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ABSTRACT
Background: For antigenically variable pathogens such as influenza, strain fitness is partly determined by the relative availabil-
ity of hosts susceptible to infection with that strain compared with others. Antibodies to the hemagglutinin (HA) and neurami-
nidase (NA) confer substantial protection against influenza infection. We asked if a cross-sectional antibody-derived estimate 
of population susceptibility to different clades of influenza A (H3N2) could predict the success of clades in the following season.
Methods: We collected sera from 483 healthy individuals aged 1 to 90 years in the summer of 2017 and analyzed neutralizing 
responses to the HA and NA of representative strains using focus reduction neutralization tests (FNRT) and enzyme-linked 
lectin assays (ELLA). We estimated relative population-average and age-specific susceptibilities to circulating viral clades and 
compared those estimates to changes in clade frequencies in the following 2017–2018 season.
Results: The clade to which neutralizing antibody titers were lowest, indicating greater population susceptibility, dominated 
the next season. Titer correlations between viral strains varied by age, suggesting age-associated differences in epitope targeting 
driven by shared past exposures. Yet substantial unexplained variation remains within age groups.
Conclusions: This study indicates how representative measures of population immunity might improve evolutionary forecasts 
and inform selective pressures on influenza.

1   |   Introduction

The epidemiological and evolutionary dynamics of antigen-
ically variable pathogens are intrinsically sensitive to im-
munity in the host population. This understanding has long 

shaped vaccination strategies against influenza. Twice each 
year, representative strains from circulating clades are eval-
uated for their ability to escape antibodies to current vaccine 
strains, under the expectation that these clades might come to 
dominate and could be poorly matched by the current vaccine. 
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As surrogates for the human population, influenza-naive fer-
rets are infected or vaccinated with one of a set of reference 
influenza strains (e.g., current vaccine strains), and their post-
exposure sera are tested against candidate strains for the next 
vaccine. The extent to which these sera cross-react or neutral-
ize candidate strains is taken as a measure of their immune es-
cape or antigenic distance [1, 2]. These experimental measures 
of immune escape, alongside other estimates of variant growth 
rates and sequence-based fitness models [3], are used to antic-
ipate the dominant clade and need for vaccine updates. In the 
past few years, escape from human sera has been considered 
too (e.g., [4]).

An open question is whether more direct and representative 
estimates of population immunity could lead to better vaccine 
choices while potentially shedding light on the mechanisms of 
coevolution between the viral population and host immunity. 
In the past decade, large differences have occasionally appeared 
in the antigenic distances inferred from ferret compared with 
human sera [5, 6]. These differences might arise at the species 
level, although the antibody responses of ferrets and humans 
after their first influenza exposures appear roughly similar [7]. 
A more likely explanation comes from observations of orig-
inal antigenic sin, whereby individuals exposed to the same 
strain of influenza can mount antibody responses with differ-
ent cross-reactivity profiles shaped by their distinct histories of 
exposure [5, 8–11]. These past infections and vaccinations lead 
to biases in which viral sites or epitopes antibodies recognize. 
Consequently, a mutation in one epitope might be antigenically 
important for some people (or ferrets) but not others. As most 
influenza infections occur in people with preexisting immunity 
to influenza, and antibodies to influenza surface proteins con-
tribute substantially to protection and transmission [5, 12–16], 
accurate measures of population immunity may be useful in 
viral forecasting and vaccine strain selection.

Using the 2017–2018 influenza season in North America 
as a case study, we characterized a cross-sectional, age-
representative estimate of antibody-mediated immunity in an 
urban population and asked whether it could predict which of 
several circulating clades of H3N2 would dominate regionally 
in the next influenza season. Forecasting for vaccine strain 
selection often focuses on antigenic changes to the hemagglu-
tinin (HA) surface protein, which vaccines attempt to match. 
We measured neutralizing antibody titers to the neuraminidase 
(NA) protein as well as to HA because antibodies to NA are also 
protective and should thus affect clade fitness. We found large 
differences in the expected susceptibility of the population to 
different clades' HA and NA, and these differences in suscepti-
bility predicted clade dominance. They also partially predicted 
the relative attack rates of clades by age. We furthermore quan-
tified the heterogeneity in neutralizing titers in the population, 
finding patterns consistent with age-associated epitope target-
ing. Although data from a single timepoint cannot fully eluci-
date the role of population immunity in clade evolution, our 
results demonstrate for the first time how such measures can 
improve on traditional approaches.

2   |   Results

2.1   |   Human Sera From the Summer of 2017 Poorly 
Neutralize the Clade That Dominated in North 
America in the Next Influenza Season

We investigated whether neutralizing antibody titers to HA and 
NA from H3N2 clades circulating in early 2017 could predict the 
dominant (most frequent) clade in the next influenza season. 
Antibodies to HA can protect against infection [12, 13, 15–17], and 
we expected that the clade to which the largest fraction of the pop-
ulation had poorly neutralizing anti-HA titers would be most suc-
cessful. This expectation implicitly assumes that exposure rates, 
other factors affecting susceptibility, and the average infectious-
ness or transmissibility of an infected person do not differ starkly 
between age groups; it also assumes that antibody-mediated pro-
tection derives primarily from neutralization and not Fc-mediated 
effector functions, or that the two are well correlated.

Antibody neutralization was measured by the focus reduction 
neutralization test (FRNT) for anti-hemagglutinin antibodies and 
enzyme-linked lectin assay (ELLA) for the anti-neuraminidase 
antibodies, and these antibodies levels were assumed proxies for 
protection. Correlates of protection have not been established for 
FRNT-derived titers, but because microneutralization titers cor-
relate well with hemagglutination inhibition (HAI) [18], and a 
1:40 HAI titer is traditionally associated with a 50% reduction in 
infection risk [12], we initially assumed a 1:40 FRNT titer corre-
sponds to a 50% chance of infection, testing other assumptions in 
sensitivity analyses. We looked at the fraction of the population 
below this cutoff for each clade to obtain the expected relative 
susceptibility and ranked clades by this measure. Using a cutoff 
avoids overestimating protection that might arise from especially 
high titers in a subset of recently infected individuals, but for 
robustness, we also estimated the relative susceptibility accord-
ing to the geometric mean titer (GMT) to each clade, with lower 
GMT implying higher susceptibility. With both measures, the 
population-level susceptibility was estimated by weighting the 
susceptibility of different age groups according to their proportion 
in the population (Methods). Protective thresholds for ELLA NA 
titers have not yet been established. We initially assumed 1:80 to 
be the 50% protective titer and later explored other assumptions.

We collected serum samples from May to August of 2017 from 
the University of Pennsylvania BioBank and Children's Hospital 
of Philadelphia [19] (Methods; Figure S1). Samples from chil-
dren were primarily obtained for lead testing. Adults with cer-
tain health conditions were excluded.

As we knew the age of each serum donor, we were able to adjust 
our estimates of population immunity to reflect the age distribu-
tion of the US population (Methods). However, no information 
on vaccination status was available, and therefore we could not 
adjust our estimates to reflect vaccination status in the general 
population. We measured neutralizing titers to the 8 HA and 2 
NA representing common current or recently circulating H3N2 
clades (Figure 1A left for HA and Figure S2A left for NA).
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FIGURE 1    |    Reference viruses representing co-circulating H3N2 clades during the 2016–2017 season. (A) Genealogies of H3N2 HA through the 
2016–2017 (left) and 2017–2018 season (right). Tips are colored by similarity to reference viruses. For clades with multiple representative viruses, 
branches are colored the same as one of those viruses, chosen arbitrarily. Tips are shown as filled circles if collected in North America during the 
most recent season. (B) Amino acid and glycosylation site variation among reference viruses. Clades 3C.3a and 3C.2a diverge at additional non-
epitope sites (not shown). Residue 128 belongs to antigenic site B, but the substitution T128A results in loss of glycosylation on residue 126 of epitope 
A. Therefore, we show residue 128 in epitope A and in the glycosylation site involving residues 126–128, following [20]. (C) Variable residues among 
the reference viruses are shown on the H3 structure of A/Aichi/2/1968 (Protein Data Bank: 1HGG) and colored by epitope as in panel (B). For each 
strain, residues differing from 3C.2a are numbered and darker in color. (D) Glycosylation sites used in the model shown on the H3 structure. (E) 
Monthly clade frequencies among GISAID isolates from North America collected between the 2016–2017 and the 2018–2019 seasons. Gray bars 
represent isolates that do not belong to the focal clades in this study.
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To represent the circulating diversity of H3N2 viruses, we iden-
tified major circulating clades by inspecting the next strain [1] 
H3N2 genealogy in the early summer of 2017 (note that the 
genealogy in Figure 1A was constructed later with data up to 
January 2022). Two distinct clades, 3C.2a and 3C.3a, which last 
shared a common ancestor in 2012, circulated globally. These 
clades differed by amino acid substitutions in epitopes A and B 
(Figure 1B,C) and in non-epitope sites. Clade 3C.2a had gained 
a potential glycosylation site at epitope B (K160T; H3 numbering 
used throughout) and had lost a glycosylation motif at epitope 
A (N144S). Clade 3C.3a had lost a different glycosylation site in 
epitope A (T128A) (Figure 1B,C). We chose the vaccine strain A/
Hong Kong/4801/2014 to represent clade 3C.2a and the vaccine 
strain A/Switzerland/9715293/2013 to represent 3C.3a, both 
close to the root of their respective clades.

In addition to those two major clades, we further split clade 3C.2a 
into subclades 3C.2a1, 3C.2a2, and 3C.2a3. We constructed 
representative sequences for these subclades by introducing 
mutations into the sequence of the 3C.2a reference strain. For 
subclades 3C.2a1, 3C.2a2, and 3C.2a3, we constructed 3, 2, and 
1 reference viruses, respectively, each carrying subclade-specific 

nonsynonymous substitutions and (for 3C.2a1 and 3C.2a2) 
potentially important amino acid polymorphisms within the 
subclade. Each subclade contained an epitope A substitu-
tion compared with the 3C.2a reference strain (Figure  1B,C). 
Notably, one reference virus for clade 3C.2a1 (virus 3C.2a1-3) 
had the T135 K mutation, which removes a glycosylation motif 
in epitope A. Except for 3C.2a1-3, all representative strains had 
identical sequences to one or more naturally occurring strains 
(Table  S1). Only the 3c.2a reference virus was represented 
among candidate vaccine viruses for the 2017–2018 season 
(identical to A/Hong Kong/4801/2014, A/Hawaii/47/2014, A/
Victoria/673/2014, and A/Norway/2178/2014). Once we had 
determined the sequences of the representative strains, we con-
structed the viruses by reverse genetics (Methods). We used the 
same set of reference viruses for all serum donors.

For all reference viruses, an undetectable HA titer (titer of 1:10) 
was the most common HA titer in all age groups except chil-
dren 5–17 years old (Figures  2A and S3). Most people over 4 
years old had detectable NA titers (1: ≥ 20) (Figures 3A and S4). 
Even though detectable antibody to H3N2 HA or NA is expected 
among older children and adults, who have been infected and 

FIGURE 2    |    Antibody titers and inferred relative susceptibilities to co-circulating H3 strains show variability by strain and age group. (A) FRNT 
titers with points jittered slightly along the x- and y-axes. Lines are locally estimated scatterplot smoothing (LOESS) curves of geometric mean titers 
(smoothing parameter � = 0.75, degree = 2). (B) Inferred relative susceptibility to each reference strain for the whole population (left) and by age 
group (right). The bars indicate 95% CIs obtained from bootstrapping. Separately for the overall population and each age group, we ranked strains 
in decreasing order of susceptibility using pairwise bootstrap tests (e.g., a strain had rank 1 if susceptibility to it was significantly higher than 
susceptibility to all other strains in pairwise tests, 2 if significantly higher for all but one strain, and so on. Strains are tied in rank and appear in the 
same color if their relative susceptibilities do not differ significantly. The gray arrows show how the clades changed in frequency in North America 
between the 2016/17 and 2017/2018 seasons.
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possibly vaccinated with H3N2, surprisingly large variation was 
observed among individuals of the same age (Figures  2A and 
3A). These are likely genuine differences in titer, as technical 
replicates had high agreement.

The population-level relative susceptibility inferred using the 
1:40 protective cutoff in HA titer was highest to the 3C.2a2 
subclade, specifically the group of viruses with 261Q in epi-
tope E (3C.2a2-2 reference strain; the susceptibility to 3C.2a2-2 
is higher than the susceptibility to 3C.2a2-1 and 3C.3a, both 
bootstrap p < 0.001), followed by the rest of the 3C.2a2 sub-
clade (3C.2a2-1 reference strain; the susceptibility to 3C.2a2-1 
is higher than the susceptibility to 3C.2a1-1, bootstrap p < 0.05) 
and the 3C.3a clade (p < 0.01 for the same test; Figure 2B, left 
panel) (Methods). Not only was the average population suscep-
tibility highest to 3C.2a2-2, but susceptibility to it was also the 
highest or the second highest among the reference strains for all 
age groups except 1- to 4-year-olds. Using GMTs or alternative 
titer cutoffs also suggested the susceptibility was highest to the 
3C.2a2-2 reference strain followed by 3C.2a2-1 (Figures S5–S8). 
The greatest protection or lowest susceptibility in the popula-
tion by both measures was to strains of the 3C.2a1 subclade 
with 135 K in epitope A and 121 K in epitope D (reference strain 
3C.2a1-3) and subclade 3C.2a3 (reference strain 3C.2a3).

Consistent with simple predictions, clade 3C.2a2 dominated in 
North America in the 2017–2018 season (Figure 1A, right panel; 
Figure 1E; Figure 2B, gray arrows), followed by 3C.3a. To assess 
dominance, influenza sequences were downloaded from GISAID 
[21]. We assigned 9913 sequences collected in North America 
during the 2016–2017 and 2017–2018 influenza seasons to refer-
ence viruses based on their genetic similarity at segregating sites 
and found that the frequency of sequences genetically similar to 
reference strain 3C.2a2-2 in clade 3C.2a2 increased from 21% in 
the 2016–2017 season to 85% in the 2017–2018 season (Figure 2B; 
Figure S9). Clade 3C.3a increased from 6% to 8% over that period. 
We did not find a perfect correlation between the rank measured 
by inferred relative susceptibilities and rank by relative growth: 
despite having higher estimated susceptibility than subclade 
3C.2a1 (3C.2a1-3), subclade 3C.2a1 (3C.2a1-2) experienced a more 
severe decline. Although the available sequences are not gener-
ated from any kind of systematic surveillance program and thus 
may not accurately reflect relative prevalence, trends were sta-
ble regionally (Figure S9A). The results suggest that population-
average anti-HA neutralizing titers reflect strain fitness, but that 
other factors may be relevant for detailed predictions.

We next measured antibody responses to NA reference strains 
representing the NAs of clades 3C.2a and 3C.2a2 (“3C.2a (NA)” 

FIGURE 3    |    Antibody titers and relative susceptibilities to co-circulating N2 strains show differences by strain and age group. (A) ELLA titers 
with points jittered slightly along the x- and y-axes. Lines are locally estimated scatterplot smoothing (LOESS) curves of geometric mean titers 
(smoothing parameter � = 0.75, degree = 2). (B) Inferred relative susceptibility and its rank for each NA for the whole population (left) and by 
age group (right). A lower rank indicates significantly higher susceptibility. Strains are tied in rank and appear in the same color if their relative 
susceptibilities do not differ significantly.
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and “3C.2a2-2 (NA),” respectively) (Figure 3A) [19]. The two ref-
erence viruses differ by 7 amino acid substitutions in the NA 
head: 176, 245, 247, 329, 334, 339, and 386. We first estimated 
population-level relative susceptibilities to the two clades using 
a 1:80 protective cutoff (Figure  3B, left panel). Similar to our 
findings for HA, serological responses to NA indicated higher 
susceptibility to 3C.2a2-2 (NA) than to 3C.2a (NA) across all 
age groups, consistent with a positive correlation between HA 
and NA titers across all age groups and especially in children 
(Figure S10). Using GMT or alternative NA titer thresholds also 
suggested higher susceptibility to 3C.2a2-2 (Figures  S11–S13). 
Because only two NA reference strains were used, we cannot 
conclude if anti-NA titers would have predicted clades' rank fre-
quencies as accurately or perhaps better than titers to HA, but 
they are generally consistent with higher susceptibility to the 
3C.2a2 clade compared with the ancestral 3C.2a.

2.2   |   Age Groups Differ in Their Susceptibility 
to and Relative Attack Rates With Different 
H3N2 Clades

Because age-specific patterns of antibody titers have been as-
sociated with age-specific infection risk [5, 22], we estimated 
relative susceptibility to each clade within each age group and 
measured correlations with their estimated relative clade-
specific infection rates in the 2017–2018 influenza season. 
Age groups differed slightly in their expected susceptibilities 
to different clades of H3N2 (Figure 2B, right panel). Assessed 
by their anti-HA titers, children 1 to 4 years old appear equally 
susceptible to all reference viruses. The anti-HA titers of older 
children and adults showed heightened susceptibility to the 
3C.2a2 clade: titers from 5- to 17-year-olds indicated the high-
est susceptibility to the basal 3C.2a2 clade (reference strain 
3C.2a2-1) followed closely by reference strain 3C.2a2-2, the 
3C.2a2 subclade with the R261Q substitution. People aged 
18–64 years had pronounced susceptibility to reference strain 
3C.2a2-2 compared with other clades. Because 3C.2a2-2 
differs from 3C.2a2-1 by a single amino acid substitution 
(R261Q), these results suggest that many HA antibodies in 
adults target the mutated site. All age groups with previous in-
fluenza experience (≥ 5 years) were least susceptible to clades 

3C.2a1 and 3C.3a (reference strains 3C.2a1-3 and 3C.2a3, 
respectively). Interestingly, 5- to 17-year-olds were least sus-
ceptible to 3C.3a, while adults were relatively susceptible to 
3C.3a. We also found that children 1 to 4 years old had compa-
rable susceptibility to the two clades of NA, and all older age 
groups demonstrated greater susceptibility to the 3C.2a2 clade 
(3C.2a2-2 [NA]) (Figure 3B, right panel).

We evaluated whether the age-associated trends in relative 
susceptibilities to different clades in the summer of 2017 were 
mirrored in their relative rate of infection with each clade in the 
2017–2018 influenza season. Due to lack of systematic surveil-
lance, unbiased estimates of attack rates by clade do not exist 
for this population. We nonetheless examined the ages associ-
ated with sequences uploaded into GISAID to approximate the 
proportion of infections caused by each clade in each age group. 
Because the 3C.2a2 clade dominated in the 2017–2018 season and 
all but the youngest age groups showed particularly high suscep-
tibility to this clade, we expected clade 3C.2a2 to be the most 
frequent within each age group. This is what we found (Figure 4, 
Figures S14–S15). However, we observed that children <5 years 
old, who seemed approximately equally susceptible to all clades 
by HA and NA, had a relatively lower proportion of 3C.2a2 infec-
tions compared with adults (chi-square test, p < 0.001). Children 
5- to 17  years old, who were only slightly more susceptible to 
3C.2a2 than other clades, also had a lower proportion of 3C.2a2 
infections compared with adults (p < 0.001). Consistent with our 
observation that 18- to 64-year-olds were disproportionately sus-
ceptible to clade 3C.2a2, the age distribution of that clade was 
slightly more skewed toward adults compared with non-3C.2a2 
clades, which were more common in children (Figure 4).

2.3   |   Correlations Between Titers to Different 
Strains Vary by Age, Suggesting Age-Associated 
Differences in Epitope Targeting

We next investigated the correlations in titers to different clades 
(Figure 5A): Do individuals with high titers to 3C.3a tend also to 
have high titers to 3C.2a2, for instance? Closely correlated titers 
to related viruses suggest that individuals might target epitopes 
conserved among them, which could underlie differences in 

FIGURE 4    |    Host age distribution of H3N2 isolates sampled in the United States during the 2017/18 season. We obtained isolate data from GISAID. 
Viruses from clade 3C.2a2 are shown in purple, and viruses from all other clades combined are shown in gray (bars are overplotted). 3C.2a2 isolates 
were more common across all ages than viruses from other clades combined, but viruses from other clades were proportionally more common in 
children relative to adults.
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neutralizing titers between age groups. (High titers to multiple 
strains could also indicate recent infections or immunizations 
with each of those strains and responses to their non-shared epi-
topes, although H3N2 infections typically occur at least several 
years apart and are less frequent in adults compared with chil-
dren [17, 23, 24]). Aside from providing insight into the speci-
ficity of the antibody response, understanding the structure of 
titers within the population might lead to improved estimates of 
selective pressures on viruses. For instance, weakly correlated 
titers to different clades suggest a population with more hetero-
geneous immunity, which can affect viral coexistence, vaccina-
tion thresholds, and other dynamics [25–28].

After removing individuals with undetectable titers to all strains 
from the analysis, we found that the strength of correlation dif-
fered by age group and virus pair. In general, titers to all the 
reference viruses but 3C.3a were highly correlated in children 
and less correlated in older ages (Figures 5B and S16). This sug-
gests that children target epitopes common to many reference 
viruses or have been infected by close relatives of each, whereas 
older age groups target epitopes conserved among only a sub-
set. Results hold when age groups are chosen to span an equal 
number of years (Figure S17), showing that the weaker correla-
tions in adults 18–44 years, 45–64 years, and 65–90 years are 
not due simply to the groups' relative sizes or the diversity of 
childhood exposures represented in them. In contrast to chil-
dren and younger adults, 45- to 90-year olds have their highest 
titers and strongest titer correlations to a distinct subset of refer-
ence strains (3C.2a, 3C.2a3, 3C.2a1-1, and 3C.2a1-2; Figures 2 
and 5) that share many epitope A residues not conserved in the 
other strains (e.g., 128T, 131T, 135T, 138A, and 142R), suggesting 
antibody responses focused on this antigenic region. In all age 
groups, titers to 3C.3a were least correlated with titers to other 
viruses (Figure S18). This might be explained by reduced expo-
sure to 3C.3a viruses, especially in adults (Figure S3), and/or 
the targeting of sites on 3C.2a clade viruses that are not shared 
with 3C.3a (e.g., sites 128, 138, 142, and 144 in epitope A, the last 
potentially masked by a glycan in 3C.3a).

3   |   Discussion

Current approaches for forecasting influenza and mapping its 
antigenic evolution rely on antigenic distance measurements 
that do not always reflect immunity in the human population. 
Understanding the size of the difference and how much it mat-
ters would require analyzing discrepancies between antibody 
titers and traditional ferret-based measurements over multiple 
years from representative cross-sectional surveys in different 
populations. Multiple years of sampling could also resolve the 
subpopulations and measures needed to assess immune selec-
tive pressures and compare them to other factors influencing fit-
ness and growth rates [3, 29–33]. Here, as a proof of principle, we 
demonstrate how human sera can reveal differences in expected 
susceptibility to circulating HA clades that predict the clade cir-
culating in the following season. The sera also demonstrate high 
heterogeneity in neutralizing titers by age. The consequences of 
these differences remain unclear, but they partly predict the rel-
ative susceptibility of different age groups to different clades in 
2017–2018.

These findings might have been useful before the 2017–2018 
influenza season in the United States. Although impractical to 
update the vaccine strain so near the start of the season, efforts 
to increase coverage to offset the expected low vaccine effective-
ness might have blunted the season's unusual severity, especially 
in the most vulnerable age groups. The 2017–2018 season caused 
approximately 41 million illnesses and 52,000 deaths [34]. The 
low effectiveness of the vaccine against H3N2 that season was 
attributed to egg adaptations that created a mismatch to circu-
lating strains [35]. The H3N2 component of the vaccine, A/Hong 
Kong/4801/2014 (a basal 3C.2a strain), had been unchanged 
from the previous season because no clear indication of anti-
genic evolution was apparent by early 2017, when vaccine strain 
composition for the Northern Hemisphere was decided; the 
3C.2a2 clade was nonetheless noted to be growing quickly [36]. 
Over 90% of 3C.2a2 strains isolated from the United States in 
the 2017–2018 season were described as well inhibited by ferret 

FIGURE 5    |    Correlations in titers to different clades. (A) Schematics demonstrating how we calculated the correlation in titers to each strain pair 
across people in each age group. For these analyses, we randomly imputed continuous titer values between consecutive dilutions (e.g., a titer of 160 
was replaced by a continuous value between 160 and 320 drawn with uniform probability). For each pair of viruses and each age group, we report 
the average Spearman correlation coefficient across 1000 replicate imputations. We removed individuals with undetectable titers across all reference 
viruses. (B) Correlations between titers to different strains differ by age group, suggesting age-dependent patterns of epitope targeting.
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antisera raised against the cell-propagated reference virus for 
A/Hong Kong/4801/2014 (A/Michigan/15/2014), and in early 
2018, the H3N2 vaccine component was updated only to avoid 
egg adaptations, not because antigenic change had been detected 
[37]. (Notably, a later investigation of H3N2 viruses circulating 
in Japan in 2017–2018 did detect antigenic differences between 
3C.2a and 3C.2a2 strains using ferret antisera [38].) Our study 
shows that antigenic changes in fact were detectable in human 
sera by at least the summer of 2017, and they could predict the 
dominance of 3C.2a2 and the populations more susceptible to 
infection. Consistent with this prediction, Ursin et al. found that 
individuals testing positive for H3N2 in the 2017–2018 season 
had consistently lower serum neutralization titers to the 3C.2a2 
clade than those testing negative—with no differences between 
the two groups' titers to cell-grown A/Hong Kong/4801/2014—
underscoring the consequences of these neutralization differ-
ences for protection and potentially transmission [39]. While our 
results suggest that the R261Q mutation contributed to 3C.2a2's 
success, smaller clades that acquired the same mutation inde-
pendently never rose to high frequencies.

Measurements of population immunity could be substantially 
more efficient and useful for forecasting if we understood ex-
actly what to measure and in whom. Antibody titers to HA 
have been an established correlate of protection for half a 
century, and antibodies to NA for approximately a decade. 
The generally good concordance between hemagglutination 
inhibition assays and microneutralization suggest neutraliza-
tion is a decent surrogate, but it is unclear how much protec-
tion each immune response confers in different people and 
whether measures of neutralization, total binding, antibody-
dependent cellular cytotoxicity or phagocytosis activity, and/
or potentially other B- or T-cell or innate immune measures 
could improve estimates of relative susceptibility. Correlates 
likely vary in quality over time and between age groups: large 
discrepancies between binding antibody titers and neutraliza-
tion or protection have been reported and are associated with 
priming to other strains [17, 19, 40, 41]. Furthermore, immune 
measures associated with reduced transmission rather than 
simply protection against disease would provide more accu-
rate estimates of viral fitness. It might also be important to 
weight immunity in different subpopulations differently: for 
instance, an infected child might be more likely to transmit 
than an infected adult. These considerations would affect the 
need to sample particular populations, such as unvaccinated 
members of certain age groups. Over larger geographic scales, 
samples from typical “source” populations may be better pre-
dictors or provide a longer lead time than populations that ex-
port fewer strains [42–44].

Evolutionary forecasts, including for vaccine strain selection, 
might benefit from such improved measures of population im-
munity but would require additional modifications. Clonal in-
terference with multiple mutations can prevent any one clade 
from dominating a particular season [45–48] and complicate 
the relationship between susceptibility and clade frequency. 
Detailed clade frequency predictions might require incorporat-
ing estimates of population immunity into formal, potentially 
spatially explicit models that also consider other consequences 
of mutations on fitness [3, 49–51]. For influenza, estimates 
of viral fitness based purely on sequence data [49, 52] or on 

ferret-derived antigenic distances [3, 53] have modest success in 
out-of-sample forecasts, and models based on human population 
immunity have shown promise in predicting the frequencies of 
SARS-CoV-2 variants [50, 54]. Using clade frequencies to predict 
absolute disease burden would be a further challenge [55, 56]. 
To inform vaccine strain selection, human sera would need to 
be assayed much earlier relative to the influenza season than 
we did here. Perhaps most important, given variation in the im-
munogenicity and cross-immunity of different strains, it might 
not be optimal to be vaccinated against the strain forecasted to 
dominate [57].

Our data revealed variation in antibody titers between age 
groups that are broadly consistent with influenza's epidemi-
ology but lack precise explanation. Children over five years 
old had the highest geometric mean titers to all strains. This 
is consistent with the high attack rates in school-age children 
[58, 59] and other studies that report young children having 
the high titers to recent strains [60]. Children also had rel-
atively high vaccination coverage (approximately 59% in the 
2016–2017 season in children ≥ 6 months) compared with 
younger adults [61]. These two factors might interact, because 
recent infection can boost vaccine immunogenicity [62, 63]. 
The relatively high vaccination coverage in the oldest age 
group (approximately 65% in adults ≥ 65 years) might explain 
their higher titers compared with middle-aged and younger 
adults. Surprisingly, most middle-aged individuals had no 
detectable neutralizing antibodies to the HAs of circulating 
H3N2 clades. These results suggest antibodies to HA may be 
a poor correlate of protection in this age group and comple-
ment other reports of their discrepant anti-HA titers [19, 64]. 
We also observed that unlike children, adults had highly cor-
related titers to a subset of 3C.2a strains suggestive of anti-
body responses focused on epitope A. Consistent with this 
observation, Welsh et al. [33] recently applied deep mutational 
scanning to H3N2 and sera isolated in 2020. They found that 
compared with children, adults derived a larger fraction of 
their neutralizing response to epitope A, which had been im-
munodominant during the early 1990s [65].

Although not presented here, we fitted dozens of generalized 
linear mixed models to attempt to explain individuals' titers to 
these strains as a function of potential recent infections, vacci-
nations, early infections with strains with homologous epitopes, 
and individual-specific biases in the contributions of different 
epitopes to titers. These models were inconclusive, suggesting 
a need for more careful study of how a person's antibody titers 
change over time in response to exposures, and potentially with 
some deconvolution of the response to specific epitopes [66].

Our results demonstrate the feasibility of detecting significant 
differences in neutralizing titers to different H3N2 clades in a 
convenience sample of few hundred sera. This approach could 
entail substantial improvements over the use of ferret sera, 
which do not capture the immune history and heterogeneity in 
the human population [33]. Testing improved sampling proto-
cols and forecasting models, which would be facilitated by the 
existence of global blood banks [67, 68] and common standards 
[69], might yield rapid advances in forecasting not only the 
dominant clade but also potentially the dominant subtype, and 
ideally at longer lead times than shown here. If linked to other 



9 of 13

forms of surveillance, cross-sectional sera might also help pre-
dict season severity and attack rates by age, as suggested here. 
The same samples and approximations of fitness might also pre-
dict the dynamics of other pathogens.

4   |   Materials and Methods

4.1   |   Serological Data

Sera from 489 individuals were collected between May and 
August of 2017 from the Children's Hospital of Philadelphia (1- 
to 17-year-olds) and from the University of Pennsylvania Health 
care system via Penn BioBank (18- to 90-year-olds), as reported 
in [19]. Serum samples from children were leftover samples orig-
inally collected for lead testing and were de-identified for use 
in this study. We do not have access to clinical characteristics 
of the donors. The Penn BioBank routinely collects serum sam-
ples from individuals visiting the University of Pennsylvania 
Health care system. We did not include samples collected by 
the Penn BioBank from donors who had a pregnancy reported 
during the last 9 months, who had a medical history of cancer or 
organ transplantation, or who had a reported infectious disease 
within the previous 28 days. The study complied with all rele-
vant ethical regulations and was approved by the Institutional 
Review Board of the University of Pennsylvania. Leftover de-
identified samples collected at CHOP were considered exempt 
from human research (exemption 4) as the samples were leftover 
discarded samples that were completely de-identified before our 
research team received them.

We performed foci reduction neutralization tests (FRNT) on 
437 individuals' sera using the 8 HA reference viruses (3C.3a, 
3C.2a, 3C.2a1-1, 3C.2a1-2, 3C.2a1-3, 3C.2a2-1, 3C.2a2-2, and 
3C.2a3), and enzyme-linked lectin assays (ELLA) on 352 indi-
viduals using the two NA reference viruses (3C2.A [NA] and 
3C.2a2-2 [NA]) as described in [19]. Full experimental details 
can be found in [19]. Briefly, for FRNT, we treated serum sam-
ples with receptor-destroying enzyme, serially diluted them 
twofold, incubated them with virus at a concentration of ≈ 300 
focus-forming units for 1 h at room temperature, and added the 
mixture to confluent MDCK-SIAT1 cell monolayers in a 96-well 
plate. We incubated the cells with the virus-serum mixture in 5% 
CO2 for 1h at 37°C, then washed them with Minimal Essential 
Media (MEM). After additional steps [19], we imaged the plates 
to quantify foci using an ELISpot reader. We report FRNT titers 
as the reciprocal of the highest dilution of sera that reduced the 
number of foci by at least 90% relative to control wells with no 
serum. We assigned a titer of 10 to serum samples that failed 
to achieve a 90% reduction at the smallest dilution (1:20). For 
ELLA, we incubated virus and diluted heat-inactivated serum 
overnight at 37°C in microtiter 96-well plates coated with fetuin 
diluted in coating solution, washed them and performed addi-
tional steps before reading the plates at an OD of 450 nm using 
a microplate reader. We report ELLA titers as the reciprocal 
of the highest dilution of sera that reduced the OD value by at 
least 50%, relative to control wells with no serum and after back-
ground subtraction. We assigned a titer of 10 to serum samples 
that did not show at least 50% OD reduction at the smallest di-
lution (1:20). There were no significant titer differences between 
batches.

We visualized titers to different reference strains by age using 
locally estimated scatterplot smoothing (LOESS) curves with a 
smoothing parameter � = 0.75 and degree = 2.

4.2   |   Viruses

We generated all viruses using reverse genetics, as described 
in [19]. Briefly, we cloned HA and NA genes for the reference 
strains into the pHW2000 reverse-genetics plasmid along with 
internal genes from A/Puerto Rico/8/1934. For viruses used in 
the FRNT assay, we used the NA gene of A/Colorado/15/2014. 
For viruses used in ELLA, we used an H6 gene from A/
turkey/Massachusetts/3740/1965 and the NA gene from ei-
ther A/Colorado/15/2014 (representing clade 3C.2a) or A/
Pennsylvania/49/2018 (representing 3C.2a2-2). We transfected 
the plasmids into co-cultures of 293T and Madin-Darby Canine 
Kidney (MDCK)-SIA1 cells, harvesting supernatants 3 days 
after transfection and storing them at −80°C. We sequenced 
HA and NA genes to confirm that no additional mutations arose 
during transfection.

4.3   |   Genealogy of H3N2 and Clade-Specific 
Amino Acid Substitutions

Prior to our analyses, we downloaded all available H3N2 HA 
and NA sequences from the 2012–2013 season through the 2017–
2018 season from GISAID (accessed in 01/10/2022). Sequences 
were aligned using MAFFT 7.310 [70].

We downsampled sequences to construct the phylogeny. From the 
2012-13 through the 2015-16 season, we sampled 20 sequences per 
season. For the 2016–2017 and 2017–2018 season, 100 sequences 
were sampled per season. The GISAID accession IDs and meta-
data of the sequences used for the analysis are available in the 
Supporting Information. We used BEAST 2.6.6 to reconstruct the 
genealogy [71] with a HKY substitution model [72] with a four-
category gamma site model with 4 and a log normal relaxed clock. 
A coalescent Bayesian Skyline tree was used for the prior. We ran 
the chain for 50 million steps and saved every 1000 trees, using 5 
million steps as burn-in. The maximum clade credibility tree was 
obtained using TreeAnnotator 2.6.6 version.

To visualize the tree, we used the R package ggtree 3.0.4 [73]. The 
trees were colored by clade. For the genealogy of the 2016–2017 
season, only tips of sequences collected in North America during 
the 2016–2017 season were shown; these circled tips are colored 
according to their assigned clade. For sequences collected in 
other areas or seasons, only branches were shown. Similarly, for 
the genealogy of the 2017–2018 season, only sequences collected 
in North America in that season are shown as colored circles.

Sequence samples were assigned to reference viruses accord-
ing to reference virus-specific mutations at segregating sites, 
shown in Figure  1B. Here, sequences were assigned to each 
reference virus rather than the subclade represented by each 
reference strain. This is because sequences with 171K, 121K, 
and 135K, such as reference strain 3C.2a1-3, occur multiple 
times in clade 3C.2a1, and thus, these sequences do not belong 
to any one subclade of 3C.2a1. Additionally, within a subclade, 
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mutations at segregating sites occur so that a sequence in the 
same clade as a reference virus may not share the same genetic 
characteristics. Due to frequent mutation at residue 142 across 
most of clades, we allowed residue 142 to have any amino acid 
across most of clades, except for clade 3C.2a2, which has a 
clade-specific 142 K substitution. We confirmed that all the se-
quences assigned to a reference virus fall in the same subclade 
as the reference virus.

Clade-specific substitutions were colored by epitope on the H3 
structure using PyMOL version 2.3.3 [74].

4.4   |   Inferring Relative Susceptibility From Titers

We defined the relative susceptibility to a strain as the fraction 
of the population with titers to that strain below some threshold 
(here, initially 40 for HA and 80 for NA). To estimate this frac-
tion for the US population, we first computed the fraction below 
the threshold in different age bins in our sample. We then com-
puted a weighted sum in which the weights were the projected 
fractions of the US population in each age bin in 2017. This ad-
justment was necessary to obtain a representative estimate of 
immunity in the overall population, because sample availability 
varied by age. Suppose Si is the fraction of the overall US pop-
ulation susceptible to strain i and Ŝi,a is the fraction of serum 
samples in age bin a with titers to i below the threshold. Then 

where fa is the projected fraction of the US population in age 
bin a in 2017. We started with age bins at the resolution of one 
year using data from [75]. When there were fewer than eight titer 
measurements for a year of age, that age was grouped with the 
next year of age to form a larger bin, and so on until the bin con-
tained at least eight titer measurements.

To estimate the susceptible fraction for a particular age group in 
the US population, we simply computed the sum above across 
age bins contained in that larger group, divided by the fraction 
of the US population in those bins combined. For instance, to 
calculate the susceptible fraction among 5- to 17-year-olds in the 
United States, we used 

We found that using alternate titer thresholds for HA (Figures S6, 
S7, and S8) and NA (Figures S12 and S13) resulted in consistent 
relative susceptibilities across strains.

We alternatively measured relative susceptibility by the geomet-
ric mean titer (GMT). The GMT was weighted analogously by 
the population fraction of each age bin. Because lower GMTs 
correspond to higher susceptibility, we used a reverse scale 
when showing the relative susceptibility by GMT.

To test for meaningful differences in relative susceptibilities, 
we bootstrapped individuals to determine if the difference 
in inferred relative susceptibilities between two viruses was 

significantly greater than zero [76]. For each age bin, individuals 
were resampled 1000 times with replacement, and the fraction of 
individuals susceptible to each virus was calculated. For a given 
pair of viruses, we defined the relative susceptibility difference 
observed in the data as �̂. The bootstrap value of �̂, �̂

∗

, was ob-
tained 1000 times by resampling individuals. Then we obtained 
the null distribution of (�̂

∗

− �̂) and calculated the probability 
(p) of observing �̂ or a greater value under this null distribution. 
If p < 0.05 (with no correction for multiple testing), the relative 
susceptibility difference is significantly greater than zero, that 
is, susceptibility to the first virus significantly exceeded that to 
the second virus. For a given virus, we perform this compari-
son against all other viruses and counted the number of signif-
icant results. The more significant results, the lower the rank 
(closer to 1) of the relative susceptibility to a virus. We used the 
same approach and significance level for all other bootstrapping 
analyses.

4.5   |   Frequencies of Subclades

To calculate the frequencies of different subclades, we down-
loaded sequences from the 2016–2017 to the 2018–2019 seasons 
available on GISAID on January 10, 2022, and assigned se-
quences to each subclade using the same method as was used 
to construct the genealogy. Because there were few sequences 
from Philadelphia, we calculated subclade frequencies in three 
different ways, using sequences collected from North America, 
United States, or the northeastern United States. We considered 
Region 1, Region 2, and Region 3 of the US Outpatient Influenza-
like Illness Surveillance Network (ILINet, [61]) as the north-
eastern United States. These states are Connecticut, Maine, 
Massachusetts, New Hampshire, Rhode Island, Vermont, New 
Jersey, New York, Delaware, the District of Columbia, Maryland, 
Pennsylvania, Virginia, and West Virginia. Region 2 of ILINet 
includes Puerto Rico and the Virgin Islands, but we excluded 
them from the analysis of the northeastern United States. For 
estimates derived from North American sequences, we used 
4488 and 5425 sequences from the 2016–2017 and 2017–2018 
seasons, respectively. For the United States, 3707 and 3782 se-
quences were used. For the northeastern United States, 782 and 
676 sequences were used. The GISAID accession IDs and meta-
data of the sequences used for the analysis are available in the 
Supporting Information.

4.6   |   Correlations Between Titers to Different 
Strains

For each age group and pair of viruses, we calculated Spearman's 
� using the cor function in R. To account for the interval censor-
ing of titer data and the presence of a lower limit of detection, 
we randomly imputed continuous titer values and calculated 
the average regression coefficient across 1000 imputations. 
Titers below the lower limit of detection (1:20) were uniformly 
sampled between the lowest possible titer (1:1, indicating no di-
lution) and 1:20. Titers at or above the limit of detection were 
randomly sampled from the interval between the recorded titer 
and the next dilution (e.g., a recorded titer of 1:160 was imputed 
a value between 1:160 and 1:320, with uniform probability). For 
this analysis, we excluded individuals with undetectable titers 

(1)Si =
∑

a

Ŝi,a × fa,

(2)S5−17
i

=

∑

a∈5−17Ŝi,a × fa
∑

a∈5−17 fa
.
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to all strains. We excluded 45/112 (40%) of < 5-year-olds, 10/164 
(6%) of 5- to 17-year-olds, 31/89 (35%) of 18- to 44-year-olds, 
28/62 (45%) of 45- to 64-year-olds, and 22/62 (36%) of 65- to 
90-year-olds. For each virus pair, we tested the difference in 
correlation coefficients between the youngest age group and 
each other age group using the same bootstrapping procedure 
we used to test for differences in susceptibility among strains 
within an age group (Figure S16).

We also used bootstrapping to evaluate differences in correla-
tion coefficients between viral pairs within an age group. For 
each virus pair, we did a series of bootstrap tests comparing 
the pair's correlation coefficient with the coefficient for each 
of the other pairs. Then, for each virus pair, the number of 
tests in which the pair's correlation was significantly weaker 
than that of other pairs within the group was counted. In each 
age group, there are 28 virus pairs whose correlation coeffi-
cient was calculated. One of the pairs, for example, is 3C.3a 
and 3C.2a, and this pair's correlation coefficient is compared 
with the other 27 correlation coefficients of other virus pairs. 
The 3C.3a v. 3C.2a pair's correlation was weaker than 15 other 
pairs' correlations. This number of tests in which the pair's 
correlation was significantly weaker than other pairs within 
the group is shown as the color intensity of the heat map of 
Figure S18.

For these boostrapping procedures, we used a significance level 
of 95% without correction for multiple testing, randomly imput-
ing continuous titers once for each bootstrap replicate.
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