGE data sets were normalized by the library size.
The numbers of genes in the three sets are 16 569, 32 435 and
6098 for the EST, SAGE and microarray studies, respectively.
Only the genes found in all three studies were considered in the
next stage.

Genome sequences and alignments

The human and mouse alignments were obtained from the
UCSC genome web browser (48) using blastz (49). The align-
ments were filtered so that only the best alignment for any
given region of the human genome was left. The alignment file
we used is axtBest. The human assembly we used is build 33
(or hg16), and the mouse assembly is MGSCv4 (or mm3).

Promoter sequences

In order to reduce the complexity of our analysis, we restricted
the regions of interest to sequences from 2000 bp upstream to
200 bp downstream relative to each gene’s transcriptional start
site (TSS). To identify the upstream sequence of a gene, how-
ever, can be non-trivial. Most of the cDNA information stored
in current databases is incomplete in the sense that they lack
the precise information TSSs. To address this limitation,
we combined data from the database of Eukaryotic Promoter
Database (EPD) (50,51) and the DataBase of human
Transcriptional Start Sites (DBTSSs) (52) to obtain a set of
experimentally determined TSSs. A total of 1871 human
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promoter sequences were obtained from EPD and �9000
full-length 50-untranslated region sequences were obtained
from DBTSS.

Bayesian approach for motif location constrain

We used Bayes’ rule for update: p(motif|dis) = p(dis|motif) *
p(motif )/p(dis), where p(dis|motif ) is the probability of a
given distance (dis) for motif. We obtained the distribution
from TRANSFAC (53,54) (see Figure 3). p(motif ) is the prior
probability that a hit is a regulatory motif and p(dis) is the
distance distribution for all hits of the motifs. p(motif ) was
estimated from the hit score and defined as the ratio of the
number of positive examples versus the total number of hits in
a certain score range.

False discovery rate (FDR)

First, permutations were performed. The tissue labels were
randomly assigned to retina and other tissues. Since values
of gene expression in various studies usually have different
scale, the permutations were performed only within each
study; label randomization did not cross the different studies.
For each permutation, the t scores for each individual study
and the summary score for integrated data set were calculated.
Average t scores and average summary score for permutations
were obtained. Then, we compared the score distributions in
original data sets and those from permutation. For a given
threshold x, the FDR was calculated as np/n, where np is the
average number of genes whose summary scores are larger
than x after permutation, and n is the same number in the
original data. Also, np and n denote the numbers of falsely
significant genes and genes called significant, respectively.
The genes called significant include both true and false sig-
nificant genes. With a series of threshold x’s, we obtained the
number of falsely significant genes as a function of the number
of genes called significant. The calculation was performed for
three studies and integrated data set.

Hypergeometric probability

To determine if the number of overlapped target genes
between two factors is over-represented or by chance, we
calculated the hypergeometric probability by the formula:

P ¼
Xmin t1‚t2ð Þ

i¼x

t1
i

� �
N � t1

t2 � i

� �

N
t2

� � ,

where N is the total number of retina-enriched genes
(N = 617), t1 and t2 are the numbers of target genes of two
factors and x is the number of shared targets of these factors.
Notice it is not symmetric for exchanging t1 and t2 in the
formula. We chose the larger one as the P-value.

EMSAs

Assays were carried out essentially as previously described
(13), with the exception of using p32-a-dGTP as the radio-
active nucleotide for probe labeling. The radioactive probes
were purified through G25-columns according to the manu-
facturer’s protocol (Amersham Pharmacia Biotech 27-
5325-01). Approximately 10 000 c.p.m. of probe and 20 ng

of CRX-HD-GST protein were used for each assay. The DNA
oligomer pairs used to generate the target probes were listed in
Supplementary Material.

Generation of luciferase reporter constructs

The promoter regions of RP1, GUCY2D, ABCA4, ARR3 or
BBS4 were amplified from human genomic DNA by PCR,
using primers containing XhoI (50 end) and HindIII (30 end)
restriction sites. Promoter–luciferase reporter constructs were
then generated by directionally cloning the PCR products into
the XhoI and HindIII sites of the pGL2-Basic vector contain-
ing firefly luciferase gene (Promega). Construct sequences
were confirmed by sequencing. DNA used for transient trans-
fection was prepared using Qiagen plasmid maxi-prep accord-
ing to the manufacturer’s protocol. The primers used for PCR
cloning were shown in Supplementary Material.

Transient transfection and luciferase assay

Transient transfections were performed using a modification
of our previously described procedure (13). Lipofectamine
2000 (Invitrogen) was used instead of calcium phosphate,
and six-well culture plates were used for culturing GripTite
293 MSR cells (Invitrogen). Transfections were performed
using 80–90% confluent cells and a 1:2.5 ratio of DNA
(mg)/Lipofectamine (ml). A total of 2.2 mg of DNA was
used for each transfection, including 0.2 mg of reporter con-
struct, different amounts (0, 0.2, 1 or 2 mg) of pcDNA3.1/
HisC-bovin Crx expression construct and 2 ng of Renilla luci-
ferase reporter (pRL-CMV, Promega) as an internal control for
transfection efficiency. Luciferase assays were performed
using the Dual Luciferase Reporter Assay System (Promega)
as described by the manufacturer. Each construct was trans-
fected in triplicate per experiment and three independent
experiments were performed. Since we noted that increasing
amounts of the CRX expression construct consistently led to
decreasing amounts of Renilla luciferase activity, which
would have led to artifactually high CRX transactivation val-
ues, we performed a second normalization based on Renilla
luciferase-normalized firefly luciferase values obtained with
empty pGL2-Basic vector.

ChIP

Primers were designed to amplify 150–250 bp fragments of the
promoter regions containing predicted CRX binding site(s) of
mouse Rp1, Gucy2d, Bbs4, Abca4 and Arr3. The promoter
regions of Rho and Alb were also analyzed as positive and
negative control, respectively. ChIP assays were performed
using adult mouse retina as described previously (55,56),
with minor modifications. Intact retinas harvested from 8
week old BALB/cJ mice (The Jackson Laboratory) were trea-
ted with 1% formaldehyde in PBS at room temperature for
15 min and then homogenized with a Dounce homogenizer.
One and a half mouse retinas were used for each ChIP reaction.
Chromatin complexes were sheared in SDS lysis buffer (1%
SDS, 10 mM EDTA, 50 mM Tris–HCl, pH 8.1, 1 mM PMSF,
1 mg/ml aprotinin and 1 mg/ml pepstatin A) to an average
length of �500 bp by 3 repeats of 10 s sonication at 100%
duty cycle and 1.5 power output using a Branson Sonifier 250.
After diluting the SDS concentration, immunoprecipitation
was performed with an anti-CRX antibody (p261, a gift
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from Dr Shiming Chen, Washington University) followed by
Protein A agarose (Upstate Biotechnology). After washing and
eluting the DNA–protein complexes with 300 ml of elution
buffer (1% SDS and 0.1 M NaHCO3), cross-links were
reversed by heating at 65�C for 4 h. The precipitated DNA
was purified by phenol/chloroform extraction and ethanol pre-
cipitation, resuspended in 30 ml TE buffer and 1 ml of the
resultant solution was analyzed by PCR using gene-specific
primers. The same procedures with no antibody were per-
formed in parallel as negative control. The primers used for
analysis were listed in Supplementary Material.

RESULTS

We utilized a multiple-step approach to predict the regulatory
targets of retina-specific TFs (see Figure 1). First, we used a

statistical approach to identify a set of retina-enriched genes,
which we hypothesize to be more likely to be the target genes
of retina-specific TFs than a set of random genes. Then, we
searched for the presence of the binding sites of these TFs in
the promoter regions of the retina-enriched genes using a
phylogenetic footprinting approach. Finally, the information
of binding site position relative to TSS was incorporated and
the predicted targets were prioritized based on a probability
score.

Positive controls

As a guide to assess the sensitivity and specificity of target
prediction, we chose a set of positive control genes that have
already been reported, based on experimental data, to be regu-
latory targets of CRX (13,14,56). The genes chosen were
rhodopsin (RHO), arrestin (SAG), S-cone opsin (OPN1SW ),
M-cone opsin (OPN1MW ), phosphodiesterase 6B (PDE6B)
and guanine nucleotide binding protein (GNAT1), and they
are referred to below as positive control set I. Although the
experimental data supporting control set I is strong, the set is
biased by the genes that researchers have happened to choose
as their genes of interest. Most of them are expressed specif-
ically in photoreceptor cells. Using this set of genes as positive
controls is likely to over-estimate the sensitivity in our study.
We therefore chose another set, which is from a SAGE ana-
lysis comparing retinal gene expression in Crx null compared
to that in wild-type mice (21). The genes that were identified as
significantly down-regulated in the Crx (�/�) animals are
potential CRX target genes. Of the 122 differentially
expressed murine genes, we identified 45 human orthologs.
Among these 45 genes, 27 genes contain at least one CRX
binding site in their promoter regions. This set of 27 genes is
defined as positive control set II. We did not combine sets I and
II because they represent two different approaches. Compared
with set II, set I might have a higher confidence level, but on
the other hand, it is biased to retina-related genes.

Prediction of CRX target genes

We attempted to predict CRX target genes in a subset of the
human genome by incorporating tissue-specificity informa-
tion. The rationale for this was that since the expression of
CRX is largely retina-specific, it seemed reasonable that most
of its target genes would be relevant to retina in terms of
expression, function or disease. This set of retina-related
genes is expected to be enriched for CRX targets. First, we
identified a set of genes that are preferentially expressed in the
retina compared to other tissues.

Identification of retina-enriched genes. We sought to compile
a reliable list of genes that were preferentially expressed in
the retina by integrating EST, SAGE and microarray
datasets. Since it was not clear a priori which of the available
lists were more accurate, we used a statistical approach to
combine the datasets, reasoning that a set combining the
information from the different experimental approaches
would more closely approximate the ‘true’ list of retina-
enriched genes.

Statistical testing was performed based on the null hypo-
thesis that there is no gene that is preferentially expressed in
retina compared to other tissues. A statistical t-test score for
each gene was calculated for each study (i.e. EST, SAGE and

Figure 1. Schematic view of our approach to identification of regulatory target
genes of retina-specific TFs.
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microarray). The t-test score for gene i is defined as

t ið Þ ¼ �xxr ið Þ � �xxn ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vr ið ÞþVn ið Þ

n1þn2�2
1=n1 þ 1=n2ð Þ

q ‚

where �xxr and �xxn are the average expression levels for retinal
and non-ocular libraries, respectively, Vr and Vn are defined as
Vr ¼

P
xr � �xxrð Þ2

, Vn ¼
P

xn � �xxnð Þ2
; and n1 and n2 are

the numbers of libraries. For the genes that were present in all
three studies, a summary score was calculated as the average
of the three scores from these individual studies, i.e.
t = (tEST + tSAGE + tarray)/3. The use of the average function
to combine t scores is based on the assumption that these
studies yield data of equal quality. An alternative way for
integration is using effect size (57,58) instead of t score. In
fact, the results obtained by effect size and t score are similar in
this particular case. The correlation coefficient of the gene
rankings from the two integration approaches is 0.998. A
more sophisticated integration approach might be to assign
a weight to each study based on its data quality and then
use a Bayesian method for the integration. However, since
there are only a few known retina-enriched genes available,
it is not statistically sound to assess the quality of each data set
based on a limited group of known retina-enriched genes.
Furthermore, we checked the distributions of t values. They
are comparable for three studies and thus justify the simple
averaging.

By comparing gene expression from retina libraries with
that from ‘pooled’ tissues, summary scores, which reflect the
confidence level of a gene being preferentially expressed in
retina, were calculated. By ranking the summary score, we
obtained a corresponding list of retina-enriched gene. Table 1
shows the top 20 genes from this list, and the whole list can be
found in the Supplementary Material. The list can be classified
into three types of genes: (i) genes already known to be retina-
enriched, such as guanine nucleotide binding protein (GNAT1)
and arrestin (ARR3); (ii) genes previously not known to be
retina enriched, such as WNT inhibitory factor 1 (WIF1) and
frizzled-related protein (FRZB) and (iii) unknown genes, such
as EST clusters.

To check if the results are sensitive to the choice of refer-
ence dataset, we also compared gene expression from retina
libraries with that from brain tissues. The two lists (retina
versus ‘pooled’ and retina versus brain) are similar, but
with slight differences in ranking. The difference can be attrib-
uted to technical variation (e.g. library sampling) and/or
biological variation (e.g. expression variation between the
brain tissues and the ‘pooled’ tissues). To compare the two
lists globally, we plotted the summary scores from the
two comparisons as shown in Figure 2A. Each point in the
figure corresponds to one gene. The scatter plot displays a
good correlation with a correlation coefficient of 0.82. How-
ever, the summary scores from the ‘retina versus pooled’
comparison tend to be larger than those from the ‘retina versus
brain’ comparison. This observation probably reflects the
greater similarity of retina to brain than to the pooled tissues.

Statistical validation of retina-enriched genes. To assess the
validity of the list of differentially expressed genes, it would be
desirable to compare the obtained list with positive and neg-
ative controls. Due to limited knowledge on retina-enriched

Table 1. Retina-enriched genes by integrating EST, SAGE and microarray data

Rank UniGene Gene name

1 Hs.51147 Guanine nucleotide binding protein (G protein),
(GNAT1), mRNA

2 Hs.261204 17b8 Homo sapiens cDNA
3 Hs.32721 S-antigen; retina and pineal gland

(arrestin) (SAG), mRNA
4 Hs.13768 mRNA; cDNA DKFZp434I1216

(from clone DKFZp434I1216)
5 Hs.416707 ATP-binding cassette, sub-family A (ABC1),

member 4 (ABCA4)
6 Hs.308 Arrestin 3, retinal (X-arrestin) (ARR3), mRNA
7 Hs.92858 Guanylate cyclase activator

1A (retina) (GUCA1A), mRNA
8 Hs.128453 Frizzled-related protein (FRZB), mRNA
9 Hs.284122 WNT inhibitory factor 1 (WIF1), mRNA

10 Hs.247565 Rhodopsin (opsin 2, rod pigment) (RHO), mRNA
11 Hs.281564 Retinal outer segment membrane protein 1

(ROM1), mRNA
12 Hs.129882 Interphotoreceptor matrix proteoglycan 1

(IMPG1), mRNA
13 Hs.110080 mRNA; cDNA DKFZp434C0631

(from clone DKFZp434C0631)
14 Hs.410455 unc-119 homolog (Caenorhabditis elegans)

(UNC119), transcript variant 2
15 Hs.89606 Neural retina leucine zipper (NRL), mRNA
16 Hs.154131 Voltage-gated potassium

channel Kv11.1 (Kv11.1), mRNA
17 Hs.857 Retinol binding protein 3, interstitial (RBP3), mRNA
18 Hs.135058 tc57d10.x1 Homo sapiens cDNA, 30-end
19 Hs.433923 Transferrin (TF), mRNA
20 Hs.93828 AGENCOURT_6543695 Homo sapiens

cDNA, 50-end

Figure 2. (A) Correlation of summary scores between the comparisons of retina
versus brain and retina versus ‘pooled’; x-axis is the score from the comparison
of retina versus ‘pooled’ and the y-axis is from retina versus brain. The line is for
perfect correlation and only used for eye guide. (B) False discovery rates
for EST, SGE, microarray and integrated data sets; x-axis is the number of
significant genes and y-axis is the genes falsely called significant.
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genes, we utilized an FDR calculation to evaluate statistical
significance (59–61). The FDR is the expected proportion of
false positives among the significant tests. In practice, we used
an empirical Bayes method to calculate the FDR as described
by Efron and Tibshirani (62) (see Materials and Methods for
details). Since FDR is a ratio of expected false positives and
overall significant genes, for a given number of significant
genes, FDR is proportional to the number of falsely significant
genes. Figure 2B illustrates the number of false positive genes
in function of number of significant genes. As a comparison,
we also calculated the corresponding rates for each individual
study. The FDR for the integrated set is significantly lower
than those for each of the individual studies. For example, after
the data integration, with 200 genes called significant, there
are four falsely significant genes, leading to an FDR of 2%. In
contrast, the corresponding FDRs are 18, 10 and 7% for the
microarray, SAGE and EST, respectively. Consequently, with
the data integration procedure, it appears we can obtain a more
reliable list of retina-enriched genes. We chose to use the top
500 genes on the list for further prediction, which from the
above analysis has an FDR of 5%.

Additional potential target genes. One caveat in the analyses
described above is that genes that are potentially important to
retina function are not necessarily retina-enriched. For
instance, mutation in the pre-mRNA splicing factor gene
PRPC8 is associated with the disease retinitis pigmentosa
(RP13 locus), but it is a ubiquitously expressed gene (63).
Some genes are retina-specific, but their gene expression
levels are so low that our approach does not recognize
them as significantly retina-enriched. OPN1SW is one such
example. OPN1SW is included as a positive control in the
study and is well known to be retina-specific (64). The cor-
responding UniGene cluster (Hs.102119), however, contains
only 10 EST sequences. Of these, two sequences are from an
optic nerve library, one from an eye library and the rest are
from other libraries. This cluster would not be considered as a
significantly retina-enriched gene by our EST criteria, even
though it is believed to be retina-specific and very likely a
target of CRX.

To address this problem, we compiled an additional list of
genes related to the retina in terms of disease or function. The
list was based on information from two sources: (i) RetNet
(http://www.sph.uth.tmc.edu/Retnet/), which, at the time of
the analysis, consisted of 94 retinal disease genes and
(ii) key word search of LocusLink (65) summary descriptions.
Sixty-nine genes contain either ‘retina’ or ‘visual’ in their
LocusLink’s summary description. Combined with the 500
retina-enriched genes, we had overall 591 retina-related
genes for prediction at this stage.

Enrichment of CRX targets in the retina-related gene list. To
assess the effect of reducing the prediction space from the
whole genome (20 000–25 000 genes) (47) to the 591
retina-related genes, we first examined the retention of positive
control genes in the reduced set. All positive control genes
from positive control set I were retained, while for positive set
II, 6 of 27 were present in the 591 gene list, yielding sensit-
ivities of 100 and 22%, respectively. For this 6 positive genes,
4 of them can be found in retina-enriched gene list, while all
of them are retina disease genes. As mentioned earlier, the

sensitivity based on positive set I is likely to be an overes-
timate due to its bias toward photoreceptor genes. On the other
hand, since positive set II is derived from gene expression data
instead of a direct measure of CRX binding, and thus probably
includes indirectly regulated genes, the sensitivity obtained
from this control is likely to be an underestimate. More accur-
ate sensitivity assessment will be possible only when a more
reliable and larger set of positive controls is available.

Searching for CRX targets in the retina-related gene set. We
next searched the retina-related set for genes containing
sequences resembling the CRX binding site (see Figure 4
for CRX binding motif ). A position-specific score matrix
was constructed for CRX binding sites based on previously
published data and alignments (13). This was used to search
the promoter sequences of the 591 retina-related genes using
the program Patser (66). We used �log(P) as the score, where
‘P’ is the P-value provided by the program. The score for
known binding sites ranged from 6.54 to 9.63. So as to include
most potential regulatory motifs, while realizing that the
resultant set probably contained many more false than true
positives, we defined a score cut-off of 6 for further analysis.
We restricted the search domain to sequences from 2000 bp
upstream to 200 bp downstream relative to known or pre-
dicted TSSs of all RefSeq genes (see Materials and Methods
for TSS).

We applied a phylogenetic footprinting approach to
improve specificity. Only CRX binding sequences within con-
served regions between the human and mouse genomes were
taken into account (see Materials and Methods for details).
About one-third of the hits remain after the phylogenetic
footprint-based filtering. Consistent with the finding that regu-
latory regions tend to be evolutionarily conserved, those pos-
itive controls among the 591 retina-related genes still remain
after application of the phylogenetic footprinting filter (6 of 6
positive control genes from positive set I and 6 of 27 from
positive set II). Besides the positive controls, our analysis
predicted as CRX targets a number of genes not previously
implicated as being regulated by CRX. In total, among the 591
retina-related genes, 169 of them contain at least one CRX
binding site in their promoter regions.

Bayesian approach to ranking the list of putative targets. We
next sought to take advantage of transcription binding site
localization information to help rank the 169 predicted
CRX targets for prioritizing the follow-up experimental
tests. Although eukaryotic TFs can bind many thousand of
base pairs away from their target genes, the distribution of
their binding sites is non-random. In order to explore this issue
quantitatively, we extracted 2100 eukaryotic binding sites
from the TRANSFAC database (53,54) and calculated the
distribution of their positions relative to their corresponding
TSSs. The peak density of binding sites was found between
100 and 200 bp upstream (Figure 3). In order to incorporate
this spatial information into our target prediction algorithm,
we utilized a Bayesian approach (see Materials and Methods).

A list of putative CRX target genes ranked by confidence
level was obtained after we applied the Bayesian analysis. The
top 25 putative target genes, with the positive controls marked,
are displayed in Table 2. As evidence of the efficacy of the
Bayesian approach, four of the positive controls were ranked
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within the top 10 (OPN1SW-ranked 1, SAG-ranked 3, PDE6B-
ranked 6 and RHO-ranked 9). The average ranking of the six
positive control genes is 20.2, while the random expectation of
average ranking is 84.5 (= 169/2). The P-value of the observed
average ranking is <0.0002 according to a random simulation,
indicating that the target genes are further enriched in the
top-ranking positions in the predicted list.

Other retina-specific transcription factors
(NRL, NR2E3)

The same approach was also applied to two other
retina-specific TFs, NRL and NR2E3. NRL is a basic

motif-leucine zipper TF that is preferentially expressed in
rod photoreceptors and is involved in regulating photoreceptor
development (15–17,67). NRL interacts with CRX and the two
work synergistically to activate rhodopsin expression (17,68).
NR2E3, also known as PNR, is a retinal nuclear receptor that is
a presumed ligand-dependent TF that functions as a regulator
of photoreceptor gene expression (10,18,19). Using the bind-
ing sites of NRL and NR2E3 (shown in Figure 4), we applied
the techniques of phylogenetic footprinting and binding loca-
tion constraint to the 591 retina-related genes. This resulted in
the prediction of 166 and 97 putative targets of NRL and
NR2E3, respectively. The lists of the predicted target genes
can be found in the Supplementary Material.

Recently, a microarray analysis of Nrl null mice has been
employed to identify NRL targets (69). Eighteen putative NRL
targets were identified from a follow-up experiment of ChIP
analysis. Five of them are predicted by our bioinformatic
approach, with two of them being the top two in our list
(RHO, ROM1). For the targets of NR2E3, it has been found
that NR2E3 activates transcription of rod-specific genes and
represses cone-specific genes (70,71). Among 14 genes with
aberrant expression patterns in Nr2e3 mutant mice, five of
them are predicted by us as putative targets.

We also examined the combinatorial regulation of these
TFs. Figure 4 is a Venn diagram for the putative targets of
the three factors. The overlap between these targets is much
larger than would be expected from random assortment. The
respective P-values obtained from a hypergeometric probab-
ility (see Materials and Methods) are 9.9 · 10�62, 1.3 · 10�21

and 5.1 · 10�26 for the overlap between the targets of CRX
and NRL, NRL and NR2E3, NR2E3 and CRX, respectively
(note that the P-values were adjusted for multiple testing).

Figure 3. Distribution of the positions of binding sites relative to the TSS.
Negative values represent upstream regions. Approximately 2100 eukaryotic
binding sites, extracted from the TRANSFAC database, were used for the
calculation.

Table 2. Predicted CRX target genes

Ranking RefSeq ID Chromosome Gene name EMSAa ChIP Transfection

1b NM_001708 chr7 Opsin 1 (cone pigments), short-wave-sensitive (OPN1SW)
2 NM_001297 chr16 Cyclic nucleotide-gated channel beta 1 (CNGB1)
3 NM_000541 chr2 S-Antigen; retina and pineal gland (arrestin) (SAG)
4c NM_033028 chr15 Bardet–Biedl syndrome 4 (BBS4) +
5 NM_000326 chr15 Retinaldehyde binding protein 1 (RLBP1)
6 NM_000283 chr4 Phosphodiesterase 6B, rod, beta (PDE6B)
7 NM_012265 chr22 Chromosome 22 open reading frame 3 (C22orf3)
8 NM_000180 chr17 Guanylate cyclase 2D, membrane (retina-specific) (GUCY2D) + + +
9 NM_000539 chr3 Rhodopsin (opsin 2, rod pigment) (RHO)

10 NM_000330 chrX Retinoschisis (X-linked, juvenile) 1 (RS1)
11 NM_001604 chr11 Paired box gene 6 (aniridia, keratitis) (PAX6)
12 NM_002900 chr10 Retinol binding protein 3, interstitial (RBP3)
13 NM_006269 chr8 Retinitis pigmentosa 1 (autosomal dominant) (RP1) + + +
14d NM_000440 chr5 Phosphodiesterase 6A, cGMP-specific, rod, alpha (PDE6A)
15 NM_000350 chr1 ATP-binding cassette, sub-family A (ABC1), member 4 (ABCA4) + + +
16 NM_004312 chrX Arrestin 3, retinal (X-arrestin) (ARR3) + +
17 NM_014848 chr15 Synaptic vesicle protein 2B homolog (SV2B)
18 NM_007123 chr1 Usher syndrome 2A (autosomal recessive, mild) (USH2A)
19 NM_006493 chr13 Ceroid-lipofuscinosis, neuronal 5 (CLN5)
20 NM_022567 chrX Nyctalopin (NYX)
21 NM_005272 chr1 Guanine nucleotide binding protein (G protein), (GNAT2)
22 NM_002574 chr1 Peroxiredoxin 1 (PRDX1)
23 NM_005316 chr11 General transcription factor IIH, polypeptide 1 (GTF2H1)
24 NM_000253 chr4 Microsomal triglyceride transfer protein (MTP)
25 NM_000409 chr6 Guanylate cyclase activator 1A (retina) (GUCA1A)

aPositive results from each experiment are marked with ‘+’.
bThe positive controls are highlighted by italics.
cThe genes selected for experimental validation are in bold font.
dThis gene was not selected as positive control in our analysis, but has been found to be CRX target recently (52).
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Thus, the occurrences of binding motifs of these factors are
correlated. This observation corroborates the finding that these
three factors form a TF complex that co-regulates rod photo-
receptor genes (19,71).

Experimental assessment of target predictions

To assess the validity of our bioinformatic predictions, we
have selected a sample of five genes predicted as novel targets
of CRX. They were analyzed by EMSA, transient transfection
and ChIP. The selected genes, chosen as representative well-
characterized retinal genes, were Bardet–Biedl syndrome-4
(BBS4; rank 4, see Table 2), rod outer segment membrane
guanylate cyclase (GUCY2D; rank 8), retinitis pigmentosa 1
(RP1; rank 13), ATP binding cassette transporter retina-
specific (ABCA4; rank 15) and X-arrestin (arrestin 3, cone
arrestin; ARR3; rank 16).

By EMSA, affinity-purified human CRX homeodomain
GST fusion protein (CRX-HD-GST) bound to DNA oligomers
containing predicted CRX binding sites for all five genes
(Figure 5, lanes 2, 4, 6, 8, 10, 12 and 14). The finding of
multiple shifted bands with GUCY2D and ARR3 (lanes 4
and 14) suggests that CRX may bind to multiple sites within
these probes or may bind as a multimer. The fraction of probe
shifted also varied with the different probes, particularly with
ABCA4 (compare lanes 10 and 12). These results indicate that
CRX-HD can show preference in selecting its binding targets

Figure 4. Venn diagram for the target genes for CRX, NRL and NR2E3. The
binding motif logos for each factor are shown. The numbers in the parentheses
represent the total number of predicted targets for each factor.

Figure 5. EMSA analysis of predicted CRX targets genes. Lanes 1, 3, 5, 7, 9, 11, 13 show the indicated free probes without CRX homeodomain (CRX-HD). Lanes 2,
4, 6, 8, 10, 12, 14 contain the indicated probe plus 20 ng of CRX-HD. Mobility shifts are evident for all the genes.
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in vitro, which presumably is determined by the sequences
flanking the core TAAT/ATTA target sequence.

We next used transient transfection assays to test whether
the predicted target genes could in fact be transactivated by
CRX. Three of the genes (RP1, GUCY2D and ABCA4) showed
levels of transactivation that were higher than that seen with a
known CRX target, rhodopsin (BRho130) (Figure 6). Signi-
ficant activation was not seen with either ARR3 or BBS4.
Interestingly, and perhaps of significance, the basal activity
of the genes that did not demonstrate transactivation (ARR3
and BBS4) was significantly higher than the genes that did
(data not shown).

In order to determine whether the promoters of the predicted
target genes were in fact bound by CRX in vivo, ChIP was
performed (Figure 7). This is important because the genome
contains far more potential TF binding sites than are actually
occupied in vivo, and the finding of DNA binding and trans-
activation activity in vitro does not necessarily prove that a

gene is a transcriptional target in vivo. Because of the relative
ease of obtaining fresh murine retina compared to fresh human
retina, the immunoprecipitates were prepared from mouse
retina. Consistent with previously published work (56), in
the ChIP assay the positive control Rho showed a clearly
positive band (lane 5) that was absent in the no antibody
control (lane 4), and the negative control Albumin (Alb) did
not show any evidence of a positive signal (lane 5). Of the five
predicted genes tested, Rp1, Gucy2d, Abca4 and Arr3 all
showed reproducible signal that was present with the anti-
CRX antibody (lane 5) but absent in the no antibody control
(lane 4). Bbs4 did not show a consistent clear signal, although
in some experiments a faint band was obtained.

DISCUSSION

The prediction of regulatory target genes of a TF, especially in
eukaryotic systems, is notoriously difficult. This is, in part, due

Figure 6. CRX transactivates RP1, GUCY2D and ABCA4 in transient transfection assays. (A) Schematic diagram showing the luciferase reporter constructs carrying
upstream regions of RP1 (�86 to +33), GUCY2D (�134 to +64), ARR3 (�297 to +16), BBS4 (�151 to +33) and ABCA4 (�130 to +8) in the pGL2-basic vector. The
positions of CRX core binding sites (TAAT) are labeled by crosses. (B) Transient transfection assays. GripTite 293 MSR cells were transfected with 0.2 mg of the
indicated luciferase reporter construct shown in (A) and increasing amounts (0, 0.2, 1 or 2 mg) of the CRX expression vector pcDNA3.1/HisC-Crx. The fold
stimulation was calculated relative to control transfections without pcDNA3.1/HisC-Crx. Error bars show the standard error, n = 3.
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to the challenge of identifying limited size DNA binding sites
in a sea of largely random sequences. The TF binding
sequence is not a sufficient condition for protein–DNA inter-
action. Therefore, prediction of TF targets based solely on
short binding sequences yields poor specificity. Many methods
have been proposed to enrich the target genes and improve
the prediction specificity. The approach of identifying cis-
regulatory modules is particularly useful when a set of inter-
acting TFs is known. For instance, Wasserman and colleagues
successfully applied this method to liver- and muscle-specific
expression (25,72). Berman et al. (32) used this method to
exploit TF binding sites involved in pattern formation in
Drosophila. However, information on which TFs work
cooperatively is not always available.

In this paper, we proposed an alternative method for enrich-
ment of the targets of tissue-specific TFs. The assumption is
that the genes controlled by tissue-specific TFs are likely to be
related to the tissue. We used three retina-specific TFs as
model systems. Instead of searching their regulatory target
genes in the entire genome, we focused on the genes that
are retina-related. Undoubtedly, prediction on this subset of
the genome will miss some true positive because some targets
may not have known retinal function, or may not be prefer-
entially expressed in the retina. From our computational and
experimental analysis, however, we demonstrated that the loss
of a certain amount of sensitivity seems to be worth the benefit
of a significant gain in prediction specificity.

There is of course much room for improvement in our
method. One possible approach is to combine tissue specificity
information with other relevant information. For example, it
has been found that the genes sharing the same TFs are likely
to have similar expression patterns (73–75). If we had avail-
able more information about cell-type-specific expression pat-
terns in the retina, and more information about how expression
patterns change with various stress and related conditions,

subgroups of similarly expressed genes could be extracted
that would be more likely to be regulated by the same TFs.

Several lines of evidence suggest that our combined
approach generated reasonable results. As one piece of evid-
ence, since the completion of our analysis a number of papers
have appeared in the literature that provide experimental evid-
ence that several of the novel predicted targets are in fact
regulated by CRX. Pickrell et al. (76) showed, using transient
transfection and a Xenopus expression system, that mutation
of two putative CRX binding sites in cone arrestin (rank 16,
Table 2) leads to significantly decreased expression. Pittler
et al. (77) using a combination of approaches, implicated
CRX in the regulation of cGMP phosphodiesterase type
6 alpha (PDE6A) (rank 14, Table 2). Chen et al. (56) per-
formed ChIP on mouse retina and found evidence for CRX
binding to Rho, L/M cone opsin, S-opsin and beta-PDE (rank
9, 48/49, 1 and 6, respectively, Table 2).

In addition to these published studies, we experimentally
tested an additional five predicted target genes, using a com-
bination of EMSA, transient transfection and ChIP studies.
The EMSA results indicated that the promoters of all five
genes could be bound in vitro by CRX. This finding is perhaps
not surprising given that the binding site of CRX is well
defined and an important criteria in the bioinformatics analysis
was the presence of a good consensus sequence.

However, the presence of a consensus binding sequence
does not always lead to strong protein–DNA interaction, as
in the case of BBS4. In the more stringent transfection assays,
RP1, GUCY2D and ABCA4 all showed significant activation,
from 9- to 15-fold, which was higher than that observed with
Rho, the prototypic CRX target. It should be noted that
although highly suggestive, the finding of transactivation by
CRX in such an assay does not necessarily mean that the
activated gene is a CRX target in vivo, because in transient
transfection studies the transfected TF is generally overex-
pressed compared to the in vivo situation and 293 cells almost
certainly differ from photoreceptor cells in terms of chromatin
structure and the availability of other TFs and coregulators.
Likewise, a negative result, such as observed with ARR3 and
BBS4, does not preclude these genes as CRX targets in vivo,
since we may have not chosen the proper upstream fragment
for the luciferase assay, or a required cofactor might not be
present in the host 293 cells.

Of the three assays we employed, probably the best pre-
dictor of in vivo significance was the ChIP study. These studies
were clearly positive with Rp1, Gucy2d, Abca4 and Arr3.
A weak and non-reproducible band was observed with Bbs4,
making it hard to interpret. As powerful as ChIP studies are,
however, it should be kept in mind that it is theoretically
possible that a TF could bind to a promoter region in vivo
without actually altering its activity, perhaps because the gene
is already maximally activated, a required cofactor is missing,
or because the local chromatin structure is not in the required
state. Despite these caveats, taking the data from the three
assays together, it seems likely that RP1, GUCY2D and
ABCA4 are indeed bona fide targets of CRX in vivo.

Identification of targets of TFs is a difficult task, both com-
putationally and experimentally. The combination of the
recent published data cited above and our experimental data
suggests that our bioinformatic predictions of CRX target
genes are reasonable. Additional work will be necessary to

Figure 7. The promoter regions of Rp1, Gucy2d, Abca4 and Arr3 are occupied
by CRX in vivo. ChIP analysis was performed on fresh murine retina using
oligomer PCR primers corresponding to the upstream regions of the indicated
genes. Lane 1, genomic DNA template; lane 2, no DNA control; lane 3, input
DNA pre-immunoprecipitation; lane 4, immunoprecipitation with no antibody;
lane 5, immunoprecipitation with anti-CRX antibody.
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further improve the sensitivity and accuracy of the method,
and to broaden it to include other retinal TFs. Hopefully,
integration of developing bioinformatic approaches with
increasing experimental data will yield new insights into
the complex networks regulating retinal gene expression.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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