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Abstract

Background

Left ventricular ejection fraction (EF) is used to categorize heart failure (HF) into phenotypes

but this information is often missing in electronic health records or non-HF registries.

Methods

We tested the applicability of a simplified version of a multivariable algorithm, that was

developed on data of the Swedish Heart Failure Registry to predict EF in patients with HF.

We used data from 4,868 patients with HF from the Cardiology Centers of the Netherlands

database, an organization of 13 cardiac outpatient clinics that operate between the general

practitioner and the hospital cardiologist. The algorithm included 17 demographical and clini-

cal variables. We tested model discrimination, model performance and calculated model

sensitivity, specificity, positive and negative predictive values for EF� vs. <50% and EF�

vs. <40%. We additionally performed a multivariable multinomial analysis for all three sepa-

rate HF phenotypes (with reduced, mildly reduced and preserved EF) HFrEF vs. HFmrEF

vs. HFpEF. Finally, we internally validated the model by using temporal validation.

Results

Mean age was 66 ±12 years, 44% of patients were women, 68% had HFpEF, 17% had

HFrEF, and 15% had HFmrEF. The C-statistic was of 0.71 for EF�/< 50% (95% CI: 0.69–

0.72) and of 0.74 (95% CI: 0.73–0.75) for EF�/< 40%. The model had the highest sensitivi-

ties for EF�50% (0.72, 95% CI: 0.63–0.75) and for EF�40% (0.70, 95% CI: 0.65–0.71).
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Similar results were achieved by the multinomial model, but the C-statistics for predicting

HFpEF vs HFrEF was lower (0.61, 95% CI 0.58–0.63). The internal validation confirmed

good discriminative ability.

Conclusions

A simple algorithm based on routine clinical characteristics can help discern HF phenotypes

in non-cardiology datasets and research settings such as research on primary care data,

where measurements of EF is often not available.

Introduction

Heart failure (HF) is a complex syndrome with high morbidity and mortality and its preva-

lence continues to rise [1]. Guidelines recommend the use of left ventricular ejection fraction

(EF) assessed by echocardiography to categorize HF into three phenotypes: HF with preserved

EF (HFpEF, EF�50%), HF with mildly reduced EF (HFmrEF, EF = 40–49%) and HF with

reduced EF (HFrEF, EF<40%) [2]. Because HF management differs according to the EF-based

phenotype [2], accurate identification and categorization of patients is of utmost importance.

HFpEF is currently the most common HF phenotype [3] and its diagnosis can be challenging

[1]. Indeed HFpEF remains often undetected as symptoms and signs are not specific especially

at rest, and affected subjects are therefore not correctly identified and promptly referred to

specialized care. Moreover, treatment options are currently limited [4, 5].

Electronic health records (EHRs) comprise a wealth of information about patients diagnosis

and treatment and they are widely used in research and clinical care, including HF care [6].

They have the potential to facilitate either HF research by for instance allowing wide screening

for clinical trials and creation of registries, and might help to reduce variation in HF manage-

ment thereby improving patient outcomes. However, EHRs sometimes lack imaging data and

particularly information on EF is often not reported, thereby hampering ascertainment of the

HF phenotype and identification of those with HFpEF.

A multivariable algorithm based on demographical and clinical characteristics has been

developed using data of the Swedish Heart Failure Registry (SwedeHF) to predict EF in

patients with HF [7]. The algorithm was externally validated in the CHECK-HF registry in

The Netherlands, showing high discriminating power between HF phenotypes (C-statistic:

0.78 [95% confidence interval (CI) 0.77–0.78] for EF�50% and 0.76 (0.75–0.76) for EF�40%.

Nevertheless, given the varying characteristics of HF populations, additional external valida-

tions would be essential to determine the algorithm generalizability and its ability to provide

accurate predictions in distinct clinical context. Accordingly, our aim was to provide a further

external validation of the HF algorithm in patients with chronic HF from the Cardiology Cen-

ters of the Netherlands (CCN) database. However, given the characteristics of our study popu-

lation including the presence of missing data in some of the predictors, we derived and

assessed the applicability of a simplified version, and thus more widely applicable, of the origi-

nal model.

Materials and methods

Study population

The CCN is an organization of 13 cardiac outpatient clinics that operate between the general

practitioner (GP) and the hospital [8]. Patients are referred to CCN on suspicion of
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cardiovascular disease (CVD) by their GP and undergo an initial standardized diagnostic

workup that includes echocardiography, ultrasound of the carotid arteries, exercise stress test,

electrocardiography, laboratory tests and a consult with a nurse where anthropometrics and

information on symptoms, medical history and medication use are collected. If needed,

patients can be referred for further diagnostic workup to a hospital or invited to CCN for fol-

low-up visits.

Among a total of 109,151 CCN patients, we selected and analyzed those diagnosed with HF

between June 2007 and February 2018 (index dates), for whom a quantified EF was available at

the time of diagnosis (S1 Fig). We defined HFrEF as EF<40%, HFmrEF as EF between 40%

and 49%, and HFpEF as EF�50%. Patients missing information on demographical, anthropo-

metrical and biochemical predictors included in the diagnostic algorithm were excluded if

more than three months had passed between the assessment of EF and the assessment of such

predictors (S1 Fig). A timeframe longer than three months from EF assessment was considered

acceptable for information on co-morbidities and medication use. EF was assessed with

biplane Simpson in 7% of cases and 93% of patients with Teich method.

The medical research ethics committee of the University Medical Center Utrecht approved

this study (proposal number 17/359). Patient consent for publication was not required. The

Cardiology Centers of the Netherlands data were made available under implied consent and

transferred to the University Medical Center Utrecht under the Dutch Personal Data Protec-

tion Act. This study used data collected during the regular care process and did not subject

participants to additional procedures or impose behavioral patterns on them. Finally, to the

purpose of the present analysis, the CCN data were accessed between February 2022 and Janu-

ary 2024.

Statistical analysis

Patients were stratified according to the HF phenotype and comparisons between the groups

were carried out by analysis of variance for continuous variables and chi-squared for categori-

cal variables. The main multivariable model included 22 variables: age, sex, NT-proBNP

plasma level, New York Heart Association functional class, mean arterial pressure, heart rate,

body mass index, estimated glomerular filtration rate (eGFR), history of ischemic heart dis-

ease, anemia, chronic obstructive pulmonary disease, diabetes, atrial fibrillation, hypertension,

valvular heart disease, malignant cancer, device therapy, use of renin angiotensin system inhib-

itors (including ACE-inhibitors and angiotensin receptor blockers), beta-blockers, mineralo-

corticoid receptor antagonists, digoxin and diuretics. A simpler model excluded NT-proBNP

and New York Heart Association class [7]. In the present analysis, we tested the applicability

of a further simplified model which additionally excluded chronic obstructive pulmonary dis-

ease, malignant cancer and device therapy, as this information was unavailable in most

patients. Missing values were present in a proportion ranging from 1.42% for the presence of

hypertension to 39.17% for anemia (S1 Table) and imputed by using multiple imputation by

chained equations (n = 10 imputations, mice package from R statistical software version

1.3.1093). Results were then pooled using Rubin’s rule. We performed logistic regression to fit

the model and used area under the receiver operating curves to discern model discrimina-

tion. Model discrimination was assessed for EF � vs. <50% and EF� vs. <40%. We

assessed model performance with C-statistics. We calculated sensitivity, specificity, positive

and negative predictive values along with 95% CI. Secondly, we used a multinomial logistic

model to separately predict HFpEF, HFmrEF, and HFrEF (HFrEF was used as reference). In

this case model C-statistics was calculated for all pairs of categories using the conditional

risk method [9].
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Finally, internal validation of the algorithm was carried out by using temporal validation.

The dataset was split into training and testing sets based on the time of HF diagnosis, with 75%

of the data used for training and the remaining 25% for testing, ensuring that the model was

trained on historical data and evaluated on future observations. Logistic regression models

were trained using the training set, and predictions were made on the testing set. Model accu-

racy was assessed using C-statistics and bootstrapping techniques were employed to estimate

the 95% CIs. For the multinomial logistic model predicting HFpEF, HFmrEF, and HFrEF

(with HFrEF as the reference), accuracy was calculated for all pairs of categories using the con-

ditional risk method.

Results

A total of 4,868 patients with HF were included (44% women, aged 66 ±12 years). Fifty-five

percent of patients had hypertension, 15% had diabetes, and 20% had atrial fibrillation. Sixty-

eight percent of patients had HFpEF, 17% had HFrEF, and 15% had HFmrEF (Table 1).

The performance of each predictor of the diagnostic algorithm to predict EF�50% vs.

<50% and EF�40% vs.<40% is presented in Table 2. The strongest predictors for both EF

�50% and EF�40% were female sex and presence of arterial hypertension. Use of diuretics, of

mineralocorticoid receptor antagonists and presence of atrial fibrillation were the strongest

predictors for EF<50% and EF <40%. Some predictors such as body mass index and

advanced age, that were positively associated with EF�50/40% in the original study, did not

show any significant associations in this analysis.

The model discriminated adequately for both EF�50% and EF�40% with a C-statistics of

0.71 (95% CI: 0.69–0.72) and of 0.74 (95% CI: 0.73–0.75) respectively (Figs 1 and 2). For EF

<50% and EF <40% the model discriminately equally well with C-statistics of 0.71 (95% CI:

0.69–0.72) and of 0.74 (95% CI: 0.73–0.75) respectively (Figs 3 and 4).

The model had the highest sensitivities for EF�50% (0.72, 95% CI: 0.63–0.75) and for EF

�40% (0.70, 95% CI: 0.65–0.71) (Table 3).

The results of the multinomial model are shown in Table 4. HFrEF was the reference cate-

gory. Female sex and presence of arterial hypertension were the strongest predictors for

HFmrEF. Predictors for HFpEF were the same as those for HFmrEF, but the associations were

much stronger. C-statistics calculated for all pairs of outcome categories were similar to the

logistic models for EF�50% or EF�40%, with C-statistics of 0.71 (95% 0.69–0.72) for

HFmrEF vs HFrEF and of 0.74 (95% 0.72–0.76) for HFmrEF vs HFpEF. However, the discrim-

inative performance for predicting HFpEF vs HFrEF was only moderate, with a C-statistic of

0.61 (95% CI 0.58–0.63).

Models were internally validated by temporal validation, showing good discriminative per-

formance, with a C-statistics of 0.72 (95% CI: 0.71–0.73) for EF�/< 50% and of 0.69 (0.68–

0.70) for EF�/< 40% (S2 Table).

Discussion

In this study, we adapted a diagnostic algorithm originally designed for research purposes to

predict EF among patients with HF in the Netherlands. This newly derived algorithm was

applied to EHRs data obtained from Dutch cardiac screening centers, which represents a real-

world clinical setting. Our findings demonstrated that the simplified version of the original

algorithm performed adequately in predicting EF. As initially intended, this algorithm can be

effectively utilized retrospectively on research data that have been collected on HF patients to

ascertain the EF phenotype, thus serving as a valuable tool for further studies and

investigations.
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It’s important to underscore the algorithm’s primary domain of applicability: research-

focused environments such as primary care data, non-cardiology research settings, and

broader healthcare datasets where information about HF phenotypes is sporadic or unavail-

able. On the other hand, we realize that in clinical practice the use of echocardiography is

essential and widely available for the diagnosis and management of HF [2, 10, 11]. However,

our study focuses on research applications rather than replacing clinical assessments. While

echocardiography remains the gold standard for EF assessment in clinical settings, our algo-

rithm still provide a valuable research tool. Its integration into research initiatives has the

potential to improve the accuracy of HF studies, especially in scenarios where EF measure-

ments are lacking, such as EHRs. Furthermore, the utility of the algorithm might apply to

Table 1. Baseline characteristics of the cardiology centers of the Netherlands population.

Overall HFrEF HFmrEF HFpEF pa

Demographics

n 4868 827 719 3322

Age (>75 vs <75 years) 65.8 (12.2) 68.3 (11.8) 67.4 (12.6) 64.8 (12.1) <0.001

Sex (female vs male) 2137 (43.9) 266 (32.2) 294 (40.9) 1577 (47.5) <0.001

Clinical variables

MAP� 90 mmHg, n (%) 917 (85.8) 217 (76.4) 171 (85.5) 529 (90.4) <0.001

Heart rate � 70 bpm, n (%) 2605 (63.8) 428 (74.0) 347 (63.1) 1830 (62.0) <0.001

SBP, mmHg 147.5 (25.4) 137.0 (23.9) 148.3 (25.5) 152.3 (24.7) <0.001

DBP, mmHg 86.1 (14.8) 84.8 (15.6) 86.9 (16.6) 86.4 (13.8) 0.232

BMI, n (%) 0.003

< 18.5 kg/m2 284 (26.4) 90 (31.0) 66 (32.2) 128 (22.0)

18.5–24.9 kg/m2 9 (0.8) 2 (0.7) 1 (0.5) 6 (1.0)

25–29.9 kg/m2 450 (41.8) 117 (40.3) 92 (44.9) 241 (41.4)

� 30.0 kg/m2 334 (31.0) 81 (27.9) 46 (22.4) 207 (35.6)

eGFR, n (%)

> = 90 mL/min/1.73m2 1438 (47.4) 222 (40.1) 177 (39.4) 1039 (51.1) <0.001

60–89.9 mL/min/1.73m2 1043 (34.4) 182 (32.9) 172 (38.3) 689 (33.9)

59.9–30 mL/min/1.73m2 494 (16.3) 125 (22.6) 89 (19.8) 280 (13.8)

<30 mL/min/1.73m2 60 (2.0) 24 (4.3) 11 (2.4) 25 (1.2)

Ischemic heart disease, n (%) 405 (8.3) 75 (9.1) 65 (9.0) 265 (8.0) 0.447

Anemia 263 (8.9) 58 (11.7) 56 (12.8) 149 (7.4) <0.001

Atrial fibrillation 969 (19.9) 225 (27.2) 181 (25.2) 563 (16.9) <0.001

Diabetes 741 (15.5) 153 (19.1) 115 (16.3) 473 (14.4) 0.003

Hypertension 2649 (55.2) 326 (40.7) 358 (50.7) 1965 (59.7) <0.001

Valvular disease 884 (18.2) 192 (23.2) 165 (22.9) 527 (15.9) <0.001

Therapy

RAAS agents 3044 (64.2) 576 (70.4) 473 (66.8) 1995 (62.1) <0.001

Beta-blockers 2543 (53.7) 540 (66.0) 435 (61.4) 1568 (48.8) <0.001

Diuretics 2589 (54.6) 582 (71.1) 438 (61.9) 1569 (48.8) <0.001

MRA 755 (15.9) 287 (35.1) 141 (19.9) 327 (10.2) <0.001

Digoxin 340 (7.2) 107 (13.1) 70 (9.9) 163 (5.1) <0.001

a The p value refers to the comparisons between the groups, performed by analysis of variance (ANOVA) for continuous variables and chi-squared for trend for

categorical variables.

Abbreviations: MAP: mean arterial pressure; BMI: body mass index; eGFR: estimated glomerular filtration rate; RAAS: renin-angiotensin-aldosterone system: MRA:

mineralocorticoid receptor antagonists.

https://doi.org/10.1371/journal.pone.0310023.t001
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other healthcare sources such as ICD-10 claims datasets which also often lack detailed clinical

information.

This simplified version of the algorithm showed slightly worse performance compared to

the performance demonstrated in the derivation and validation cohorts [7]. This might be due

to the different characteristics of the study populations, with patients from the CCN database

being younger, mostly affected by HFpEF, and healthier with lower prevalence of comorbidi-

ties such as diabetes and atrial fibrillation [8] compared to the SwedeHF and CHECK-HF. On

the other hand, the aim of our study was to assess the algorithm’s robustness in a population

that differs in terms of age and health status from the derivation and validation cohorts. This

enhanced our understanding of its generalizability and strengthened its potential for wide-

spread use.

Additionally, we used fewer predictors than the original model in our analysis, and this has

likely influenced our findings. Female sex and arterial hypertension were confirmed as strong

predictors of HFpEF, while eGFR<30 mL/min/1.73m2 and use of mineralocorticoid receptor

antagonists were shown to be predictors of HFrEF. However, other predictors yielded different

associations compared to those of the original study: atrial fibrillation predicted HFrEF rather

than HFpEF, while some predictors such as body mass index and advanced age did not show

significant associations.

Table 2. Multivariable logistic prediction models predicting EF� 50% vs. EF< 50% and EF� 40% vs.<40%.

Variables LVEF�50% LVEF�40%

OR (95% CI) P value OR (95% CI) P value

Intercept 3.33 (1.83–7.08) <0.001 6.30 (3.06–13.0) <0.001

Age (>75 vs <75 years) 0.83 (0.68–1.01) 0.060 0.85 (0.6–1.07) 0.1287

Sex (female vs male) 1.81 (1.57–2.07) <0.0001 2.08 (1.75–2.49) <0.0001

MAP (� 90 vs < 90 mmHg) 1.00 (0.99–1.01) 0.7632 1.00 (0.99–1.01) 0.2979

Heart rate (� 70 vs < 70 bpm) 0.81 (0.70–0.94) 0.0047 0.68 (0.57–0.82) <0.0001

BMI

< 18.5 vs 18.5–24.9 1.39 (0.44–4.37) 0.5614 1.11 (0.31–4.02) 0.8649

25–29.9 vs 18.5–24.9 1.07 (0.83–1.36) 0.5825 1.14 (0.88–1.49) 0.3095

� 30.0 vs 18.5–24.9 1.13 (0.89–1.43) 0.2999 1.13 (0.83–1.54) 0.4704

eGFR (mL/min/1.73m2)

60–89.9 vs > = 90 0.85 (0.72–1.01) 0.0637 0.91 (0.73–1.13) 0.4026

59.9–30 vs > = 90 0.75 (0.57–0.97) 0.0298 0.73 (0.52–1.01) 0.0598

<30 vs > = 90 0.52 (0.30–0.90) 0.0192 0.44 (0.25–0.78) 0.0056

Ischemic heart disease 0.86 (0.68–1.08) 0.1334 0.86 (0.65–1.14) 0.3079

Anemia 0.92 (0.69–1.23) 0.5767 1.10 (0.81–1.51) 0.5244

Atrial fibrillation 0.65 (0.55–0.76) <0.0001 0.66 (0.55–0.81) <0.001

Diabetes 0.81 (0.67–0.97) 0.0288 0.76 (0.61–0.96) 0.0228

Hypertension 1.86 (1.62–2.14) <0.0001 2.11 (1.78–2.51) <0.0001

Valvular disease 0.74 (0.62–0.87) <0.0001 0.82 (0.66–1.00) 0.0503

RAAS agents 0.89 (0.76–1.04) 0.1377 0.87 (0.72–1.05) 0.1446

Beta-blockers 0.69 (0.60–0.79) <0.0001 0.72 (0.60–0.86) 0.0003

Diuretics 0.68 (0.58–0.79) <0.001 0.66 (0.53–0.81) <0.0001

MRA 0.41 (0.34–0.53) <0.0001 0.37 (0.30–0.46) <0.0001

Digoxin 0.81 (0.62–1.05) 0.1048 0.83 (0.62–1.09) 0.1863

MAP: mean arterial pressure; BMI: body mass index; eGFR: estimated glomerular filtration rate; RAAS: renin-angiotensin-aldosterone system: MRA: mineralocorticoid

receptor antagonists.

https://doi.org/10.1371/journal.pone.0310023.t002
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The algorithm showed the highest sensitivities when used for the identification of patients

with EF�50% and patients with EF�40%, of 0.72 and of 0.70 respectively. On the other hand,

sensitivities for EF < 40% and EF<50% were not satisfactory. Finally, the associations with

HFmrEF in the multinomial model were overall weak, probably because of a limited number

of participants classified as HFmrEF in our study population. These findings and disparities

are possibly due to changes in the distribution of patient characteristics observed when

HFmrEF was combined with HFrEF and HFpEF, implying that the HFmrEF group should not

be combined with neither of the other groups, being a separate and distinct clinical entity [12].

Previous studies have developed diagnostic algorithms to predict EF in HF populations [13,

14]. One of these algorithms was developed from Medicare claims and subsequently externally

Fig 1. Discrimination plot displaying ROC curve for logistic model EF cut-off�50%.

https://doi.org/10.1371/journal.pone.0310023.g001
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validated in a sample of commercial insurance enrollees, demonstrating good accuracy [15].

However, this algorithm did not include laboratory test values and might therefore be more

suitable in the context of insurance claims databases, in which this information is often

missing.

Study limitations

Some limitations of the present analysis should be acknowledged. Firstly, we had missing data

on several predictors, which is a common issue in EHRs. Accordingly, we evaluated the perfor-

mance of a model that included 17 out of the 22 original variables. It is important to note that

this newly derived model was not tested neither validated in the original manuscript. However,

Fig 2. Discrimination plot displaying ROC curve for logistic model EF cut-off�40%.

https://doi.org/10.1371/journal.pone.0310023.g002
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this allowed us to demonstrate that a model containing fewer variables that are commonly

available in clinical practice might be more widely applicable and enable to discriminate HF

phenotypes, showing particular good performance in identifying HFpEF patients. Further-

more, we internally validated this model through temporal validation, which confirmed its

good discriminative ability. Secondly, EF was often assessed only qualitatively and not quanti-

tatively in the CCN database, which has resulted in a relatively small sample size. Among the

cases with quantitatively assessed EF, in 93% of the cases the Teich method was used, which is

less accurate than the biplane Simpson method, and tend to estimate the EF [10]. This might

have resulted in the misclassification of some HFrEF patients as HFmrEF, potentially explain-

ing the lower ability of the multinomial model to identify HFmrEF. Finally, for our analyses

Fig 3. Discrimination plot displaying ROC curve for logistic model EF cut-off<50%.

https://doi.org/10.1371/journal.pone.0310023.g003
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we deemed a timeframe of less than three months between the determination of EF and the

assessment of HF medications to be acceptable. We acknowledge that the dosage of these med-

ications may be subject to adjustments over time as part of HF management, and

Fig 4. Discrimination plot displaying ROC curve for logistic model EF cut-off<40%.

https://doi.org/10.1371/journal.pone.0310023.g004

Table 3. Sensitivity, specificity, positive and negative predictive values of the logistic prediction models.

LVEF�50% LVEF�40% LVEF < 50% LVEF < 40%

Sensitivity 0.72 (0.63–0.75) 0.70 (0.65–0.71) 0.60 (0.57–0.68) 0.67 (0.65–0.72)

Specificity 0.60 (0.57–0.68) 0.67 (0.65–0.72) 0.72 (0.63–0.75) 0.70 (0.65–0.71)

Positive predictive value 0.80 (0.79–0.81) 0.91 (0.90–0.92) 0.50 (0.47–0.52) 0.31 (0.29–0.32)

Negative predictive value 0.50 (0.47–0.52) 0.31 (0.29–0.32) 0.80 (0.79–0.81) 0.91 (0.90–0.92)

https://doi.org/10.1371/journal.pone.0310023.t003
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discontinuation and initiation of these drugs might as well occur at notable rates. For instance,

the EVOLUTION-HF study reported that 33–38% of patients discontinued ACE-inhibitors

and angiotensin receptor blockers within 12 months [16]. However, these medications still

represent the cornerstone of HF treatment and are typically prescribed and monitored closely

in clinical practice, especially in the initial stages following diagnosis.

Conclusions

Our investigation suggests that this simplified version of the algorithm shows promise in predicting

EF, indicating its potential for retrospective utilization in research endeavors involving HF patients.

By providing a means to characterize the EF phenotype, this algorithm could serve as a useful tool

for guiding future studies within the HF domain, and particularly in the context of EHRs, where

direct measurements of EF are not routinely available, such as in primary care settings.

Supporting information

S1 Table. Proportion of missing values (%) in each variable of the algorithm among the

included patients.

(DOCX)

Table 4. Multinomial logistic prediction models predicting HFmrEF vs HFrEF and HFpEF vs HFrEF.

Variables HFmrEF HFpEF

OR (95% CI) P value OR (95% CI) P value

Intercept 0.71 (0.27–1.83) 0.4739 5.75 (2.72–12.1) <0.001

Age (>75 vs <75 years) 0.96 (0.71–1.28) 0.7822 0.81 (0.63–1.04) 0.0978

Sex (female vs male) 1.56 (1.25–1.95) <0.0001 2.27 (1.89–2.72) <0.0001

MAP (� 90 vs < 90 mmHg) 1.00 (0.99–1.01) 0.2900 1.00 (0.99–1.01) 0.3625

Heart rate (� 70 vs < 70 bpm) 0.70 (0.55–0.89) 0.0034 0.68 (0.56–0.82) <0.0001

BMI

< 18.5 vs 18.5–24.9 0.71 (0.10–4.57) 0.7119 1.23 (0.32–4.70) 0.7524

25–29.9 vs 18.5–24.9 1.14 (0.81–1.60) 0.4359 1.14 (0.86–1.51) 0.3414

� 30.0 vs 18.5–24.9 1.05 (0.70–1.55) 0.8294 1.16 (0.85–1.58) 0.3531

eGFR (mL/min/1.73m2)

60–89.9 vs > = 90 1.06 (0.81–1.37) 0.6755 0.88 (0.70–1.10) 0.2483

59.9–30 vs > = 90 0.85 (0.57–1.28) 0.4441 0.69 (0.49–0.97) 0.0354

<30 vs > = 90 0.60 (0.25–1.28) 0.1707 0.41 (0.22–0.74) 0.0003

Ischemic heart disease 0.96 (0.67–1.37) 0.8223 0.83 (0.63–1.12) 0.2406

Anemia 1.27 (0.87–1.86) 0.1767 1.03 (0.74–1.46) 0.8212

Atrial fibrillation 0.89 (0.69–1.13) 0.2958 0.61 (0.50–0.74) <0.0001

Diabetes 0.83 (0.62–1.12) 0.2385 0.74 (0.58–0.94) 0.0151

Hypertension 1.54 (1.23–1.91) 0.0001 2.31 (1.94–2.76) <0.0001

Valvular disease 1.04 (0.81–1.34) 0.7535 0.75 (0.61–0.93) 0.0080

RAAS agents 0.92 (0.72–1.17) 0.4911 0.85 (0.70–1.04) 0.1146

Beta-blockers 0.95 (0.76–1.19) 0.6654 0.67 (0.56–0.80) <0.0001

Diuretics 0.85 (0.65–1.10) 0.2077 0.62 (0.51–0.77) <0.0001

MRA 0.51 (0.39–0.67) <0.0001 0.33 (0.26–0.42) <0.0001

Digoxin 0.93 (0.65–1.32) 0.6801 0.78 (0.58–1.05) 0.7738

MAP: mean arterial pressure; BMI: body mass index; eGFR: estimated glomerular filtration rate; RAAS: renin-angiotensin-aldosterone system: MRA: mineralocorticoid

receptor antagonists.

https://doi.org/10.1371/journal.pone.0310023.t004
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