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Comprehensive single-cell and
bulk transcriptomic analyses to
develop an NK cell-derived gene
signature for prognostic
assessment and precision
medicine in breast cancer
Qianshan Hou1†, Chunzhen Li1†, Yuhui Chong2†, Haofeng Yin1,
Yuchen Guo1, Lanjie Yang1, Tianliang Li1* and Shulei Yin1*

1National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical
University, Shanghai, China, 2School of Pharmacy, Naval Medical University, Shanghai, China
Background: Natural killer (NK) cells play crucial roles in mediating anti-cancer

activity in breast cancer (BRCA). However, the potential of NK cell-related

molecules in predicting BRCA outcomes and guiding personalized therapy

remains largely unexplored. This study focused on developing a prognostic

and therapeutic prediction model for BRCA by incorporating NK cell-

related genes.

Methods: The data analyzed primarily originated from the TCGA and GEO

databases. The prognostic role of NK cells was evaluated, and marker genes of

NK cells were identified via single-cell analysis. Module genes closely associated

with immunotherapy resistance were identified by bulk transcriptome-based

weighted correlation network analysis (WGCNA). Following taking intersection

and LASSO regression, NK-related genes (NKRGs) relevant to BRCA prognosis

were screened, and the NK-related prognostic signature was subsequently

constructed. Analyses were further expanded to clinicopathological relevance,

GSEA, tumor microenvironment (TME) analysis, immune function,

immunotherapy responsiveness, and chemotherapeutics. Key NKRGs were

screened by machine learning and validated by spatial transcriptomics (ST) and

immunohistochemistry (IHC).

Results: Tumor-infiltrating NK cells are a favorable prognostic factor in BRCA. By

combining scRNA-seq and bulk transcriptomic analyses, we identified 7 NK-

related prognostic NKRGs (CCL5, EFHD2, KLRB1, C1S, SOCS3, IRF1, and CCND2)

and developed an NK-related risk scoring (NKRS) system. The prognostic

reliability of NKRS was verified through survival and clinical relevance analyses

across multiple cohorts. NKRS also demonstrated robust predictive power in

various aspects, including TME landscape, immune functions, immunotherapy

responses, and chemotherapeutic sensitivity. Additionally, KLRB1 and CCND2

emerged as key prognostic NKRGs identified through machine learning and

external validation, with their expression correlation with NK cells confirmed in

BRCA specimens by ST and IHC.
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Conclusions: We developed a novel NK-related gene signature that has proven

valuable for evaluating prognosis and treatment response in BRCA, expecting to

advance precision medicine of BRCA.
KEYWORDS

breast cancer, natural killer (NK) cell, scRNA-seq, prognostic signature, tumor
microenvironment, immunotherapy
1 Introduction

Breast cancer (BRCA), known as “the first killer of women”, has

been attracting more attention globally due to its high incidence rate

and large patient population (1, 2). In 2022, BRCA accounted for

11.6% of all newly diagnosed cancer cases worldwide, ranking

second only to lung cancer (3). The death toll reached 665,684

and continues to rise at an annual rate of approximately 0.6% (4).

Consequently, the early diagnosis and treatment of BRCA have

emerged as a principal research focus in recent years. Despite

significant advancements in molecular oncology and therapeutics

that have substantially improved the five-year survival rate of BRCA

patients, certain individuals still experience poor outcomes due to

factors including delayed diagnosis, therapeutic resistance, metastasis,

etc. (5). Chemotherapy, endocrine therapy, targeted therapy, and

immunotherapy have become the common treatments for BRCA (6–

10). Notably, immunotherapy, particularly immune checkpoint

blockade (ICB), has achieved significant advancements, with a

482.1% increase in related research over the past decade (11).

Despite these advancements, the current unsatisfactory response

rates to immunotherapy remain a critical issue, hindering further

improvements in BRCA survival rates (9, 12). Only 5% of patients,

mainly those with triple-negative breast cancer (TNBC), experience a

sustained response (13, 14). Consequently, there is an urgent need to

identify new molecular targets to enhance BRCA treatment and to

perform individualized assessments of therapeutic response and

prognosis to broadly increase survival rates.

The tumor microenvironment (TME) is a complex and

multifaceted system, predominantly consisting of tumor cells,

surrounding immune cells, fibroblasts, interstitial tissues,

capillaries, and a variety of cytokines and chemokines (15). The

TME is closely linked to tumor growth, influencing all stages of
related risk score; OS,
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; HR, hazard ratio; T,
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tumor development, including initiation, invasion, and malignant

transformation (16). Within the TME, alongside the well-

documented T cells known for their tumoricidal capabilities, NK

cells also play a critical anti-cancer immune effect. As a subclass of

innate immune cells, NK cells possess functions such as immune

surveillance (17), pathogen elimination (18), and anti-aging (19),

with particularly potent tumor-killing capabilities (20, 21). They

eliminate tumor cells through three main manners: direct

cytotoxicity, secretion of cytokines and chemokines to stimulate

further immune responses, and collaboration with antibodies on the

cell surface to foster an adaptive immune response (22). Recent

studies have demonstrated that NK cells could augment their anti-

tumor efficacy against glioblastoma via epigenetic reprogramming

(23). Furthermore, NK cells can be activated by decreasing

glycocalyx thickness, thereby inhibiting the metastasis of BRCA

(24). Thus, NK cells can greatly impact the effectiveness of

immunotherapy, and new immunotherapies leveraging NK cells

as a foundation are currently highly favored (25, 26). Considering

the essential role of NK cells in the immune system and tumor

immunity, a comprehensive characterization of NK-related

molecules is critical for uncovering novel biomarkers associated

with BRCA diagnosis and treatment efficacy. Nonetheless, current

research in this field is still relatively scarce.

Single-cell sequencing (scRNA-seq) is a cutting-edge

technology that enables the extraction, amplification, and high-

throughput analysis of genomes or transcriptomes at the single-cell

level (27). Advances in scRNA-seq have significantly improved our

understanding of the immune system, thereby facilitating and

expediting both basic research and clinical applications in cancer

(28). Therefore, we believe that scRNA-seq can also be employed to

uncover and develop novel NK-related biomarkers relevant to

tumor prognosis and immunotherapy, enhancing prognostic

prediction for BRCA.

In this study, through integrating single-cell and bulk

transcriptomic analyses, we have developed a robust prognostic

signature comprising seven NK-related molecules for BRCA.

Moreover, the predictive capacity of the signature has been

validated in multiple cohorts, and it has been utilized to assess

TME landscapes, anti-tumor immunity, and therapeutic

preferences. Furthermore, we identified key prognostic NKRGs

and experimentally confirmed their expression patterns in BRCA

tissues. The workflow of this study is depicted in Figure 1.
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2 Materials and methods

2.1 Data acquisition

The Cancer Genome Atlas (TCGA, https://portal.gdc.

cancer.gov) database was utilized to extract bulk RNA-seq data

and clinical information of 1109 BRCA samples. Additionally,

scRNA-seq profiles of BRCA (GSE114727) consisting of 19,676

cells were analyzed using the TISCH (Tumor Immune Single-cell

Hub) database (http://tisch1.comp-genomics.org/). External

validation of the prognostic signature and clinical relevance

analysis was conducted using five independent BRCA cohorts:

GSE20685 (n=327), GSE96058 (n=3273), METABRIC (n=1897),

GSE21653 (n=241), and GSE58812 (n=107, TNBC). Moreover,

independent GEO cohorts, including GSE3494 (n=236),

GSE42568 (n=104), and GSE16446 (n=107), were employed

to elucidate the prognostic role of key NKRGs. Three patient
Frontiers in Immunology 03
cohorts (BMS038, Gide2019, and IMvigor210) undergoing

ICB treatment were introduced to evaluate the potential of

this NKRS in predicting patient sensitivity to immunotherapy

(29–32).
2.2 Investigation of NK cells abundance
and stratified survival analysis

The MCPcounter algorithm was employed to quantify the

abundance of tumor-infiltrating NK cells based on bulk

transcriptomic data (33). To clarify the prognostic role of NK

cells, grouping and survival analyses were performed based on the

abundance of tumor-infiltrating NK cells. With the use of

“survminer” and “survival” packages, we determined the optimal

cutoff value for survival analysis. Subsequently, Kaplan–Meier

curves were generated to illustrate the survival differences.
FIGURE 1

Flowchart of the present study.
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2.3 Acquisition of NK-related genes
affecting ICB resistance by comprehensive
single-cell analysis and bulk WGCNA

Utilizing the online platform TISCH, we conducted standard

scRNA-seq analysis on the dataset GSE114727, encompassing

single-cell sequencing data of 19,676 immune cells from 8

patients diagnosed with primary BRCA. This comprehensive

process, comprising data preconditioning and quality control, cell

clustering and annotation, and differential gene analysis and

visualization, was performed in accordance with the official

operating instructions on the TISCH website. NK-related genes

(NKRGs) were initially obtained by differential gene analysis.

To discover novel NKRGs associated with ICB resistance, gene set

variation analysis (GSVA) and WGCNA were performed. The GSVA

based on the “IOBR” package, a practical tool to quantify tumor

immunity-related indicators, including ICB resistance, was conducted

to obtain the ICB resistance score for each sample (34, 35). WGCNA

was then employed to select the modules and genes with the highest

correlation to ICB resistance. After performing the sample clustering

and outlier removal, the rational soft threshold was determined for

optimal running efficiency and stability. Module genes with the highest

and most statistically significant correlation with ICB resistance will be

subject to be taken to intersect with NKRGs, and derived candidates

will be further analyzed for prognostic screening.
2.4 Generation and validation of the NK-
related prognostic signature

Prognostic gene screening was accomplished using univariate Cox

regression analysis, and genes with P-values less than 0.05 were

retained and intersected with the two aforementioned groups of

candidates to yield NKRGs with potential impact on BRCA

prognosis and immunotherapy resistance. Subsequently, least

absolute shrinkage and selection operator (LASSO) regression was

then carried out to determine the ideal NKRGs and their coefficients

for comprising the signature (23). Referring to previously described

methods, each patient was assigned an NK-related risk score (NKRS)

(36, 37). Based on the optimal cutoff NKRS, patients in the respective

cohort could be stratified into a high-NKRS group and a low-NKRS

group. The formula for calculating NKRS is abbreviated as:

NKRS =o
n

i=1
½coefficient (NKRGi)  �  expression (NKRGi)�

The survival disparity between NKRS groups was exhibited using

the aforementioned packages for survival analysis. Furthermore, to

bolster the credibility of the NKRS, multiple types of survival, as well

as external validation cohorts, were also incorporated into the NKRS

system, utilizing a similar approach as described above.
2.5 Evaluating the clinicopathologic
significance of NKRS

To assess the precision of NKRS in forecasting BRCA patient

survival, we generated time-dependent receiver operating
Frontiers in Immunology 04
characteristic (ROC) curves using the “timeROC” package (38).

We further investigated the relationship between NKRS and various

clinicopathological factors, such as age, stage, and metastasis, by

comparing these parameters across the two NKRS groups.

Univariate and multivariate Cox regression analyses were

conducted to determine if NKRS and clinicopathological factors

can serve as independent predictors of prognosis in different BRCA

cohorts. Subsequently, we constructed a predictive nomogram with

the use of “rms” and “regplot” packages to enable the accurate

assessment of patient survival (37).
2.6 Gene set enrichment analysis

Initially, we utilized the R package “Limma” to identify

differentially expressed genes and fold change among different

NKRS groups. Subsequently, we employed the “org.Hs.eg.db” and

“clusterProfiler” packages to conduct the GSEA, aiming to elucidate

the disparities of functional enrichment and biological pathways

between high-NKRS and low-NKRS tumors (39). Gene set files of

Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways and HALLMARK pathways in gmt

format for GSEA were obtained from the MsigDB (40).
2.7 Tumor microenvironment analysis

To evaluate the immunological relevance of the NKRS, we

assessed the abundance of tumor-infiltrating immune cells (TICs)

and computed microenvironmental scores. Specifically, we leveraged

the CIBERSORT and ImmunecellAI algorithms to quantify the

intratumoral immune cell content (41, 42). The CIBERSORT

analysis adhered to the official recommendations and was

replicated 1000 times for robustness. For ImmunecellAI, we utilized

its online immune cell abundance analysis function following the

official guidelines. Furthermore, the ESTIMATE algorithm allowed us

to assess immune scores, stromal scores, ESTIMATE scores, and

tumor purity (43). To examine the association between NKRG

expression and TIC infiltration, we employed the Spearman

correlation analysis and generated correlation heat maps.
2.8 Characterization of immune function
and immunotherapy vulnerability

To comprehensively reveal the value of this NKRS in profiling

the immune function and sensitivity to ICB therapy of patients, we

performed the GSVA analysis based on immune gene sets using the

IOBR package to characterize the immune function of tumors in

different NKRS groups (44). The results were visualized via heat

maps and box plots. To further explore the clinical significance of

NKRS in cancer immunotherapy, we predicted the response of

high- and low-NKRS groups to immunotherapy using the Tumor

Immune Dysfunction and Exclusion (TIDE) algorithm and the

Immunophenoscore (IPS) (45, 46). Additionally, transcriptomic
frontiersin.org
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and survival analyses were conducted in several real-world cohorts

undergoing ICB therapy to validate our predictive findings.
2.9 Screening of candidate
chemotherapeutic drugs

Utilizing the “oncoPredict” package, we evaluated the half-

maximal inhibitory concentration (IC50) of common clinical

chemotherapeutic and targeted drugs, including paclitaxel,

platinum, fluorouracil, PARP inhibitors, etc., to further analyze

the chemosensitivity of tumors (47). Additionally, we analyzed the

transcriptomic differences between these two NKRS groups and

submitted them to the Connectivity Map (Cmap, https://clue.io/)

platform to identify potential agents for therapeutic intervention of

high-NKRS BRCA cases (48). Structural information on those

compounds was obtained from PubChem.
2.10 Screening and validation of key
prognostic NKRGs

Amachine-learning-based framework was applied to screen key

NKRGs affecting BRCA prognosis. Specifically, we assessed and

visualized the significance of signature NKRGs in influencing the

prognosis of BRCA using a random forest algorithm based on the

“randomForestSRC” package and cross-validated them in different

cohorts (49). The diagnostic ROC curve and differential expression

profiles were also employed to further identify key NKRGs, whose

effect on patient survival was validated in multiple external

BRCA cohorts.
2.11 Experimental verification of the
expression pattern of key NKRGs in BRCA

To characterize the expression of key NKRGs and their NK cell

relevance in BRCA, immunohistochemical (IHC) experiments on

BRCA specimens were performed. Tissue microarrays containing 40

cases of BRCA tissues were purchased from Servicebio (Wuhan,

China). IHC procedures were conducted in accordance with previous

publications (36, 37). Primary antibodies for IHC staining against

KLRB1 (57537-1-lg), CCND2 (10934-1-AP), and CD56 (14255-1-

AP) were purchased from Proteintech (Wuhan, China).
2.12 Statistical analysis

For statistical analysis, R software (version 4.1.2) along with

various online tools such as TISCH, ImmunecellAI, and Cmap,

were implemented in this study. Our study employed several R

packages such as “WGCNA”, “limma”, “ggplot2”, “survival”,

“IOBR”, “GSVA”, and “oncoPredict”, and their specific

applications are detailed in the respective sections. To compare

continuous variables, we relied on the Student’s t-test, while

the chi-square test was used for categorical variables.
Frontiers in Immunology 05
Additionally, the Wilcoxon test was employed to compare gene

expression across groups. A p-value less than 0.05 was considered

statistically significant.
3 Results

3.1 A higher abundance of tumor-
infiltrating NK cells indicated a better
prognosis for BRCA

To confirm the prognostic significance of NK cells in BRCA, we

initially utilized the MCPcounter algorithm to estimate the

abundance of tumor-infiltrating NK cells in bulk RNA-seq

samples. Subsequently, we categorized the TCGA-BRCA samples

into high- and low-NK groups (Supplementary Table S1). Kaplan–

Meier analysis revealed a significant difference between these two

groups (P<0.001), with the high-NK group exhibiting longer

survival (Figure 2A). This finding suggests that NK cells have a

favorable prognostic impact on BRCA. Consistently, this trend was

also observed in the METABRIC cohort (P=0.006, Figure 2B;

Supplementary Table S1), underscoring the critical role of NK

cells in influencing BRCA prognosis.
3.2 Single-cell transcriptomic analysis
identified 534 NKRGs

Subsequently, we processed the scRNA-seq dataset GSE114727

through the TISCH platform and arranged 19,676 cells into 22

clusters, which were further classified into 11 cell types through

annotation, comprising B cells, CD8+ T cells, NK cells, fibroblasts,

and so on (Figures 2C, D). As demonstrated in UMAPs, cells in

cluster 19 and cluster 13 were identified as NK cells. The expression

of typical marker genes of NK cells was depicted in UMAPs and

violin plots (Figures 2E-G; Supplementary Figures S1A, B).

Furthermore, the volcano plot revealed 534 NK-related genes

(NKRGs) identified by differential analysis between cell types,

which were subject to subsequent screening (Figure 2H).
3.3 Bulk transcriptome-based WGCNA
screened module genes associated with
ICB resistance

Since NK cells can modulate anti-tumor immunity and thus affect

immunotherapeutic efficacy through a variety of mechanisms,

including direct killing and indirect action, our study further hopes

to obtain NK-related targets tightly associated with immunotherapeutic

efficacy. Therefore, with the use of GSVA, we assigned ICB resistance

scores to samples in the TCGA-BRCA cohort (Figure 3A). Thereafter,

WGCNA was conducted to acquire ICB resistance-related modules.

First, outlier samples were excluded to ensure the sample quality

(Figure 3B), and the optimal soft thresholding value was determined

to be 6 (Figures 3C, D). Subsequently, a cluster dendrogram based on

gene correlation was constructed, and the preliminary genetic modules
frontiersin.org
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were obtained (Supplementary Figures S1C, D). After merging several

minor modules, we identified a total of 11 modules for analysis

(Figures 3E, F). Within these modules, the black module possessed

the strongest correlation with ICB resistance scores (Figure 3F). By

intersecting the black-module genes with NKRGs, 373 ICB resistance-

related NKRGs were obtained (Figure 3G).
3.4 An NK-related signature consisting
of 7 prognostic NKRGs was developed

To improve the prognostic accuracy of the signature, we

identified 1612 prognostic genes by univariate Cox regression in
Frontiers in Immunology 06
the TCGA-BRCA cohort. Further, we intersected them with

candidate genes obtained from the single-cell and WGCNA

analyses described above, yielding 49 promising NKRGs

(Figure 4A). Through LASSO regression analysis, 7 prognostic

NKRGs were selected to develop the signature (Figures 4B, C).

The NK-related risk score (NKRS) of a sample could be generated

using the expression and coefficients of these 7 NKRGs

(Supplementary Table S2). The hazard ratio (HR) of each

signature NKRG is shown in Figure 4D.

Aiming to evaluate the prognostic significance of this signature,

we calculated the NKRS of each sample in the TCGA-BRCA cohort

and conducted survival analyses after grouping samples according

to the optimal cutoff. As observed from Figures 4E-H, the low-
FIGURE 2

Identification of NK marker genes via scRNA-seq analysis. (A, B) Kaplan–Meier analyses revealed a significant disparity between the high-NK and
low-NK groups in the TCGA-BRCA and METABRIC cohorts. (C) The UMAP depicts 22 immune cell clusters in the GSE114727 dataset. (D) The UMAP
depicts 11 identified cell types. (E, F) Feature plots exhibit differential expression of GNLY and NKG7 across various cell clusters. (G) Violin plots
demonstrate that GNLY and NKG7 were predominantly expressed in NK cells. (H) A volcano plot shows the differential expression of NK cell-related
gene, with up-regulated genes in red and down-regulated genes in blue.
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NKRS group exhibited prolonged overall survival (OS), disease-free

survival (DFS), disease-specific survival (DSS), and progression-free

survival (PFS). Moreover, the improved prognosis in low-NKRS

patients was also confirmed in several validation cohorts, including

GSE20685, GSE96058, METABRIC, GSE21653, and GSE58812

(Figures 4I-N). Notably, in the TNBC cohort GSE58812, NKRS

was capable of suggesting not only OS but also metastasis-free

survival (MFS), demonstrating the superior performance of the

NKRS as a prognostic indicator for BRCA (Figures 4M, N).
Frontiers in Immunology 07
3.5 The independent prognostic role of the
NKRS was determined in multiple cohorts

To investigate whether NKRS could serve as an independent

prognostic factor for BRCA, we carried out univariate and

multivariate Cox regression analyses and found that the

influence of NKRS on BRCA progression would not vary with

other clinical factors. This indicates its independent prognostic

role (Figures 5A, B). Similar analyses conducted in validation
FIGURE 3

Identification of ICB resistance-related modules through WGCNA. (A) ICB resistance scores of samples in the TCGA-BRCA cohort. (B) The outlier
samples were removed from the analysis. (C, D) The optimal soft-thresholding power was determined to be 6. (E) A dynamic tree cut was visualized.
(F) Correlation analysis between modules and traits. (G) The Venn diagram demonstrates the intersection of NK marker genes and ICB resistance-
related genes.
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cohorts also strongly supported this finding (Figures 5C, D;

Supplementary Figure S2A). Time-dependent ROC curves were

plotted to assess the reliability of the NKRS. The areas under the

curve at different time points indicated that this NKRS carries

relatively good prognostic accuracy in both the TCGA-BRCA and
Frontiers in Immunology 08
validation cohorts (Figures 5E, F). Integrating independent

prognostic indicators (stage, age, and NKRS), a predictive

nomogram was created for quantitatively analyzing patient

survival, further improving the clinical applicability of

NKRS (Figure 5G).
FIGURE 4

Establishment of the NK-related risk signature. (A) Taking intersections to obtain prognostic NKRGs associated with ICB resistance. (B, C) LASSO
regression analysis identified signature genes. (D) The hazard ratio (HR) of each signature NKRG. (E-N) Multiple types of survival analyses were
conducted on TCGA datasets as well as validation datasets including GSE20685, GSE96058, GSE21653, GSE58812 and METABRIC cohort. Different
survival types included in this figure: OS (overall survival), DFS (disease-free survival), PFS (progression-free survival), DSS (disease-specific survival),
MFS (metastasis-free survival).
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3.6 The NKRS exhibited favorable
clinicopathological relevance

The NKRS was strongly associated with BRCA prognosis,

whereas its correlation with clinicopathologic indicators needed

to be further evaluated. Thereafter, histograms and box plots
Frontiers in Immunology 09
demonstrated that the high-NKRS group was more prevalent

among patients older than 60 and prone to death (Figures 5H, I).

As expected, a higher proportion of patients with metastatic cancer

was found in the high-NKRS group (Figure 5J). In the validation

sets (GSE96058, MATABRIC, GSE58812), similarly, it was observed

that patient age, survival status, tumor size, and metastasis status
FIGURE 5

The independent prognostic role and clinical relevance of NKRS. (A-D) The prognostic independence of NKRS was assessed in TCGA-BRCA and
GSE58812 cohorts. (E, F) The time-dependent ROC curves of NKRS in TCGA-BRCA and GSE58812 cohorts. (G) A predictive nomogram model was
established. (H-J) The histograms and box plots illustrated that the high-NKRS group was correlated with advanced age, increased mortality, and a
higher incidence of tumor metastasis. In this figure, T, N, M are clinical indicators derived from the TNM staging system. “T” represents tumor, “N”

represents lymph node, and “M” represents metastasis (*P<0.05, **P<0.01, ***P<0.001).
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were all closely related to NKRS (Supplementary Figure S2B). The

above results suggest that NKRS not only correlates with the

survival of BRCA patients, but also shows good relevance to

clinicopathological parameters such as tumor size and metastasis,

making it a promising prognostic indicator.
3.7 Immune pathways functioned actively
in low-NKRS tumors

The reasons andmechanisms behind the significant effect of NKRS

on BRCA prognosis were yet to be clarified. GSEA was conducted

between NKRS groups, revealing that certain immunity-related

signaling pathways, including chemokine signaling, natural killer cell-

mediated cytotoxicity, T cell receptor signaling, activation of immune

response, and inflammatory response pathway were enriched

significantly in low-NKRS group (Figures 6A, B; Supplementary
Frontiers in Immunology 10
Figure S3B), whereas biosynthesis of unsaturated fatty acid,

transporter complex and pancreas beta cells were closely associated

with high-NKRS group (Figures 6C, D; Supplementary Figure S3A).

These analysis results suggested that the improvement of BRCA

prognosis in the low-NKRS group may be generated by immune

responses and the tumor immune microenvironment (TME).
3.8 Significant differences in TME between
NKRS-based risk groups

Pathway enrichment has led us to focus on tumor immunity

and TME, so we evaluated the correlation between NKRS and TME

using multiple algorithms: ImmunecellAI, CIBERSORT, TIMER,

and ESTIMATE. The results indicated that NKRS was closely

associated with several types of TICs like B cells, T cells,

macrophages, and NK cells (Supplementary Figure S3C).
FIGURE 6

Discovering the association between NKRS and cancer immunity. (A, B) GSEA revealed specific immunity-related signaling pathways were enriched
in the low-NKRS group. (C, D) GSEA indicated that the high-NKRS group was prominently enriched in certain pathways.
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Subsequently, we analyzed the TME differences between low-NKRS

and high-NKRS groups. We observed a higher fraction of CD4+ T

cells, CD8+ T cells, cytotoxic T lymphocytes, and NK cells in the

low-NKRS group (Figures 7A, B). Moreover, the low-NKRS group

also exhibited significantly fewer infiltrative M0 and M2

Macrophages, neutrophils, and more M1 Macrophages

(Figure 7B). In addition, both the ImmunecellAI and

CIBERSORT algorithms consistently demonstrated a strong

correlation between NKRS and CD8+ cells and NK cells

(Figures 7A, B). The violin plot showed that the low-NKRS group

owned higher stromal, immune, and ESTIMATE scores, suggesting

that NKRS was negatively correlated with the abundance of various

TICs (Figures 7C, D). In addition, the high-NKRS group exhibited a

higher tumor purity, further corroborating the relationship between

NKRS and TME score (Figures 7E, F). The above results illustrated

the significantly increased levels of anti-tumor immune cell

components in the TME of the low NKRS group.

Furthermore, we generated heat maps to investigate the

association between the expression of 7 signature NKRGs and

TME (Figures 7G, H). Firstly, all seven NKRGs had a positive

correlation with CD4+ T cells, CD8+ T cells, cytotoxic T

lymphocytes, and NK cells. In contrast, the expression of these

NKRGs negatively correlated with the abundance of neutrophils,

monocytes, M0 macrophages, M2 macrophages, and Th17

(Figure 7G). Specifically, CCND2 demonstrated a strong

correlation with the infiltration of effector T cells. Moreover,

CCL5, IRF1, and KLRB1 share similar qualities, exhibiting a

significantly positive correlation with CD8+ T cells, CD4+ T cells,

cytotoxic T cells, NK cells, and M1 macrophages, as well as a

negative correlation with macrophages M0 and M2 (Figure 7H). It

was highlighted that CCL5, CCND2, and KLRB1 were the most

pivotal factors, each exerting a significant influence on several

crucial immune cell types. Thus, the seven NKRGs were

intimately associated with various functional TICs within the TME.
3.9 Low-NKRS patients presented
enhanced anti-tumor immunity and
increased ICB sensitivity

As the association between NKRS and TME has been

confirmed, we hypothesized that NKRS would exert a similar

effect on immune functional phenotypes. Differential expressions

of genes related to immune function were discovered, with antigen

processing- and presentation-related genes, as well as immune

checkpoint genes, all being upregulated in the low-NKRS group

(Figures 8A-C), confirming our suspicion. Some typical clinically

used immune checkpoints were also up-regulated in the low-NKRS

group, such as PD-L1, PDCD1, CTLA4, LAG-3, and CD86.

Subsequently, GSVA was performed to assess anti-tumor-

related immunofunctional activities. Low-NKRS tumors exhibited

significantly higher scores of the cancer-immunity cycle pathways,

from the release of cancer cell antigens to cancer antigen

presentation and, ultimately, the killing of cancer cells
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(Figure 8D). In addition, interferon, cytokine, and NK cell-

mediated cytotoxicity activities were also upregulated in the low-

NKRS group (Figure 8D), further illustrating that the low-NKRS

group possesses a more robust immune response in combating

BRCA. Moreover, GSVA based on other reference gene sets also

revealed functional scores for CD8+ T cells, cytolytic activity, NK

cells, and type I and type II IFN response were elevated in the low-

NKRS group (Supplementary Figure S4A). These results illustrated

the strong negative association between NKRS and anti-

cancer immunity.

We further investigated the relationship between the NKRS and

immunotherapy responsiveness. Calculated by the TIDE algorithm,

the signature scores of CD8+ T cells and IFN-Gamma, major

effectors in facilitating tumor killing, were higher in the low-

NKRS group (Figure 8E). On the contrary, M2 macrophages and

myeloid-derived suppressor cells (MDSCs), those mainly engaged

in limiting anti-tumor immunity, scored higher in the high-NKRS

group (Figure 8E). Consistently, the high-NKRS group also

possessed higher TIDE scores, indicating the underlying poorer

ICB efficacy of high-NKRS patients (Figure 8G). In terms of the

immunophenoscore (IPS), the low-NKRS group had higher IPS

scores regardless of the expression pattern of PD-1 or CTLA-4

(Figure 8F), further supporting our hypothesis.

Unsurprisingly, the proportion of participants responsive to

ICB therapy was as high as 22% (123/562) in the low-NKRS group,

whereas there were no responders (0%, 0/458) at all in the high-

NKRS group, strongly endorsing the favorable predictive power of

NKRS for immunotherapy responsiveness (Figure 8G). Several real-

world patient cohorts receiving ICB therapy were utilized to test the

predictive reliability of the NKRS. As observed in BMS038,

Gide2019, and IMvigor210 cohorts, with the decreasing of NKRS,

tumor growth became more manageable, resulting in a longer

progression-free survival (PFS) and overall survival (OS)

(Figures 8H, I; Supplementary Figure S4B). The above results

suggested that NKRS is of promising value in predicting cancer

immunotherapy efficacy, with lower NKRS correlating with better

therapeutic benefits.
3.10 Low-NKRS patients may experience
better chemotherapy outcomes

Chemotherapy is also a common non-surgical treatment for

BRCA. We employed the “Oncopredict” package to investigate

whether the NKRS could stratify patient populations with

different chemotherapy susceptibilities. The IC50 values of drugs

in the high-NKRS group were generally higher, indicating that

high-NKRS individuals responded less favorably to most

chemotherapeutic drugs, including DNA-targeting agents (5-

Fluorouracil, Cisplatin, Oxaliplatin, Gemcitabine, Camptothecin,

and Olaparib) (Figures 9A-F), cell cycle blockers (Docetaxel,

Paclitaxel, Vinorelbine, Alisertib, and Palbociclib) (Figures 9G-K),

and kinase inhibitors (Dasatinib, Trametinib, Alpelisib, Buparlisib

and Pictilisib) (Figures 9L-P). Yet these results also illustrated the
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1460607
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hou et al. 10.3389/fimmu.2024.1460607
challenging issue of limited effective drugs in high-NKRS

populations, so we identified 4 promising agents (Pilaralisib,

Tivozanib, Lapatinib, and Axitinib) that might be suitable for

high-NKRS patients using the Cmap, and their chemical

structures were shown in Figures 9Q-T. These results

demonstrated that NKRS was a useful indicator for guiding the

clinical management of BRCA.
Frontiers in Immunology 12
3.11 Randomized forest screening
combined with experimental validation
identifies KLRB1 and CCND2 as key
prognostic NKRGs

We then analyzed the expression profiles of these seven

signature NKRGs, and we observed that the expression of three
FIGURE 7

Analysis of the TME landscape. (A, B) ImmunecellAI and CIBERSORT algorithms were utilized to calculate the proportions of TICs. (C) The violin plot
shows the differences in stromal score, immune score, and ESTIMATE score between the low- and high-NKRS groups. (D) The negative correlation
between the NKRS and immune score. (E, F) The positive correlation between the NKRS and tumor purity. (G, H) Heat maps illustrate the correlation
between NKRGs and TIC levels calculated by the ImmunecellAI (G) and CIBERSORT (H) algorithms (*P<0.05, **P<0.01, ***P<0.001).
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FIGURE 8

Evaluation of the immune function and immunotherapy sensitivity. (A–C) Box plots demonstrated significant differences in gene expression patterns
related to immune function. (D) The correlation between NKRS and anti-tumor immune activities. (E) Violin plots revealed significant disparities in
signature scores of CD8+ T cells, IFN-Gamma, M2 Macrophages, and MDSCs between the low- and high-NKRS groups. (F) Differences in IPS scores
between different NKRS groups. (G) The distribution of responders and non-responders to immunotherapy and TIDE scores. (H, I) Validating the
association between the NKRS and immunotherapy response in two ICB cohorts, BMS038 and Gide2019 cohorts (ns: not significant, *P<0.05,
**P<0.01, ***P<0.001).
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NKRGs (CCL5, EFHD2, IRF1) was up-regulated and the expression

of four genes was down-regulated (KLRB1, C1S, SOCS3, CCND2)

in BRCA tissues, with this trend being consistent across all the

samples and paired samples (Supplementary Figures S5A, B).

Aiming to further screen out important NKRGs with targeting

value in this model, we incorporated the methodology of machine

learning and screened for key NKRGs using the Random Forest

algorithm. After analyzing the TCGA-BRCA dataset, KLRB1 and
Frontiers in Immunology 14
CCND2 were identified as important NKRGs due to their highest

importance on patient prognosis (Figures 10A, B). More

importantly, we got a consistent finding in two external cohorts,

verifying the importance of KLRB1 and CCND2 (Figures 10C-F).

Moreover, ROC curves showed the reliable performance of these 7

NKRGs, with AUC of 0.720 and 0.904 at KLRB1 and CCND2,

respectively, representing a high reliability (Figure 10G).

Furthermore, in both the TCGA-BRCA cohort and multiple
FIGURE 9

Assessment of the chemotherapeutic sensitivity and prediction of promising agents. (A-P) The IC50 values of 16 chemotherapeutic agents were
analyzed and compared between the low- and high-NKRS groups. (Q-T) Utilizing the Cmap platform, 4 promising agents were identified for high-
NKRS patients (****P<0.0001).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1460607
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hou et al. 10.3389/fimmu.2024.1460607
validation cohorts, higher expression of KLRB1 or CCND2 was

capable of predicting longer OS of BRCA patients (Figures 10H-K).

The aforementioned results unequivocally demonstrated that

KLRB1 and CCND2 are crucial prognostic NKRGs in BRCA and

possess significant clinical value for future applications.

Further assessment of the clinicopathological relevance of the

key genes revealed that the expression of both KLRB1 and CCND2

was correlated with the pathological stage of the tumor and the age

of the patients, with no significant correlation with the N-stage
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(Supplementary Figures S6A, C, E). There was a certain negative

association between CCND2 and the T-stage (Supplementary

Figure S6B). KLRB1 was closely related to the survival status and

the PAM50 subtypes (Supplementary Figures S6F, G). Although the

expression of KLRB1 was lower in metastatic tumors, the difference

was not statistically significant (Supplementary Figure S6D).

Finally, we verified the association between key NKRGs, KLRB1

and CCND2, and tumor-infiltrating NK cells by combining spatial

transcriptomics and IHC assays based on BRCA tissue specimens. Two
FIGURE 10

Screening for key NKRGs of importance to BRCA prognosis. (A-F) The machine learning method identified KLRB1 and CCND2 as key NKRGs in three
cohorts. (G) Time-dependent ROC curves assessed the diagnostic accuracy of signature NKRGs. (H, I) Survival curves of BRCA patients with different
KLRB1 or CCND2 levels in the TCGA-BRCA cohort. (J) Survival curves of BRCA patients with different KLRB1 levels in validation cohorts. (K) Survival
curves of BRCA patients with different CCND2 levels in validation cohorts.
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publicly available spatial transcriptomic sections of BRCA revealed a

strong positive correlation between the spatial expression of KLRB1

and CCND2 and the NK cell marker NKG7 (Figures 11A, B). Further

IHC staining using BRCA tissue microarrays showed that both

KLRB1 and CCND2 showed a certain spatial co-localization

with CD56, a typical marker of NK cells (Figure 11C). These results

strongly suggested the prognostic significance and immune

microenvironmental relevance of key NKRGs, KLRB1 and CCND2.
Frontiers in Immunology 16
4 Discussion

Breast cancer (BRCA) presents a significant global health

challenge and profoundly affects women’s well-being (2, 3).

Consequently, it is crucial to develop personalized, risk-based

screening strategies for early detection and effective therapeutic

management of BRCA. The association between prognosis and

immune cells within the tumor microenvironment (TME) has been
FIGURE 11

Verifying the association between two key NKRGs and NK cells using spatial transcriptome and IHC assays. (A, B) Spatial transcriptomic slides
confirmed the positive correlation between the abundance of KLRB1 and CCND2 and the NK cell marker NKG7 in BRCA tissues. (C) Tissue
microarray-based IHC assays validated the positive correlation between KLRB1 and CCND2 and the NK cell marker CD56 in BRCA specimens.
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extensively validated across various cancer types (50–52). While

current research primarily focuses on adaptive immune cells,

including B cells, CD4+ T cells, and CD8+ T cells, the role of

innate immune cells remains underexplored and underreported

(51, 53, 54). Notably, only a subset of patients respond favorably to

immunotherapies targeting adaptive immune cells. Therefore,

developing therapeutic prediction models based on innate

immune-related molecules is a promising research direction.

The efficacy of immunotherapy is influenced by various factors

within the tumor microenvironment (TME). Thus far, strategies

that target innate immunity have demonstrated significant promise

in clinical cancer research (55). Key components in TME, such as

dendritic cells, CD8+ T cells, and macrophages, play important roles

in cancer immunity. NK cells, in particular, demonstrate potent

anti-tumor activity through the recognition and elimination of

malignant cells (56–58). Activated NK cells can eradicate tumor

cells by releasing perforin and granzyme or by inducing apoptosis

via ADCC, FasL, or TRAIL pathways (59, 60). Moreover, NK cells

can secrete cytokines, incorporating IFN-g and TNF-a, which
inhibit tumor growth (61). They also facilitate the recruitment of

dendritic cells into the TME (62). Emerging evidence suggests that a

novel subset of NK cells can even attract T cells into the TME,

enhancing the effectiveness of ICB therapy (63). In recent years, the

pivotal role of NK cells in tumorigenesis has been increasingly

acknowledged. Though several studies have employed NKRGs as

reliable biomarkers to predict immunotherapy response rates in

cancers such as lung and gastric cancer, there is a notable lack of

relevant studies in the field of BRCA (64–66). Inspired by these

studies, along with the realistic demands, we aim to investigate the

prognostic and molecular characteristics of tumor-infiltrating NK

cells in BRCA and identify novel NK-related molecular biomarkers.

Our goal is to develop an NKRS model to enhance the prognosis

assessment and advance precision medicine in BRCA.

In the present study, we observed a significantly poorer survival

rate among BRCA samples with lower contents of NK cells

compared to those with higher contents, thereby establishing a

correlation between NK cells and BRCA prognosis. We also used a

novel screening strategy for key genes, combining the single-cell

transcriptome and the bulk transcriptome-based WGCNA,

resulting in 49 candidate NKRGs. Following the LASSO

regression, we established a seven-gene (CCL5, EFHD2, KLRB1,

C1S, SOCS3, IRF1, and CCND2) NK-related prognostic and

therapeutic prediction signature, serving as an independent and

reliable prognostic indicator for BRCA.

Among these 7 NKRGs comprising the signature, some have

been reported to significantly influence cancer progression, while

others remain understudied. For instance, existing research

indicates that increased SOCS3 promotes the degradation of IDO,

an immunosuppressive molecule secreted by MDSCs (67).

Furthermore, SOCS3 overexpression considered as a potential

therapeutic target for TNBC and hepatocellular carcinoma,

aligning with our finding (68). C1S, a key gene in the classical

complement pathway, acts as an adjunct component that can

potentiate antibody-based immunotherapies (69). CCND2, a
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cyclin known for inducing a senescent phenotype and inhibiting

cell growth, observed deletions or mutations in many BRCA

samples (70). In addition, CCND2 expression was found to

increase during cell growth arrest, suggesting its suppressing role

in cancer development (71). EFHD2 has been reported to exhibit

immunomodulatory and inflammatory regulatory functions in

non-alcoholic steatohepatitis (NASH) (72), but its involvement in

tumors remains unexplored. Several NKRGs, like CCL5,

demonstrate dual effects on tumors by promoting both tumor

progression and enhancing anti-tumor immune responses (73).

Specifically, CCL5 promotes the infiltration of regulatory T cells

(Tregs) into the TME, thereby favoring tumor growth (74).

However, CCL5 also facilitates the infiltration of CD8+ T cells to

kill tumor cells (75). Regarding KLRB1, our findings align with

those of Jiu-Ling Chen and other researchers, who discovered that

KLRB1 was a tumor suppressor gene suggestive of a better

prognosis, and that KLRB1 expression was positively correlated

with the level of CTLs, B cells and DCs (76, 77). Conversely, other

studies have also indicated that KLRB1 may diminish T cell-

mediated cytotoxicity and induce NK cell dysfunction,

contributing to tumor progression (78, 79). The reason for this

contradiction may be the cellular heterogeneity of KLRB1

expression, whose functions in tumor and immune cells may

differ. In addition, since KLRB1 is mainly expressed in NK cells

and T cells, there is a possibility that its high expression suggesting a

better prognosis may also result from a higher level of infiltrative

immune effector cells such as NK and T cells. Thus, KLRB1 emerges

as a pivotal immunomodulatory molecule, intricately regulating the

delicate balance of NK cell and T cell activity. The transcription

factor IRF1 is involved in the regulation of PD-L1 expression (80). It

also specifically binds to the promoters of immunosuppressive

genes in tumor cells, thereby hindering the anti-tumor immune

response (81). Also, IRF1 is associated with the activation of

dendritic cells (82). Among these 7 NKRGs, we used machine

learning combined with multi-cohort analyses to identify the

significant contribution of KLRB1 and CCND2 to BRCA

prognosis and validated their correlation with NK cells by spatial

transcriptomics and specimen IHC assays. More subsequent studies

are warranted to further elucidate the functional and prognostic

significance of these NKRGs.

Given the robust prognostic effect of NKRS in BRCA, we

applied the GSEA algorithm and discovered a remarkable

enrichment of the chemokine signaling pathway, natural killer

cell-mediated cytotoxicity pathway, T-cell receptor signaling

pathway, and inflammatory response pathway in the low-NKRS

group. These are well-established pathways that foster anti-tumor

immune responses (83–86). So, we analyzed the correlation

between NKRS and TME. The results revealed a strong

association between NKRS and NK cells, T cells, and other

immune cell types. We also found almost all NKRGs involved in

this signature positively correlated with CD4+ T cells, CD8+ T cells,

cytotoxic T lymphocytes, and NK cells. These cells are capable of

directly or indirectly eliminating tumor cells across numerous

cancer types (84, 85, 87, 88). Given the established negative
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correlation between NKRS and the infiltration level of various

effector immune cells, we observed a similar effect on immune

functional phenotypes. Several typical immune checkpoints

currently in clinical use, including PD-1, CTLA-4, and PD-L1,

were also observed to be upregulated in the low-NKRS group,

suggesting that these patients may exhibit an enhanced response to

ICB therapies (89). Although we observed higher immune

checkpoint expression in the low-NKRS group, and it is

commonly believed that upregulated checkpoints such as PD-L1

are associated with immune evasion and immunosuppression, we

also observed improved immune cell infiltration, enhanced antigen-

presenting, enhanced effects of effector cytokines such as interferon

(IFN) and tumor necrosis factor (TNF), and enhanced immune

recognition and killing in the low-NKRS group, and therefore the

low upregulation of immune checkpoints in the NKRS group may

be due to a combination of several of these anti-tumor

microenvironmental factors. Indeed, we corroborated the

association between a lower NKRS and a better ICB

responsiveness with comprehensive validations, including

immune function scores, TIDE and IPS algorithms, and survival

and differential analysis based on real-world ICB cohorts.

Despite the fact that high-NKRS BRCA patients presented

lower sensitivity to immunotherapy and most chemotherapeutic

agents in this study, we identified four effective agents (Pictilisib,

Tivozanib, Lapatinib, and Axitinib) that might be suitable for them.

Pictilisib is a type I PI3K inhibitor that induces apoptosis and

inhibits the proliferation of centroblasts and tumor cells (90).

Tivozanib, an inhibitor of the vascular endothelial growth factor

receptor (VEGFR), impedes tumor angiogenesis, thereby limiting

tumor growth and blood flow. Tivozanib is primarily used in

treating advanced renal cell carcinoma, where it has demonstrated

significant efficacy in prolonging progression-free and overall

survival (91). Lapatinib is a dual tyrosine kinase inhibitor that can

inhibit the proliferation and activity of tumor cells by

simultaneously acting on the epidermal growth factor receptor

(EGFR) and human epidermal growth factor receptor 2 (HER-2).

For patients with advanced HER2+ BRCA, Lapatinib has

demonstrated significant therapeutic efficacy (92). Axitinib, a

second-generation selective inhibitor of VEGFR, is primarily

utilized for treating renal cell carcinoma (RCC), particularly in

cases where immunotherapy has failed (93). Further clinical trials

are necessary to explore and validate the application of these

chemotherapeutic agents in BRCA.

In summary, through the integration of single-cell and bulk

transcriptomic analyses, we identified 7 NKRGs associated with ICB

resistance, which were further employed to establish an NK-related

risk score (NKRS). This NKRS exhibited robust predictive

capabilities in various aspects, encompassing patient survival,

TME landscape, immune functions, immunotherapy response,

and chemotherapy sensitivity. In addition, we applied machine

learning methods to identify 2 key NKRGs, with their prognostic

roles and TME relevance also validated by multi-cohort analysis,

spatial transcriptomics, and specimen-based IHC experiments.

Nevertheless, this study has several limitations. Firstly, the

effects of the 7 NKRGs were solely confirmed through database

analysis, necessitating further exploration of their specific functions
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and molecular mechanisms. Additionally, our analysis was confined

to NK cells in the TME, overlooking a diverse array of other cells

and cytokines, so the model was rendered less comprehensive.

Ultimately, our study provides a novel NK cell-based perspective

for the prognostic assessment and individualized treatment of

BRCA patients, with potential contributions to precision medicine

and the identification of new therapeutic targets for BRCA.
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SUPPLEMENTARY FIGURE 1

Additional analysis results from scRNA-seq and WGCNA. (A) Feature plots

revealed the differential expression of KLRD1 among cell clusters. (B) Violin
plots demonstrate that KLRD1 was predominantly expressed in NK cells. (C)
Preliminary gene clustering in WGCNA. (D) Preliminary clustering of gene

modules and merging minor modules.
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SUPPLEMENTARY FIGURE 2

Validation of the clinical value of NKRS in external cohorts. (A) Confirming the
NKRS was an independent prognostic indicator in three validation cohorts. (B)
The histograms and box plots further supported the clinical relevance of

NKRS in validation cohorts (*P<0.05, ***P<0.001, ****P<0.0001).

SUPPLEMENTARY FIGURE 3

Additional GSEA and immune infiltration results. (A, B) GSEA results based on

HALLMARK gene sets in the high- and low-NKRS groups. (C) The correlation
between NKRS and immune cell abundance calculated by different algorithms.

SUPPLEMENTARY FIGURE 4

Analysis of immune function and immunotherapy. (A) GSVA analysis revealed

differences in immune function between NKRS groups. (B, C) The violin plot
and survival analysis on the IMvigor210 cohort validated the capability of

NKRS in predicting ICB efficacy (***P<0.001).

SUPPLEMENTARY FIGURE 5

Expression profiles of signature NKRGs in BRCA. (A) Expression patterns of
signature NKRGs in BRCA and non-malignant tissues. (B) Expression patterns of

signature NKRGs in BRCA and paired paracancerous tissues (*P<0.05, ***P<0.001).

SUPPLEMENTARY FIGURE 6

Clinical relevance of key genes KLRB1 and CCND2. Association between the

expression of key NKRGs and pathologic stage (A), TNM stage (B-D), patient
age (E) , survival status (F) , and PAM50 subtypes (G) (*P<0.05,
**P<0.01, ***P<0.001).
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