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Optimizing multi-environment
trials in the Southern US Rice
belt via smart-climate-soil
prediction-based models
and economic importance
Melina Prado1, Adam Famoso2, Kurt Guidry2

and Roberto Fritsche-Neto2*

1Department of Genetics, “Luiz de Queiroz” College of Agriculture/University of São Paulo,
Piracicaba, Brazil, 2H. Rouse Caffey Rice Research Station, Louisiana State University Agricultural
Center, Rayne, LA, United States
Rice breeding programs globally have worked to release increasingly productive

and climate-smart cultivars, but the genetic gains have been limited for some

reasons. One is the capacity for field phenotyping, which presents elevated costs

and an unclear approach to defining the number and allocation of multi-

environmental trials (MET). To address this challenge, we used soil information

and ten years of historical weather data from the USA rice belt, which was

translated into rice response based on the rice cardinal temperatures and crop

stages. Next, we eliminated those highly correlated Environmental Covariates (ECs)

(>0.95) and applied a supervised algorithm for feature selection using two years of

data (2021-22) and 25 genotypes evaluated for grain yield in 18 representative

locations in the Southern USA. To test the trials’ optimization, we performed the

joint analysis using prediction-based models in four different scenarios:

i) considering trials as non-related, ii) including the environmental relationship

matrix calculated fromECs, iii) within clusters; iv) sampling one location per cluster.

Finally, we weigh the trial’s allocation considering the counties’ economic

importance and the environmental group to which they belong. Our findings

show that eight ECs explained 58% of grain yield variation across sites and 53% of

the observed genotype-by-environment interaction. Moreover, it is possible to

reduce 28% the number of locations without significant loss in accuracy.

Furthermore, the US Rice belt comprises four clusters, with economic

importance varying from 13 to 45%. These results will help us better allocate

trials in advance and reduce costs without penalizing accuracy.
KEYWORDS

target population of environments, market segments, genotype x environment,
envirotyping, supervised learning
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1 Introduction

Among the core objectives of rice breeding programs is the

release of cultivars with improved yield, nutritional capacity,

resistance to pests/diseases, and climate-smart (Hickey et al.,

2019). However, some aspects hold back the genetic gains of

breeding programs. One is the high costs associated with

phenotyping (Furbank and Tester, 2011; Araus and Cairns, 2014),

which can cause uncertainty in the number and allocation of trials

throughout the locations to increase further. Another is unclear

approaches to align multi-environmental trials (MET) with the

target population of environments (TPE), especially in a climate

change scenario that constantly challenges the definition of a TPE

(Cooper and Messina, 2021).

Design of TPEs generally considers historical data from the soil,

climate, hydrological aspects, management strategies, and

sometimes socioeconomic data from locations where the crops

are frequently produced, that is, it represents a set of

characteristics that constitute future growing seasons, years and

environments (Crespo-Herrera et al., 2021; Cooper et al., 2023). To

avoid the yield gaps between the expected yield potential in the TPE

and the real on-farm yield that farmers achieve, it is important to

characterize better and select the locations used for testing/selection

and to understand how they are related (mega-environments) by a

process called enviromic or environtyping. Specifically, in this

process, the environmental covariates are collected and processed

in appropriate MET groupings, which are analyzed concerning the

alignment with TPE and, thus, used to capture genotype reaction

norms models (Cooper and Messina, 2021; Costa-Neto et al., 2023;

Callister et al., 2024).

The concepts of environmental characterization, the genotype

by environment interaction (GxE), and the target population of

environments have been mentioned for many years in corn

breeding in the USA, with this information presenting itself as a

valuable resource for the decision-making process in breeding

programs (Boer et al., 2007; Gaffney et al., 2015). However, little

attention has been given to the American rice belt’s environmental

characterization and TPE delineation. Although the United States

of America (USA) has a small rice production compared to Asian

countries, the country is responsible for 5% of all rice exports in the

world and has tripled its imports since 2001/02, showing a clear

increase in crop demand (USDA, 2023).

The United States has four major rice-producing regions

produced through the irrigated rice crop system: the Southern

USA Rice Belt representing 85.6% of the USA Rice belt, with the

Arkansas Grand Prairie, Mississippi Delta (Arkansas, Mississippi,

Missouri, and Northeast Louisiana), and Golf Coast (Texas and

Southwest Louisiana); and the Western USA Rice belt (14.4%), with

only the Sacramento Valley California. These regions produce

different types of rice classified by the United States, largely

defined by grain market classes, with approximately 75% of the

country producing long grain, 24% producing medium grain, and

just 1% producing short grain. These last two types are produced

partially by the state of Arkansas and mainly by the state of

California (USDA, 2023).
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Among all the breeding programs in the country, the Louisiana

State University AgCenter is a centennial rice breeding program that

utilizes a wide network of locations to conduct its METs across the

US Rice belt. Because of its extensive field phenotypic evaluations,

some questions were raised, such as: Is it necessary for so many

locations? Does our MET match the TPE? Are we allocating our field

trials properly? If we reduce the number of trials, we reduce the cost,

but what happens with accuracy? In this context, several studies have

indicated that the environmental covariates inclusion can enhance

prediction accuracy (Moura-Bueno et al., 2021; Neyhart et al., 2022;

Rogers and Holland, 2022; Montesinos-López et al., 2023). For

instance, including environmental covariates for designing

optimized training sets for genomic prediction can improve the

response to selection per dollar invested by up to 145% compared

to the model without environmental data (Gevartosky et al., 2023).

Therefore, we use historical data from the LSU Rice Breeding

Program as a training set to address these questions and optimize

the allocation of rice multi-environment trials (MET) in the USA

Rice Belt via smart-climate prediction models based on historical

weather and yield data, economic importance, artificial intelligence,

and mixed model equations.
2 Materials and methods

2.1 Plant materials and trials

The experimental material consisted of 25 rice genotypes tested

in two years, 2021 and 2022, and phenotyped for rice grain yield (kg

ha -1). There were 25 genotypes, 21 were of the long, and 4 were of

the medium grain types. Louisiana State University, University of

Arkansas, Horizon Ag, and Nutrien each provided five new

genotypes. Also, five checks were included in the trials that were

conducted at 19 different locations in the Mississippi Delta

(Arkansas, Mississippi, Missouri and Louisiana) and Golf Coast

(Texas and Southwest Louisiana). Since these were advanced trials,

we had 25 genotypes tested in 2022, but 9 genotypes tested in 2021

(9 genotypes were common between 2021 and 2022.). The

experimental design of these trials was a Randomized Complete

Block Design, with 3 or more blocks. A figure showing how many

times the genotypes were phenotyped per location and per year is

available as Supplementary Material (Supplementary Figure S1).

We define this main dataset as “LSU” for convenience.
2.2 Single trial analysis

We performed a two-stage analysis using linear mixed models

to estimate grain yield using BLUEs (Best Linear Unbiased

Estimators) for each individual trial (location × year), similar to

the method used by Jarquıń et al. (2014). The first model was

calculated using the SpATS package in the R environment (version

4.3, https://www.r-project.org/):

yLSUijmnk = m + Gi + Rj + Lm + Cn + eijmnk (1)
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With yLSUijmnk being the phenotypic values of grain yield

and equal to an overall mean m, plus a fixed effect from genotypes

(Gi;  i = 1,…, I), a random effect from replicates (Rj;  j = 1,…, J), a

random effect from rows (Lm;  m = 1,…,M), a random effect from

columns (Cn;  n = 1,…,N) and a random term describing residuals

(eijmnk;  k = 1,…, rijmn). The random terms were assumed to be

independent and identically distributed, where Rj eN(0,s 2
r ), Lm e

N(0,s 2
l ), Cn eN(0,s 2

c ), e eijmnk eN(0,s 2
e ). We utilized an auxiliary

function in the SpATS model for spatial correction, which models

the spatial heterogeneity effect using a two-dimensional penalized

tensor-product of B-spline basis functions. A table containing broad

heritability per trial (combinations of years by locations) is provided

as Supplementary Material (Supplementary Table S1).
2.3 Multi trial analysis

The second step of the analysis was to predict the genotypic

values using BLUP and estimate heritability in a multi-trial analysis.

This time we used sommer package to perform linear mixed model

calculations in the R environment (Covarrubias-Pazaran, 2016):

yLSU·xijk = m + Yx + Gi + Ej + GEij + exijk (2)

With yLSU·xijk being the grain yield BLUEs from model (1) and

equal to an overall mean m, plus a fixed effect from year

(Yx ;  i = 1,…,X), a random effect from genotypes (Gi;  i = 1,…, I), a

fixed effect from environment/location nested in year (Ej;  i = 1,…, J),

a random effect from the interaction between genotype and

environment and a random term describing residuals

(exijk;  k = 1,…, rxij). The random terms were assumed to be

independent and identically distributed, where Gi eN(0,s2
g ) and exijk

eN(0,s 2
e ). As the design matrix of the genotype by environment

interaction is the Hadamard product (⨀) of ½ZgZ
0
g � and ½ZeZ

0
e�, and

Zg and Ze are the incidence matrix of genotype and environment, G

Eij eN(0, ½ZgZ
0
g �⨀½ZeZ

0
e�s 2

ge). The same model, but with all

random effects, was used to assess the variance partitioning among

the different variance components of year, location, genotype, and

genotype-by-environment effects. The variance components for the

random model are presented as Supplementary Material

(Supplementary Table S2).
2.4 Environmental covariates

The “envRtype” package was used to obtain environmental data

(Costa-Neto et al., 2021). The package uses data from NASA’s orbital

sensors along with location, geographic coordinates, and time range

data to extract environmental data related to the experimentation

locations. After obtaining the data, we tuned the environmental

covariates (EC) with the cardinal limits for temperature on the

phenology development of rice (Table 1). The resulting centralized

and scaled matrix had 114 covariates (19 location covariates x 6

phenological stages) for 19 experimentation sites.
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The SoilType package was used to generate the soil covariates

matrix (Fritsche-Neto, 2023). The package uses GPS coordinates to

capture information about the soil of the locations closest to the

experimentation site through the World Soil Database (WoSIS)

(Batjes et al., 2017). Based on this database, the package also

calculates several chemical and physical soil covariates. For the

following steps, we joined the location and soil matrices into a single

environment covariates matrix, which had 125 covariates for 18

locations, since it was not possible to generate environmental

information for one of the 19 locations. This matrix underwent

quality control using the caret package to ensure that only

covariates with less than 95% correlation were maintained and to

reduce collinearity between covariates (Kuhn, 2008). After this

control, our scaled and centered W matrix remained with only

67 covariates.
2.5 Feature selection and clustering

We used the Recursive Feature Elimination (RFE) algorithm

and the random forest learning method of the caret R package to

select the most important predictors or covariates (Kuhn, 2008).

The validation method was the repeated cross-validation with 5

folds and 5 replicates. Then, models using the W matrix

composed with only the predictors selected in the RFE, we

calculated the enviromic-based kernel for similarity among

environments (W), or “environmental relationship matrix”

(Costa-Neto et al., 2021):

W =
WW 0

tr(WW 0 )=nrow(W)
(3)

Where W is the environmental covariate matrix generated in

the last steps, tr() is a trace matrix and nrow() is the number of

rows. To group the experimental locations based on the features

selected in the previous step, we clustered the locations using the

factoextra package and k-means method (Kassambara and Mundt,

2020). Then, we decided how many clusters would be used to

separate the locations with the help of the “Within Cluster of

Squares” method.
TABLE 1 Rice phenological stages with corresponding abbreviations and
day intervals.

Phenological stage Abbreviation
Interval
(days)

Emergency - Maximum Tillering EM_MAX.TIL 0 - 44

Maximum Tillering -
Panicle Initiation

MAX.TIL_PAN.INIT 45 - 59

Panicle Initiation - Pre Flowering PAN.INIT_PRE.FLW 60 - 74

Pre Flowering - Flowering PRE.FLW_FLW 75 - 89

Flowering - Post Flowering FLW_POST.FLW 90 - 104

Post Flowering - Maturity POST.FLW_MAT 105 - 148
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2.6 Multi-environment trial optimization

To explore the benefits of multi environment trial optimization

through environmental covariates, we estimated the BLUPs for each

genotype in four different scenarios:

I - The Multi-Environment model

The Multi-Environment model (MET) is exactly the complete

model (2) previously used in the multi-trial analysis. In this work,

we did not focus on the stability and specific adaptation of the

varieties. Therefore, we included the GxE effect in the model only

to test heritability across scenarios, as this was our primary

interest:

yLSU·xijk = m + Yx + Gi + Ej + GEij + exijk (4)

II - The Multi-environment model with Environmental Covariates

The Multi-Environment model with Environmental Covariates

(MET_EC) has the same effects as the previous model, but with the

addition of the enviromic-based kernel (W) based on the W matrix

previously described:

yLSU·xijk = m + Yx + Gi + Ej + GEij + exijk (5)

Where GEij eN 0, ½ZgZ
0
g � ȯWs 2

ge

� �
.

III - The Within Cluster Multi-Environment model

The Within Cluster Multi-Environment model (WC_MET) is

the same as the MET model, but the genotype BLUPs were

calculated for each of the clusters (c) individually (c = 1,…,C),

with C representing the five LSU clusters with different numbers of

trials each one:

yLSU· (c)
xijk = m + Yx + Gi + E (c)

j + GEij + exijk (6)

IV - The Optimized Multi-Environment model

Finally, the Optimized Multi-Environment model (OP_MET) is

the same as the MET model, but calculated individually for each

subset of locations for each replicate. Where l is a subset of five

randomly chosen locations from each of the five clusters (l = 1,…, L

) and h is one of the ten replicates (h = 1,…,H) performed to avoid

bias by choosing only one location from each cluster:

yLSU· (l,h)
xijk = m + Yx + Gi + E (l,h)

j + GEij + exijk (7)
2.7 Cluster effect on rice grain yield

We calculated clusters adjusted means based on rice grain yield

performance of each location to observe the effect of environmental

clusters on productivity based on the following model:

yLSU·xijk = m + Cj + Gi + GCij + eijk (8)

With yLSU·xijk being the grain yield BLUEs from model (1)

and equal to an overall mean m, plus a fixed effect from

cluster (Cj;  j = 1,…, J), a random effect from genotypes

(Gi;  i = 1,…, I), a random effect from the interaction between

genotype and cluster (GCij) and a random term describing
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residuals (exijk;  k = 1,…, rxij). The random terms were assumed to

be independent and identically distributed, where Gi eN(0,s 2
g ), G

Cij eN(0, ½ZgZ
0
g �⨀½ZcZ

0
c�s 2

gc) and exijk eN(0,s2
e ), and Zg and Zc

are the incidence matrix of genotype and cluster.
2.8 Accuracy per unit of dollar invested

To obtain accuracy for each of the four scenarios described

above, we calculated broad-sense heritability (H2) using the Cullis

method (Cullis et al., 2006):

H2 = 1 −
v−BLUPD
2 · s 2

g
(9)

Where the term v−BLUPD stands for the average standard error of the

genotypic BLUPs. The next step was to generate the heritability value

per dollar unit invested in a similar way that Gevartosky et al. (2023)

calculated. To achieve this, we calculated the total cost for each of the

four scenarios based on the rates paid by LSU. ForMET,MET_EC, and

WC_MET: the calculation is the product of 25 genotypes x 3 replicates

x $25.00/plot phenotyping x 18 locations x 2 years = $67,500.00. Since

all LSU locations were grouped into 5 clusters, the cost for the

OPT_MET scenario was calculated as follows: 25 genotypes x 3

replicates x $25/plot phenotyping x 5 locations x 2 years = $18,750.00.
2.9 Cost reduction simulation in the
optimized scenario

We demonstrated cost reduction through the optimization of

LSU’s multi-environment trials in two distinct ways: the reduction

for LSU’s advanced trials (described in item 2.1) and the reduction

for the entire LSU experimental network, which includes not only

the advanced trials but also other breeding stages in all LSU trial

locations for ten years. A table containing the number of trials

conducted by LSU for these 18 locations over 10 years is presented

as Supplementary Material (Supplementary Table S3). We

considered this second option because the number of trials varies

across the 18 locations, with some locations tested in less years, and

optimizing these locations would impact the entire LSU network.

Using this list from the complete LSU experimentation network, we

also calculated the percentage of trials per LSU cluster.

For the first approach, where only one trial per combination of

year and location is conducted, the reduction in trials is calculated by

dividing the number of optimized locations by the total number of

locations (5/18), resulting in a virtual reduction of 27.7%. To simulate

a cost reduction for the entire LSU experimental network, we

calculated an average reduction across ten iterations. This is a

simulated value, as each location has a different number of trials,

and in a real-world scenario trials would also be redistributed

according to the Target Populations of Environments. In each

iteration of OPT_MET, the number of trials from the five selected

locations (one location per cluster) is summed and then compared to

the total number of clusters to determine the percentage reduction.
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2.10 Delimitation and economic
characterization of the target population
of environments

Through the previous analyses, we were able to predict the most

important environmental covariates for rice grain yield by using the

LSU MET as the training set. Based on that, we used those

covariates to perform a K-means cluster analysis to delimit the

target population of environments (TPE) for the Southern USA

Rice Belt, and just for Louisiana. The whole USA rice belt is

composed of 80 counties from seven States and represents 98% of

USA rice production (Farm Service Agency - USDA), with 71

counties representing the Southern USA Rice Belt (85.6% of USA

rice production). Finally, based on the economic importance (rice

production of each County), we estimated the mega-environment

(TPE) importance and, consequently, the proportion of trials that

should be allocated in that market segment. To assess howmuch the

complete LSU network covers the American TPEs (clusters), we

assigned each LSU experimentation site to one of the four American

clusters. This assignment was based on the minimum Euclidean

distance between the scaled environmental profiles of the LSU sites

and the centroids of the four American clusters. To demonstrate the

environmental characterization of the regions within the Southern

US Rice Belt, we used a PCA biplot based on the W matrix, with

locations separated by clusters. This plot includes a standard PCA

analysis, with the addition of loading plots to show the influence of

each covariate on the principal components.
2.11 Advantages of the environmental
covariate matrix

We compared the environmental covariates matrix (W) with

the yield-based GxE matrix (Wyield), as it is more conventional for

studying the relationship between environments and for analyzing

the stability and specific adaptation of varieties (Yan et al., 2023). To

accomplish this, we performed the same analyses as we did for the

W matrix: calculated the yield-based environmental relationship

matrix (Wyield), clustered the locations using this matrix, calculated

the percentage of trials for each cluster, and determined the clusters’

adjusted means.
3 Results

3.1 Defining the Southern USA rice
mega-environments

The W matrix shows the profile of LSU locations based on the

environmental covariates selected by a supervised artificial

intelligence algorithm (Figure 1A). Specifically, using the

Recursive Feature Elimination method with the Random Forest

machine learning algorithm, these eight covariates alone account

for 58% of the total variation in rice yield across the LSU

experimental network. The eight most critical covariates were
Frontiers in Plant Science 05
both temperature and soil-related. Among the temperature-

related variables, there was The dew/frost point temperature at 2

meters above the surface of the earth (T2MDEW) in the

phenological stage between Flowering and Post Flowering

(FLW_POST.FLW); the T2MDEW in the phenological stage

between Pre Flowering and Flowering (PRE.FLW_FLW); the

TM2DEW in the phenological stage between Panicle Initiation

and Pre Flowering (PAN.INIT_PRE.FLW); The minimum hourly

air (dry bulb) temperature at 2 meters above the surface of the earth

in the period of interest (T2M_MIN) in the stage between Maximum

Tillering and Panicle Initiation (MAX.TIL_PAN.INIT); the

Growing Degree-Days (GDD) at the PRE.FLW_FLW stage; And

The minimum and maximum hourly air (dry bulb) temperature

range at 2 meters above the earth’s surface in the period of interest

(T2M_RANGE) in MAX.TIL_PAN.INIT. Regarding the soil-

related covariables, the chemical soil feature Calcium carbonate

total equivalent in g/kg (TCEQ); and the physical soil feature Total

Silt in g/100g (SILT). Therefore, the only phenological stages that do

not produce environmental variability in rice yield are the

Emergency to Maximum Tillering stage (EM_MAX.TIL), between

0 to 44 days, and Post Flowering to Maturity (POST.FLW_MAT),

between 105 to 148 days.

From the Wmatrix, we performed the clustering and thus

identified the mega-environments present in the LSU rice

breeding program (Figure 1C). This k-means clustering analysis

revealed five distinct mega-environments among the eighteen

experimentation sites, with the first two Principal Components

(PCs) explaining 79.3% of the variation (PC1 accounting for 56.3%

and PC2 for 23%). The map at the top displays the non-optimized

experimentation locations, while the map optimized by the k-means

method appears at the bottom (Figure 1D). With this optimization,

the number of locations was reduced by 27.7%, covering only the

states of Louisiana and Texas. Furthermore, we display the

percentage of trials per cluster (Figure 1E), allowing us to observe

the distribution of trials across mega-environments. The mega-

environments represent from as little as 0.7% of total trials (Cluster

4) to as much as 81.5% of total trials (Cluster 2). Finally, we present

the adjusted means for each cluster (Figure 1F), with Clusters 4 and

5 having the highest averages (comprising 0.7% and 10.1% of trials,

respectively), with approximately 10,000 and 9,500 kg per hectare in

grain yield. Included within these two clusters are the locations of

Rice Research Station - Late, Rice Research Station South, Mamou,

Morata, Bay City, Nutrien Rice Breeding Station (El Campo), and

Wintermann Rice Research Station.
3.2 Multi-environment trials optimization

The heritability graph reveals distinct outcomes for the four

scenarios analyzed (Figure 2). The MET scenario has a heritability

of 0.965; the MET_EC scenario has a heritability of 0.893; the

OPT_MET scenario has a mean heritability of 0.892 and standard

deviation of 0.015; and the WC_MET scenario has a mean of 0.840

and standard deviation of 0.067. A table containing the heritability

of all scenarios, as well as the variance components of the random

effects, is provided as Supplementary Material (Supplementary
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Table S4). When we divided the heritability by the total cost

associated with each scenario, the ratio between heritability and

cost in the OPT_MET scenario was at least four times higher than

that of any other scenario, underscoring its significant economic

value. Moreover, from the 829 trials conducted by Louisiana State

University in ten years (whole experimentation network), only an

average of 187.6 trials remained in the optimized scenario,

representing just 22.6% of the original trial number, with a

consequent virtual reduction of 77.4% in the number of trials.

When considering only the advanced trials, a virtual 27.7%

reduction in locations is achieved.
3.3 Delimitation of the USA rice belt target
population of environments

The subsequent analyses delineate the USA TPE using the eight

predicted covariates that best explain rice yield. We performed the
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clustering and distribution of trials across all 80 counties, representing

98% of US rice production in Arkansas, California, Florida, Louisiana,

Mississippi, Missouri, and Texas. The W matrix highlights a distinct

group unrelated to the other counties and comprises those in California

(Figure 3A). Consequently, the clustering of the U.S. dataset revealed

significant variability between the California cluster and the rest of the

American counties, resulting in the latter being considered a single

cluster. This created a new dataset that excluded the 9 California

counties and utilized 85.6% of the remaining USA production

(Southern USA Rice Belt). (Figure 3B). The findings from this

dataset indicated that the revised W, which includes the 71

remaining counties, is more homogeneous and is divided into four

mega-environments (Figure 4A). The economic importance

(percentage of production) of the Southern US Rice belt TPEs

(clusters) 1 to 4 is 15.3%, 27.6%, 44.4%, and 12.7%, respectively.

Meanwhile, the trial percentage of the whole LSU experimentation

network in each of these clusters is 38.9%, 50.0%, 5.6%, and 5.6%,

respectively. (Figures 4B, C). Lastly, as Supplementary Material, a new
FIGURE 1

Clustering and characterization of mega-environments from the LSU dataset using the environmental covariates matrix. (A) The environmental
covariates matrix; (B) Environmental relationship matrix; (C) Clusters defining the dataset mega-environments; (D) All locations on the top map and
only one location per cluster after optimization on the bottom map. In the latter, the closest locations to LSU from each cluster were used just for
the map construction; (E) Trials percentage in each cluster; (F) Cluster rice yield BLUEs. The colors of each cluster are the same in all images.
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dataset comprising 19 Louisiana parishes was divided into two mega-

environment, representing Louisiana’s northern and southern regions,

with 27.7% and 72.3% of trials per cluster, respectively (Supplementary

Figure S2).
3.4 Environmental characterization
of clusters

LSU’s environments of evaluation were divided into five

clusters, and these clusters are characterized based on the

evaluation of a PCA biplot analysis (Figure 5A):
Fron
- Cluster 1 is related to lower covariates values, such as

minimum temperatures (MAX.TIL_PAN.INIT), dew
tiers in Plant Science 07
point temperatures (from PAN.INIT to POST.FLW),

and TCEQ.

- Cluster 2 exhibits higher silt contents and lower minimum

temperatures (MAX.TIL_PAN.INIT), dew point

temperatures (T2MDEW), and TCEQ.

- Cluster 3 is characterized by higher temperature ranges

(MAX.TIL_PAN.INIT), while lower values for all the

other covariates.

- C lu s t e r 4 ha s h i ghe r min imum tempera tu r e s

(MAX.TIL_PAN.INIT) and TCEQ, lower dew/frost

temperatures (PRE.FLW to POST.FLW), and SILT content.

- Cluster 5 exhibits higher TCEQ content and minimum

temperature (MAX.TIL_PAN.INIT), while SILT and dew/

frost point temperatures have lower values.
FIGURE 3

Environmental relationship matrices based on environmental covariates for the entire US Rice Belt dataset (A) and for all states in the US Rice Belt
except California (B). The red square represents the sites in California, which are environmentally different from the others.
FIGURE 2

Broad-sense heritability on the left and heritability per unit of dollar invested on the right in the different scenarios for multi-environment trials
optimization testing. MET - The multi-environment model; MET_EC - The multi-environment model with environmental covariates; WC_MET - The
within cluster multi-environment model; OPT_MET - The optimized multi-environment model.
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Additionally, we provide the environmental characterization of

the US Rice Belt TPEs (Figure 5B):
Fron
- Cluster 1 exhibits higher dew point temperatures from

PRE.FLW to POST.FLW and low levels of SILT in the soil.

- Cluster 2 is characterized by having intermediate environmental

conditions compared to the other three clusters.
tiers in Plant Science 08
- Cluster 3 is characterized by high levels of TCEQ in the

soil and high minimum temperatures at MAX.TIL_

PAN.INIT, as well as high dew point temperatures

at PAN.INIT_PRE.FLW.

- Cluster 4 is defined by high temperature ranges

at MAX.TIL_PAN.INIT.
FIGURE 4

Clustering the Southern US Rice belt target population of environments using the environmental covariates matrix. (A) Clusters defining the four
mega-environments; (B) Percentage of production by southern US Rice TPE; (C) Percentage of LSU trials by Southern US Rice TPE. The colors of
each cluster are the same in all images.
FIGURE 5

Using a PCA biplot to perform the characterization of Southern US Rice belt TPEs and LSU’s rice mega-environments. The separate dots represent
the clusters, the black dashed lines divide the four areas of the graph with respect to the two main components that most explain the variance of
the clusters, the size and direction of the black arrows show how much the variables (in red) contribute to the variance of the main components.
The closer the clusters (black dots) are to the variables, the more related the clusters are too high values of that variable. (A) PCA biplot of clusters
from the multi-environment trials of LSU. (B) PCA biplot of TPEs from the Southern US Rice Belt.
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3.5 Exploring the environmental
covariates matrix

To determine how much the environmental relationship matrix

based on covariates could independently explain the yield-based

environmental relationship matrix, we calculated a Pearson

correlation between the two. The W matrix (Figure 1B) has a

52.59% correlation with the Wyield matrix (Figure 6B), meaning

that the eight environmental covariates alone explain 52.59% of the

traditional GxE matrix. Additionally, the Wyield matrix, unlike the

W, represents a yield gradient (Figure 6A). Consequently, theWyield

does not exhibit clearly separated kinship blocks (Figure 6B), and

the four clusters appear closer to each other, while the variation

within clusters increases. Furthermore, the first two principal

components accounted for a smaller proportion of the total

variation, with the first two PCs explaining 60.5% of the total

variation (PC1 at 41.7% and PC2 at 18.8%) (Figure 6C). Regarding

the percentage of trials per cluster, clusters 4 and 2 have the highest

trial allocations, with 81.2% and 12.4% respectively (Figure 6E). The

clusters with the highest yield adjusted means were 4 and 3, which
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include the locations Iowa, Mamou, UA Rice Research and

Extension Center, Rice Research Station - Late, Bay City, Rice

Research Station, Wintermann Rice Research Station, and Rice

Research Station - South (Figure 6F).

To further show the difference between W and Wyield, we plotted

a density distribution graph (Figure 7). The W distribution has a

high density where environments have lower relationship (Peak in

0.15) and a higher standard deviation (0.28), highlighting the

environmental heterogeneity contained in the MET. On the other

hand, the Wyield has a high density of more correlated environments

(Peak in 0.67) and a lower standard deviation (0.17), masking the

real MET environmental heterogeneity.
4 Discussion

MET are necessary to study the phenotypic plasticity of the

genotypes when subjected to environmental fluctuations under

different crops’ phenological stages. The change in the genotypes

rank can result from more static and predictable environmental
FIGURE 6

Clustering and characterization of mega-environments from the LSU dataset using the yield-based GxE matrix. (A) The GxE matrix;
(B) Environmental correlation matrix; (C) Clusters defining the dataset mega-environments; (D) All locations separated by cluster on the map;
(E) Trials percentage in each cluster; (F) The rice yield BLUEs of the clusters. The colors of each cluster are the same in all images.
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covariates, such as SILT and TCEQ as observed in our study, but

also from more unpredictable ones, such as temperature in our

study (Crespo-Herrera et al., 2021). The evaluation of quantitative

traits that are highly prone to demonstrate phenotypic plasticity

(crossover GxE interactions) must be done so that selection sites

effectively meet TPE needs. The assumption is that the locations

chosen to allocate the trials will efficiently represent the sets of

environmental covariates found in the TPE to make it possible to

outline a strategy on how to handle GxE in the selection of superior

genotypes in different stages of a breeding program (Cooper and

Delacy, 1994). In this context, disregarding the GxE interaction can

lead to a reduced selection response. This is particularly true when

programs conduct early generation selection, as they test many lines

in few environments (Cooper et al., 1995). Therefore, information

on the characterization and design of TPEs can benefit breeding

programs by guiding the allocation of trials and considering the

alignment of selection environments and TPEs.

Our study identified eight covariates that explain 58% of the

variation in rice yield across the Southern USA Rice Belt. Among

these, temperature was the environmental covariate explaining the

largest portion of variation. Although it is widely known that rice

flowering is regulated by temperature, the underlying regulatory

mechanisms are not yet fully understood. Generally, higher

minimum temperatures accelerate crop flowering, which can

reduce biomass and grain yield. Conversely, late flowering may

lead to increased biomass accumulation but can simultaneously

reduce grain filling (Srikanth and Schmid, 2011). Additionally, high

temperatures can deteriorate rice quality due to imbalances between

protein content and starch in the grains (Liu et al., 2021). On the

other hand, cold stress can reduce rice yield during any phenological
Frontiers in Plant Science 10
stage (da Cruz et al., 2013). In our study, minimum temperature was

particularly important between maximum tillering and panicle

initiation, with higher minimum temperatures associated with

clusters of higher yields. Moreover, some studies highlight the

importance of assessing air relative humidity when studying the

response of rice to temperature (Stuerz and Asch, 2019). Accordingly,

the dew/frost temperature, which depends on both air humidity and

temperature, was a key covariate in explaining the different selection

environments in our research. Besides the environmental factors

mentioned above, two soil covariates, namely the amounts of calcium

and silt, also significantly contributed to the yield variation observed

in the trials.

Using these covariates, we grouped the locations into five

clusters with environmental similarities. The productivity of these

groups ranged from 8,500 to 10,000 kg per hectare for clusters 3, 1,

2, 4, and 5, respectively. The two clusters with the highest average

productivity were associated with high minimum temperatures,

dew point temperatures, and high TCEQ contents in the soil.

However, the TPE with the greatest economic importance is

cluster 3 (Figure 4B), comprising 44.4% of the entire rice

production in the Southern USA Rice belt. This cluster contains

locations primarily in Arkansas, with a few in Missouri (in blue).

Based on the classifications through the Euclidean distances of the

LSU experimentation sites with the centroids of the TPE clusters, it

is noticeable that only 5.6% of the trials from LSU’s complete

network represent this cluster (Figure 4C). The results of the

delimitation of TPEs demonstrate how trial allocation could be

optimized for more efficient resource utilization. Additionally, the

results highlight the potential for improvement in US varieties, as

environments with greater economic importance (Cluster 1 and 3 in
FIGURE 7

Density distribution graph of the enviromic-based kernel and yield-based GxE matrix. In blue is the distribution, mean, standard deviation (SD) and
correlation value when the distribution reaches the maximum density (peak) of the enviromic-based kernel. In red are the same statistics, but for the
yield-based GxE matrix.
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LSU) (Figure 1C) have lower yield and less favorable environmental

covariates (Figure 5A), such as lower minimum temperatures and

dew/frost points. Furthermore, when covariates are deemed highly

significant for a trait to the extent that they become a long-term

breeding target, this would justify the establishment of fine-grained

research facilities for breeding programs (Cooper and Messina,

2021; Crespo-Herrera et al., 2021). There’s the possibility to

conduct coarse-grained phenotyping, such as environments with

and without a specific stress, or fine-grained phenotyping,

encompassing a broad range of this environmental continuum

and allowing for detailed study of genotype reaction-norm

models (Cooper and Messina, 2021).

Furthermore, our study shows, in practice, other ways to use

enviromics to perform a good allocation of resources. We tested

both the heritability increase with the addition of covariates in MET

joint analysis and the optimization of MET by using a reduced and

efficient number of sites. Although the OPT_MET scenario did not

produce the highest heritability among all scenarios, it was possible

to maintain a high level per unit of dollar invested. Indeed, this

value was nearly three times that of the other scenarios (Figure 2).

Testing numerous lines in many environments for years can lead to

a good genotype performance recommendation. However, this

strategy assumes that the same genotypes will be used in the

future and that there is no budget limit, which is inaccurate for a

breeding program. In this sense, we reduced the number of tested

locations in the advanced trials by 27.7%, while maintaining high

accuracy (0.892). This is also advantageous because, although we

reduce the number of tested locations, we still assess the genotypes

in all the mega-environments that were previously being tested, but

with greater cost-effectiveness.

Reducing the number of tested locations will lead to lower

breeding costs, particularly in one of the most expensive stages of

the process, phenotyping. As LSU pays $25 per phenotyped plot,

reducing 27.7% of the locations means we would save $48,750.00

[$67,500.00 (MET) - $18,750.00 (OPT_MET)]. This amount could

be reallocated to an earlier stage of the breeding program, where

more lines are typically tested in fewer environments. For instance,

if we consider reallocating this amount to a stage where lines are

tested in just one environment and one year, we could phenotype an

additional 1,950 plots in phenotypic selection ($48,750.00/$25 per

plot), which would allow us to phenotype 650 new genotypes (1,950

plots/3 replicates). If it is not necessary to phenotype these new lines

in a program that implements genomic selection, this amount could

instead be reallocated to genotype an additional 8,125 lines

($48,750.00/$6 per line for genotyping). If the number of tested

genotypes increases while the number of selected genotypes remains

the same, the selection intensity significantly increases, leading to

greater genetic gain per cycle. Considering the entire LSU network,

the reduction in trials could reach approximately 77.4%, this

resource reallocation scenario would be even more advantageous.

In recent years, breeders have shown promising results when

considering environmental covariates in data modeling. Gevartosky

et al. (2023) improved the response to selection by 145% when they

considered environmental covariates in the design of optimized

training sets for genomic prediction. In the same way, Costa-Neto

et al. (2023) achieved a GxE variance decrease from 22% to 15%
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when environmental covariates were considered, showing a more

effective GxE effect capture. Conversely, the heritability of the

MET_EC scenario (0.893) was lower than that of the MET

scenario (0.965), even when the W matrix was used in the first

scenario. We believe this may have occurred because the main

environmental effect already provided sufficient information to

produce the highest heritability among all scenarios. This could

be due to the minimal variation between locations within clusters

compared to the significant variation between clusters (Figure 1C).

Furthermore, when we included the W matrix for the genotype-by-

environment interaction effect (MET_EC), we increased the G×E

variance component and decreased the G variance component,

slightly decreasing the heritability.

Spindel and McCouch (2016) showed that the more correlated

the environments and genotypes are in the modeling, the higher the

accuracy. Therefore, it was expected that the WC_MET scenario

would perform similarly to the other scenarios, but its average was

the lowest (0.840 ± 0.067). However, WC_MET also had the highest

standard deviation, with the lowest heritability being from cluster 4

(0,757). This cluster likely has more environmental heterogeneity

than the others, where there is a location that is environmentally

distant from the other two cluster locations (Wintermann Rice

Research Station). One option to improve the accuracy of this

mega-environment would be to split it into one or more clusters.

However, this would increase the number of tested locations to 6,

leading to a significant rise in costs. Such decisions need to be made

by each breeding program according to their respective budgets, as a

program might choose to slightly compromise accuracy to reduce

the number of clusters and thereby lower costs at a specific breeding

stage within their programs.

Besides proving that environmental covariates can help better

trial allocation while maintaining accuracy, we wanted to highlight

the benefits of delineating mega-environments by comparing W

and Wyield matrices. The traditional way to represent GxE and the

correlation between environments is through the use of the Wyield

matrix (Cooper and Delacy, 1994; Senguttuvel et al., 2021; Yan

et al., 2023), as the Additive Main Effects and Multiplicative

Interaction (AMMI) model (Gauch et al., 1997). Using this

methodology, it is possible to discover which environment

produces the highest yield and which variety is better for each

environment, as long as they are tested in those same environments.

However, when the W matrix is used, it is possible to know which

genotypes perform well for each environmental covariate or set of

covariates due to environmental stratification. Just having

information from an entire environment means the breeder

cannot expand this information to new environments. The

advantage of this is that environmental information is broad and

free (Costa-Neto et al., 2021), while the traditional GxE matrix is

highly dependent on the genotypes and environment combinations

used. Therefore, with historical weather data and genotypes

reaction norms, it is possible to recommend the best and most

stable varieties for each target region and even work to discover

potential new producing regions (Cooper and Messina, 2021;

Costa-Neto et al., 2023; Araújo et al., 2024; Callister et al., 2024).

As climate varies significantly from year to year, a collection of

environments cannot be deemed a TPE based solely on one or a few
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years of data; delimitation must be conducted based on repeatable

GxE patterns (Singh et al., 2006). This fact poses further challenges

to establishing TPEs using yield-based environment relationship

matrices. In the case of W matrix map (Figure 1D), the clusters are

regionally separated. In contrast, for the Wyield, the clusters are

mixed throughout the map (Figure 6D), suggesting a confounding

effect in the last matrix and consequently, a possible change of

genotype ranks between environments. The fact that the Wyield

matrix PCs explain less variation than the W matrix PCs, shows

further that more confounding effects were included in the first

methodology. It is possible to predict this by the Wyield matrix

structure, a yield gradient with more homogeneous correlation

between environments (Figures 6B, 7). Consequently, the clusters

are closer to each other (Figure 6C), while the variation within the

clusters is bigger.
5 Conclusion

Conclusively, our study enabled us to virtually reduce 27.7% of

the trials (locations) while maintaining almost the same accuracy.

Furthermore, we demonstrated how this trial reallocation will allow

for better utilization of our resources, as we could better represent

all TPEs within the USA Rice belt according to their economic

importance. Additionally, we identified which environmental

covariates have the greatest impact on rice productivity in the

considered TPEs and that they explain 58% of all variation in rice

yield in the USA. With this information, it is possible to establish

fine-grained phenotyping and expand production to potential new

areas. These findings can be invaluable information in assisting rice

breeding efforts in the USA and aiding breeders in optimizing

trial allocation.
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