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Self-supervised learning has become the cornerstone of building generalizable and transferable 
artificial intelligence systems in medical imaging. In particular, contrastive representation learning 
techniques trained on large multi-modal datasets have demonstrated impressive capabilities of 
producing highly transferable representations for different downstream tasks. In ophthalmology, 
large multi-modal datasets are abundantly available and conveniently accessible as modern retinal 
imaging scanners acquire both 2D fundus images and 3D optical coherence tomography (OCT) scans to 
assess the eye. In this context, we introduce a novel multi-modal contrastive learning-based pipeline 
to facilitate learning joint representations for the two retinal imaging modalities. After self-supervised 
pre-training on 153,306 scan pairs, we show that such a pre-training framework can provide both a 
retrieval system and encoders that produce comprehensive OCT and fundus image representations 
that generalize well for various downstream tasks on three independent external datasets, explicitly 
focusing on clinically pertinent prediction tasks. In addition, we show that interchanging OCT with 
lower-cost fundus imaging can preserve the predictive power of the trained models.
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Deep learning techniques have significantly advanced in various medical image interpretation tasks1–4. However, 
building robust and generalizable deep-learning models often demands a substantial volume of labeled data. For 
instance, in their seminal work, Esteva et al.1 compiled a dermatologist-labeled dataset of 129,450 clinical images 
to reach on-par performance with experts in classifying skin cancer. Compiling large datasets with diverse cases 
is a laborious and time-consuming task, and it can also introduce annotator biases. As such, the progress of 
supervised deep learning models for medical imaging is hindered by the limited availability of costly, extensively 
labeled datasets5. Self-supervised learning (SSL) approaches aim to overcome these challenges by learning 
meaningful representations from large amounts of unlabeled data, reducing the reliance on costly and time-
consuming expert annotations while improving the accuracy and generalizability of predictive tasks6.

The fundamental concept behind SSL is to create auxiliary or pretext tasks that enable the model to learn 
meaningful and valuable representations directly from the data without relying on human annotations. Once 
the model acquires these representations through pretext tasks, the learned features can be transferred to 
downstream tasks, such as classification, segmentation, or detection, where labeled data is often scarce. These 
approaches usually utilize discriminative modeling, reconstruction tasks, or contrastive learning techniques7–10, 
enabling efficient downstream task learning with fewer labeled examples. These methods have demonstrated 
substantial performance improvements not only in the natural image domain but also in medical imaging, 
enhancing both classification11,12 and segmentation13–15 tasks. Nonetheless, they often require large datasets 
for effective pre-training, which can be challenging in medical domains where privacy concerns restrict data 
collection and sharing. Additionally, many existing SSL models focus on single-modality inputs, limiting their 
ability to fully capture the complementary information available from multiple modalities.
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In the medical workflow, clinicians regularly interpret a combination of multiple modalities to deliver 
comprehensive patient care, such as clinical notes, laboratory tests, vital signs, medical images, genomics, and 
more. However, conventional machine learning applications often concentrate on single modalities, leading to 
inflexible models that struggle to adapt to other tasks or varying data distributions for the same task without 
retraining. The recent emergence of foundation models exploits the multi-modal nature of available medical data 
and has gained considerable attention16–18. These models, by definition, pre-trained encoders adaptable or fine-
tunable for many tasks, show great promise19. They are of particular interest for their effectiveness in deciphering 
intricate structures within multi-modal data, making them well-suited to successfully address a broad range of 
challenging tasks in the medical domain20–23.

Ophthalmology is an image-intensive sub-specialty at the forefront of integrating artificial intelligence 
(AI) into medical practice24–27. The eye and its intricate retina offer a unique advantage, directly observable 
through non-invasive imaging methods such as color fundus photography and, more recently, optical coherence 
tomography (OCT). The 3D OCT provides micrometer-level resolution within a volumetric scan, achieving 
widespread adoption and emerging as the gold standard for managing retinal diseases. Combining 2D color 
fundus photography or near-infrared reflectance imaging with 3D OCT confers a holistic insight into the retinal 
structure28; hence, every OCT scanner on the market takes a fundus image in addition to the OCT scan as part 
of the acquisition. However, expert annotations are not always readily available for these imaging modalities, 
which can hinder the training of supervised AI models in clinical practice. The automatic availability of these 
two modalities, OCT and fundus images, nonetheless, offers an opportunity for multi-modal SSL methods. 
Learning meaningful representations by jointly modeling the different imaging modalities can, in turn, facilitate 
disease progression modeling and personalized patient management. Despite this potential, the realm of multi-
modal SSL in ophthalmology remains relatively uncharted, as current methodologies primarily focus on fusion 
techniques29,30 or uni-modal setups31–34.

Motivated by this, our research focuses explicitly on the multi-modal advantages of pairing OCT volumetric 
data with fundus images. To this end, we base our analysis on multi-modal SSL techniques like Contrastive 
Language-Image Pre-training (CLIP)35 and Contrastive Leave One Out Boost (CLOOB)36, that have proven their 
efficacy in acquiring transferable representations when trained on both textual and visual data and are expected 
to hold immense promise in medical imaging. So, unlike approaches that focus solely on 2D information or 
neglect the complementary insights provided by aligning fundus images with OCT scans of the same eye, 
our methodology seeks to leverage the synergies between these modalities to capture complex patterns and 
representations applying these paradigms to retinal imaging in a multi-modal fashion. By doing so, we anticipate 
generating more meaningful and transferable representations of the retina, ultimately enhancing the predictive 
models’ overall performance.

Our contributions can be summarized as follows: 

	1.	� We introduce a novel multi-modal contrastive pre-training method for retinal imaging based on the CLIP 
and CLOOB paradigms, combining the 2D and 3D information available from fundus and OCT imaging.

	2.	� We extensively evaluate the pre-trained encoders’ performance on three independent external datasets at 
adapting to a series of clinically relevant prediction tasks: i) regression: structure-function and biomarker 
measurements, ii) classification: biomarker detection, and disease diagnosis, and iii) forecasting: disease and 
treatment prognosis.

	3.	� We compare our proposed approach with fully supervised training, natural image-based pre-training, and 
uni-modal SSL pre-training, offering insights into its relative effectiveness and demonstrating its potential 
advantages in enhancing predictive models for ophthalmic applications.

	4.	� We demonstrate how the multi-modal contrastive pre-training enhances the predictive performance of 2D 
fundus image-based models. Furthermore, we show how it allows, to a certain extent, the interchanging of 
the two imaging modalities when the encoder weights are frozen for supervised predictive training. Fundus 
image-based predictions are of strong interest as fundus imaging tools are more cost-effective and widely 
accessible for diagnostics in ophthalmology than OCT scanners.

Materials and methods
Datasets
We used different datasets for the contrastive pre-training and the supervised downstream tasks. Here, we list 
the datasets and the trial numbers, while a detailed overview of the dataset properties from each study and the 
cohorts’ demographic and clinical data at the time of baseline OCT acquisition is provided in Supplementary 
Table A1. Ethics approval for post-hoc analysis of the datasets was obtained from the Ethics Committee at 
the Medical University of Vienna (MUW), Austria (EK: 1246/2016). This work adhered to the tenets of the 
Declaration of Helsinki and the MUW’s standards of good scientific practice.

For pre-training, we used large-scale longitudinal data from the imaging data collection of clinical studies 
available at OPTIMA Lab, MUW. We extracted 153,306 fundus photography/near-infrared reflectance imaging 
scans and the corresponding OCT volumes from 3,790 patients diagnosed with neovascular age-related macular 
degeneration (AMD). The scans were acquired using Spectralis, Cirrus, Nidek, or Topcon scanners at different 
sites. The majority of the imaging data were prospectively collected during five randomized multi-center clinical 
trials: FLUID (NCT01972789), TREND (NCT01948830), OCTAVE (NCT01780935), HAWK (NCT02307682) 
and HARRIER (NCT02434328).

For fine-tuning and validation of the proposed supervised models on clinical downstream tasks, we used the 
retrospective de-identified HARBOR clinical trial dataset (NCT00891735)37 (51,186 scans from 2,183 unique 
eyes of 1,094 patients with AMD), the publicly available OLIVES dataset38 (1,590 scans from 96 unique eyes 
of 87 patients with diabetic retinopathy (DR)), and a mixed diseases dataset from the OPTIMA Lab imaging 
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datasets (1,922 scans from 1,922 unique eyes of 1,922 patients), which is referred to as MIX in the rest of the 
paper. The latter consisted of a selection of baseline scans from clinical studies covering 4 different retinal 
conditions: diabetic macular edema (DME), intermediate age-related macular degeneration (iAMD), retinal 
vein occlusion (RVO), geographic atrophy (GA), and healthy cases. Hence, our assessment of transferability was 
based on various datasets extending to diverse clinical settings and disease types.

Among the different datasets, the scanning protocols varied, leading to different OCT volume resolutions 
with 21-256 B-scans, with each B-scan having a size in the range of 256-1,024×480-1,024 pixels with a pixel 
size of 2.13–23.43 × 1.95–4.19 µm2. Similarly, the size of the fundus images was in the range of 290–2,000 × 
348–2,992 pixels.

Data processing and augmentation
We re-scaled the fundus images and the OCT B-scans to 224×224 to allow larger batch sizes, which is especially 
important for contrastive pre-training. For OCT volumes, we then uniformly sample 20 B-scans - preserving the 
order of B-scans - to account for the variability in the number of B-scans used during image acquisition. This can 
lead to potentially missing variations and abnormalities in other parts of the volume; however, it still captures 
information from different locations within the volume, which helps in understanding the 3D morphology of 
the tissue, which is critical for many clinical and research applications. The B-scans and near-infrared reflectance 
fundus images are inherently grayscale; however, the color fundus photographs from the Topcon scanners were 
converted to grayscale. Finally, the images/volumes were normalized by intensity mean and variance, image/
volume-wise.

Additionally, random image transformations are used for the uni-modal contrastive pre-training to 
create different views of the same image/volume. For this, we followed the SimCLR39 framework without the 
transformations that do not apply to the data at hand, resulting in (1) centered crop, (2) horizontal flip, (3) 
Gaussian blur, and (4) contrast adjustment. The first two transformations were applied with a probability of 
0.5, while the Gaussian blur and contrast adjustment with a probability of 0.3. Finally, the images/volumes were 
normalized, image/volume-wise.

Data partitioning and stratification for experimental setup
We partitioned the respective datasets into non-overlapping training-validation-test partitions for each 
experimental setup at a ratio of 80%–15%–5% for the contrastive pre-training task and 80%–10%–10% for the 
external downstream tasks (Supplementary Figure A1). We created a patient-level separation while dividing the 
data into subsets, ensuring a stringent evaluation of the models. As the labeled datasets were generally imbalanced, 
we split them using a stratification technique for the downstream tasks, ensuring the same proportion of target 
labels in each subset.

Methodology
As shown in Fig. 1, our proposed framework consists of pre-training and downstream phases. In the first phase, 
the model learns a transferable fundus image/OCT volume representation via contrastive learning. In the 

Figure 1.  The proposed CLIP/CLOOB framework: contrastive pre-training of the encoders (hx, hy) of the 
two retinal imaging modalities (fundus images—x and OCT volumes—y), followed by using the pre-trained 
encoders for downstream predictive tasks.
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downstream phase, clinically relevant prediction tasks are conducted by either linear probing or fine-tuning 
the learned encoder with often limited labeled data. Beyond disease classification, we aim to explore a wider 
range of clinically relevant prediction tasks, such as structure-function and biomarker measurements or disease 
evolution forecasting, broadening the potential applications of these enhanced models.

Contrastive pre-training
Contrastive learning is a learning paradigm that extracts rich and transferable representations. The central idea 
of contrastive learning is that matched data points should yield similar representations, so-called embeddings, 
while unmatched data points should have a low similarity. In multi-modal contrastive learning,  CLIP has 
emerged as a widely adopted and effective approach. Its fundamental goal is to concurrently train modality-
specific encoders, aligning each modality to a shared embedding space through the InfoNCE contrastive 
objective40–42. This objective is designed to bring representations of distinct modalities within matched data 
points, such as text describing a specific image, into close proximity in the embedding space. Conversely, 
representations of unmatched data points, like an image and text describing an entirely different one, should be 
positioned considerably far from each other.

While CLIP has been highly successful and widely used, it has been shown to suffer from the explaining away 
problem36, in which a few features are overemphasized while others are neglected. This occurs when learning 
focuses on only a subset of features or when the covariance structure in the data is insufficiently extracted, 
often due to the saturation of the InfoNCE learning objective. Fürst et al.36 introduced CLOOB to overcome 
this problem. It employs a modern Hopfield network43 to enhance the capturing of covariance structure during 
learning. Additionally, CLOOB employs the InfoLOOB41 objective to avoid saturation issues associated with the 
InfoNCE objective used in CLIP.

Our proposed contrastive framework, depicted in Fig. 1a, utilizes the CLIP and CLOOB pre-training 
techniques. During pre-training, the aim is to bring the embeddings of paired fundus and OCT scans of the 
same eye, acquired at the same visit close while pushing the negatives, hence unpaired fundus and OCT scan 
embeddings further apart. This allows for learning representations for both modalities explicitly containing 
information about both.

We employ ResNet18 with pre-trained ImageNet weights as the backbone image encoder and VideoResNet18 
with pre-trained Kinetics44 weights as the backbone volume encoder for fundus images and OCT volumes, 
respectively. We start from pre-trained weights as they provide a good starting point for training, significantly 
speeding up the convergence of the model. The dimension of the embedding space was set to d = 512, which 
determines the output size of both encoders. The hyper-parameters and training strategies suggested by 
OpenCLIP45 and CLOOB were used (Supplementary Table A2).

The models were trained with mixed precision for 300 epochs in a distributed fashion on three NVIDIA 
A100 80GB GPUs with batch size 128 on each GPU. To speed up the training and decrease the memory 
requirements, a single randomly selected fundus image - OCT volume pair per patient was shown to the model 
at each epoch, with the random seed being adjusted according to the current time. The model weights at the final 
epoch were saved as the checkpoint for adapting to downstream tasks. As primary evaluation metrics during the 
contrastive pre-training, we tracked the evolution of InfoNCE and InfoLOOB losses. Additionally, we analyzed 
the distribution of cosine similarities of the embedded fundus and OCT imaging modalities. Furthermore, we 
computed the top-k retrieval accuracy metric to evaluate the ability of the model to retrieve the corresponding 
fundus image - OCT volume pairs.

Adaptation to downstream tasks
After contrastive pre-training, the encoders were used to extract lower-dimensional feature representations for 
downstream predictive tasks. We added a single fully connected layer after the encoder block (Fig. 1b) as our 
prediction head. To demonstrate the models’ feature extractor capabilities, linear probing was performed by 
freezing the encoder weights and training only the last layer. Additionally, we conducted experiments by fine-
tuning the entire model for the downstream tasks.

We have outlined a range of clinically relevant downstream tasks on three external datasets not used for 
pre-training, including disease diagnosis, biomarker detection, disease and treatment prognosis, and structure-
function prediction. These tasks cover regression, classification, and forecasting problems, as described below:

•	 Regression tasks: structure-function and biomarker measurements. The HARBOR and OLIVES datasets 
include information on best-corrected visual acuity (BCVA) and central subfield thickness (CST). BCVA 
quantifies overall visual function, reflecting the sharpness of vision with optimal correction, often via glasses 
or contact lenses, and is assessed using a Snellen chart. CST, obtained via OCT imaging, gauges the thickness 
of the central subfield in the macula, which serves to diagnose conditions like diabetic macular edema. These 
measurements are pivotal in diagnosing, treating, and monitoring eye conditions. They assist ophthalmolo-
gists in evaluating visual function, detecting anomalies, and planning appropriate interventions, thus enhanc-
ing clinical workflows. Here, we aim to provide them with an automated assessment tool.

•	 Classification tasks: biomarker detection and disease diagnosis. We formulated an image classification 
task on the HARBOR dataset to detect fluid accumulation within choroidal neovascularization (CNV) (Fluid 
present). This task involves identifying the presence of fluid in OCT, as determined by a certified reading 
center, which may manifest as subretinal fluid, intraretinal fluid, or cystoid macular edema. Although this is 
an OCT-related biomarker, we hypothesize that the multi-modal pre-training could also allow for predicting 
it accurately from fundus images, offering a cost-effective screening tool in practices where OCT scanners are 
unavailable.
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In the context of the OLIVES and MIX datasets, we focus on the task of disease classification. In the former, 
we want to identify the presence of DME or DR, while the MIX dataset allows for defining a multi-class 
problem. This entailed distinguishing between healthy cases and those involving DME, iAMD, RVO, and GA. 
Automated disease diagnosis from retinal imaging is essential in ophthalmology as it enables accurate and 
timely identification of various conditions, facilitating early intervention and personalized treatment strate-
gies for improved patient outcomes.

•	 Forecasting tasks: disease and treatment prognosis. In the HARBOR dataset, we utilized the effective num-
ber of injections (ninj) received during the 2-year study period under the pro-re-nata treatment regimen 
to establish distinct treatment requirement categories, much akin to the approach taken by Romo et al.46. 
Specifically, we categorized patients into high  (ninj ≥ 16) and low (ninj ≤ 5) treatment requirement groups, 
where the high category encompassed patients in the first quartile of the population, and the low category 
included those in the third quartile. Here, we focus on predicting the high treatment need (High TN) category 
for our forecasting task after the administration of loading doses. Establishing treatment requirement catego-
ries, such as high and low treatment needs, can be crucial in optimizing patient care and treatment planning, 
ensuring timely and personalized interventions.

Furthermore, within this dataset, the fellow eyes of a subgroup of patients exhibited a conversion to geograph-
ic atrophy (GA Conv.) or choroidal neovascularization (CNV Conv.) within the two-year duration of the trial. 
Consequently, we introduced an additional downstream forecasting task. Specifically, we framed the problem 
as predicting the conversion to GA/CNV based on the baseline scan data of these fellow eyes. Predicting 
the conversion to GA or CNV in fellow eyes provides valuable insights for proactive management and early 
detection of progressive retinal conditions, contributing to improved patient outcomes.The training was run 
on an NVIDIA A100 40GB GPU with a batch size of 128 (fundus input)/64 (OCT input) in the linear-prob-
ing setup and 64 (fundus input)/32 (OCT input) in the fine-tuning setup, while the learning rate was found 
by performing a hyper-parameter search on the [1e− 6, 1e− 3] interval. We adopt an AdamW optimizer47 
with the initial learning rate found during the hyper-parameter search and a weight decay of 0.1. Moreover, 
a reduce-on-plateau learning rate scheduler was applied. The training was performed for a maximum of 100 
epochs or until the training loss demonstrated convergence on the validation data. Early stopping was applied 
to avoid overfitting: the training was stopped if the loss on the validation set no longer decreased for five ep-
ochs. We used mean squared error loss for the regression tasks, while binary cross-entropy and cross-entropy 
losses in the classification and forecasting tasks, respectively.

The R2-score and the root-mean-square error (RMSE) were used to evaluate the regression models. In contrast, 
the weighted area under the receiver operating characteristic curve (AUROC) and average precision score (AP) 
were used to assess the performance of the models for classification. We computed the weighted one-vs-rest 
AUROC and AP scores for the multi-class setup. We applied bootstrapping on the hold-out test sets to estimate 
the models’ performance variance.

Uni-modal baselines
Our multi-modal pre-training was benchmarked against three pertinent uni-modal SSL models-SimCLR39, 
BYOL48, and VICReg49. SimCLR focuses on maximizing agreement between augmented views of the same image, 
learning representations by contrasting positive pairs against a large set of negative pairs. BYOL employs a dual 
neural network architecture, where one network predicts the other’s representations, fostering self-supervision 
without the need for negative pairs. VICReg introduces a variant of contrastive learning with virtual instances, 
focusing on leveraging only positive pairs in its training process by incorporating virtual augmentations. Its 
specially designed objective function serves to prevent dimension and mode collapse, addressing challenges 
associated with other contrastive learning methods and ensuring the stability and efficacy of the learning 
process. Comparing these methods allows for an assessment of the effectiveness of our CLIP/CLOOB-based 
approach in the context of retinal imaging and understanding whether combining 2D and 3D information 
provides advantages over more traditional uni-modal SSL techniques.

For all uni-modal methods, we utilized ResNet18 and VideoResNet18 as encoders. While the multi-modal 
pipeline does not rely on an additional projection layer, the uni-modal approaches do. For this, we used a single 
128-dimensional linear layer that was then discarded for the downstream tasks. These SSL models were trained 
on the same pre-training dataset using identical hyper-parameters and optimizer setup as our multi-modal 
method, except for the batch size, which had to be adjusted according to the computational resource limitations. 
In the 2D setup, the batch size could be increased to 256 per GPU, while in the 3D setup, it had to be decreased 
to 80.

Interchanging retinal imaging modalities
We analyzed the feasibility of seamlessly swapping OCT embeddings with fundus embeddings for the OCT-
based trained prediction models. This approach explores whether models designed for one imaging modality 
can generalize across different modalities without requiring extensive re-training, which could simplify model 
deployment in clinical settings. To test this hypothesis, we extracted the latent embeddings of the fundus 
images within the test sets of the respective downstream tasks using the frozen pre-trained fundus encoder. 
Subsequently, we passed these fundus embeddings as input to our OCT-based prediction models, which had 
been trained using the linear probing setup. Linear probing preserves the contrastive pre-training constraints, 
precisely the objective of mapping corresponding fundus image and OCT volume pairs closer together. As such, 
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it serves as an ideal testing ground for evaluating our hypothesis of imaging modality interchangeability. The 
ability to seamlessly utilize embeddings from one modality as input for models trained on a different modality 
implies greater flexibility in clinical applications, potentially reducing the need for modality-specific models and 
enabling a more streamlined and versatile approach to predictive tasks in retinal imaging.

Results
Multi-modal contrastive pre-training yields an effective retrieval system
First, we evaluate the effectiveness of the pre-training by assessing the model’s proficiency in performing the 
pre-training task, namely, retrieving the corresponding OCT volume for a given fundus image from the same 
eye and vice versa using the top-k accuracy score. Top-1 accuracy refers to the accuracy rate that the class with 
the highest probability is the correct class, while for k > 1, top-k accuracy refers to the accuracy rate that the 
top-k pairs with the highest probability contain the correct pair. To intensify the challenge, we enhance the task 
complexity by considering all samples per patient. It is important to note that this task is nearly impossible for 
human experts to perform accurately.

The top-k accuracy scores for the contrastive models on the retrieval task, with k values of 1, 5, and 10, are 
summarized in Table 1, and illustrative examples are presented in Fig. 2. A retrieval score of less than 0.1% 
in the baseline setup (ImageNet/Kinetics initialized encoders) proves that the corresponding image-volume 
pairs are not consistently mapped close in the latent space by default, which is what we expect. In the more 
straightforward, single sample per patient case (189 fundus image - OCT volume pairs from 189 patients), CLIP 
ranked the correct OCT volume first in 78.1% of cases, while CLOOB ranked the correct OCT volume first in 
80% of cases, the top-5 and top-10 accuracy being above 94% for both. The models’ ability to precisely retrieve 
the corresponding OCT volume from a given fundus image, and vice versa, establishes a significant opportunity 
for interchangeability between OCT and fundus embeddings within the downstream prediction tasks.

On the complete hold-out set of 6,948 fundus image and OCT volume pairs, CLIP ranked the correct OCT 
volume first in 9.70% of cases, while CLOOB ranked the correct OCT volume first in 10.90% of cases. Moreover, 
we found that, on average, 58.20% of the retrieved images/volumes came from the same patient in the case of 
CLIP and 62.90% in the case of CLOOB, suggesting that patient scans from different time points are inherently 
mapped closely together in both models. However, preliminary cluster analysis of these representations revealed 
no interpretable insights. Nonetheless, it opens opportunities for further investigation.

With the inherent characteristics of contrastive pre-training, we expected that the embeddings for the two 
distinct imaging modalities would interweave, leading to larger cosine similarities between the positive pairs. 
The embeddings derived from CLIP and CLOOB had similarity scores of 0.698 (SD = 0.084) and 0.385 (SD 
= 0.072), respectively, while for the embeddings obtained with the ImageNet/Kinetics pre-trained encoders 
were only 0.108 (SD = 0.000). This behavior indicates that scans from the same eye (positive pairs) cluster 
closely together, while those from different eyes (negative pairs) disperse more widely (Supplementary Fig. A2a). 
Moreover, we have empirically observed that the model primarily segregates the scans based on the vendor 
(Supplementary Fig. A2b). This outcome was somewhat expected since scans obtained from different scanners 
exhibit significant dissimilarities, and accounting for them was out of the scope of this work.

The learned representations improve predictive performance on external downstream tasks
The outcomes of the linear probing experiments illustrate the advantages of domain-specific self-supervised 
pre-training over natural image-based or uni-modal contrastive pre-training for the encoders across most 
downstream tasks in both the regression and classification/forecasting configurations (Fig. 3). As anticipated, 

Retrieval task Test set Model

Accuracy score

Top-1 Top-5 Top-10

Fundus to 
OCT

One sample/
patient

Baseline 0.005 (0.000, 0.040) 0.022 (0.005, 0.062) 0.041 (0.016, 0.092)

CLIP 0.781 (0.704, 0.848) 0.959 (0.908, 0.984) 0.980 (0.938, 0.995)

CLOOB 0.800 (0.720, 0.861) 0.947 (0.898, 0.979) 0.974 (0.927, 0.992)

All samples/patient

Baseline 0.000 (0.000, 0.001) 0.001 (0.000, 0.002) 0.002 (0.001, 0.003)

CLIP 0.097 (0.090, 0.104) 0.310 (0.299, 0.321) 0.457 (0.445, 0.468)

CLOOB 0.109 (0.102, 0.117) 0.333 (0.322, 0.344) 0.482 (0.470, 0.494)

OCT to fundus

One sample/
patient

Baseline 0.005 (0.000, 0.040) 0.025 (0.005, 0.062) 0.050 (0.021, 0.102)

CLIP 0.768 (0.689, 0.836) 0.949 (0.898, 0.979) 0.978 (0.938, 0.995)

CLOOB 0.799 (0.720, 0.861) 0.945 (0.889, 0.975) 0.973 (0.927, 0.992)

All samples/patient

Baseline 0.000 (0.000, 0.001) 0.001 (0.000, 0.001) 0.001 (0.001, 0.003)

CLIP 0.093 (0.086, 0.100) 0.293 (0.283, 0.304) 0.437 (0.425, 0.448)

CLOOB 0.103 (0.096, 0.110) 0.334 (0.323, 0.345) 0.484 (0.473, 0.496)

Table 1.  Results of the retrieval task. Given a fundus image, the correct OCT volume must be selected from a 
set of candidates. Top-1, top-5, and top-10 accuracy are shown for the hold-out test set, along with the upper 
and lower limits for a 95% confidence interval (CI). Here, Baseline refers to the encoders initialized with 
ImageNet/Kinetics-pre-trained weights, CLIP and CLOOB to the encoders obtained using the CLIP- and 
CLOOB-based pre-training, respectively. The best performance for each setup is indicated in bold.
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Figure 3.  The predictive models’ average performance on the external downstream tasks in linear probing, 
evaluated on the hold-out test set via bootstrapping-based validation. Fundus image-based results are depicted 
as overlapped over the OCT volume-based results, colored less opaquely. Supplementary Table A3 provides a 
detailed overview of the numerical results.

 

Figure 2.  Example results for the retrieval task on a hold-out test set. The 10 OCT volumes for which 
representations are the most similar to the query fundus image are shown along with their corresponding 
fundus images. Orange bounding boxes mark the correct pair.
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the models based on the more detailed OCT scans exhibited superior performance compared to their fundus 
imaging-based counterparts in all tasks, albeit with a minimal margin in some classification instances. This 
suggests that the learned fundus embeddings benefit from the richer information in the higher-dimensional 
OCT volumes.

In tasks involving regression based on fundus images, where many models struggle to capture the variance 
in the dependent variable, resulting in negative R2-scores indicative of predictive power worse than a simple 
average, the adoption of multi-modal pre-training proves to be an effective strategy. Specifically, in predicting 
BCVA from fundus images in the HARBOR dataset, only models pre-trained with CLIP and CLOOB yielded 
positive R2-scores. The CLOOB pre-trained model demonstrated similar magnitudes when using OCT volumes 
as inputs. Notably, the CLIP-based model achieved the highest R2-scores of 0.308 for fundus images and 0.462 
for OCT volumes. Similarly, in CST prediction, effective explanatory power for the dependent variable was 
primarily achieved using OCT volumes and multi-modal pre-trained weights. On BCVA prediction tasks with 
fundus inputs in the OLIVES dataset, multi-modal approaches were outperformed by BYOL and VICReg pre-
trained models, with only BYOL achieving a positive albeit low R2-score. CLIP-based pre-training was best for 
predicting CST from fundus images, reaching an R2-score of 0.286. In contrast, using OCT volumes as inputs 
significantly improved performance, with CLOOB-based models achieving the highest scores of 0.364 and 0.864 
for BCVA and CST, respectively.

Across all downstream classification and forecasting tasks, models leveraging multi-modal pre-training 
consistently demonstrated superior performance compared to their uni-modal counterparts, albeit by a marginal 
increase in certain instances. Notably, the ability to predict the presence of fluid from fundus images using 
the multi-modal pre-trained encoders approached the efficacy of OCT-based methods. The best performance 
was achieved by the CLIP-based pre-training, leading to an AUROC of 0.755, while in the OCT-based case, 
CLOOB yielded an AUROC of 0.871. This development holds promise for an essential pre-screening tool based 
on fundus images, a modality that, as previously discussed, is more cost-effective and widely accessible.

While the models exhibited diminished performance in more intricate forecasting tasks, stratifying treatment 
requirements proved more manageable, particularly with OCT volumes. The CLOOB-based model achieved 
an AUROC of 0.755, outperforming other tasks. Predicting whether an eye will converge to GA or CNV within 
24 months poses an ambitious task due to the many changes in the diseased retina over such an extended time 
frame. Nevertheless, the multi-modal pre-trained models showcased their superiority even in these challenging 
tasks. Interestingly, fundus-based models initialized with uni-modal pre-trained weights slightly outperformed 
their OCT-based counterparts in specific scenarios. For instance, in the case of CNV convergence, SimCLR 
using fundus images as inputs achieved an AUROC score of 0.565, surpassing the OCT-based model, which 
attained only 0.513. This suggests that the learned 3D representations may not fully encapsulate patterns relevant 
to this task.

The disease classification tasks have the highest performance on both the OLIVES and MIX datasets. Despite 
not being exposed to non-AMD cases during pre-training, the resulting latent representations of fundus images 
and OCT scans depicting various diseases within external datasets demonstrate clear separability (Supplementary 
Fig. A2). This implies that the latent representations effectively capture disease-related patterns and generalize 
well to domain shifts. Furthermore, achieving an AUROC above 0.900 with fundus-based classifiers again 
provides a good basis for adopting such models in clinical practices, particularly in scenarios where the more 
expensive OCT modality is not readily available.

Comparing the linear probing results with the outcomes from the fine-tuning setup reveals that the linear 
probing performances using multi-modal pre-trained encoders closely approach those achieved through fine-
tuning (Fig. 4). Hence, these pre-trained models could readily be used as feature extractors even without needing 
strong computational resources to fine-tune the whole model. In the case of the classification and forecasting 
tasks, the CLIP or CLOOB pre-trained models always outperform the uni-modal and fully-supervised 
approaches. However, the results of the regression tasks in the HARBOR dataset for the BCVA task resulted 
in notably better performance with SimCLR initialization, yielding an -score of 0.670. While the fine-tuned 
multi-modal approaches led to the highest performance for CST regression, a significant improvement can be 
observed in the fine-tuned uni-modal approaches over their linear probing counterparts. We hypothesize that 
the features extracted by the encoders during linear probing may not fully capture the information needed for 
CST, which involves measuring the relative distance between the top and bottom of the retina-a task requiring 
more global context. This global context may not be adequately represented during contrastive pre-training. 
However, after fine-tuning, the model adjusts to integrate the necessary task-specific information, leading to 
improved performance.

Overall, the efficacy of various pre-training methods depends on factors like task difficulty and available 
sample size for training. Fully-supervised training or natural image-based pre-trained weights can yield results 
comparable to domain-specific pre-training under certain conditions. The absence of a definitive conclusion on 
the superior multi-modal pre-training method suggests that each exhibits unique strengths tailored to specific 
tasks. Nevertheless, our findings highlight the effectiveness of our approach and emphasize the significance of 
leveraging contrastive pre-training for enhancing model performance and feature extraction capabilities.

Interchanging retinal imaging modalities can preserve predictive power
The results of our investigation into the interchangeability of imaging modalities, particularly swapping OCT 
embeddings with fundus embeddings, are shown in Fig. 5. The performance decay on the different tasks is 
highly varied and especially large on the OLIVES dataset, which might be related to the quality of the acquired 
fundus images. Nevertheless, in most cases, this decay was ≤ 20%, proving that interchangeability is somewhat 
possible. The performance drop is smaller in the case of CLIP-based pre-training, which was expected, as this 
pre-training approach yielded higher similarities between the corresponding fundus image and OCT volume 
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embeddings. Although the fundus-image-based fine-tuned models achieve higher performance, by leveraging 
the acquired embeddings, we can bridge the gap between the two retinal imaging modalities, making it possible 
to extrapolate insights and predictions from one imaging modality to another. This versatility holds the potential 
to use predictive models in scenarios where access to the more expensive OCT imaging modality is limited or 
unavailable.

Discussion
This work proposes a contrastive SSL pre-training method for ophthalmology. SSL holds significant promise 
for advancing the field, as multi-modal data, such as OCT volumes and fundus images, are often available, but 
annotations are scarce and costly. By leveraging large amounts of unlabeled data, we show that we can generate 
robust feature representations without the need for extensive manual labeling. Our pre-training applies multi-

Figure 5.  The predictive models’ performance on the external classification tasks when the fundus embeddings 
are used as classifier inputs.

 

Figure 4.  The predictive models’ average performance on the external downstream tasks in fine-tuning, 
evaluated on the hold-out test set via bootstrapping-based validation. Fundus image-based results are depicted 
as overlapped over the OCT volume-based results, colored less opaquely. Supplementary Table A4 provides a 
detailed overview of the numerical results.
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modal contrastive learning on a 3D OCT volume encoder and a 2D fundus image encoder, with the help of two 
contrastive objectives, InfoNCE and InfoLOOB, and in the case of the latter, the use of modern Hopfield layers 
to store reference embeddings.

Our method is designed to advance personalized patient management and disease progression modeling in 
ophthalmology by simultaneously considering different imaging modalities, namely OCT volumes and fundus 
images. Our overarching goal is to contribute meaningfully to the ongoing endeavors to establish multi-modal 
foundational models for various ophthalmological applications. It is important to note that our approach differs 
from the recent work conducted by Zhou et al.34, where they recently introduced a foundation model RETFound 
for 2D retinal images based on color fundus images and OCT B-scans; however, they built separate models 
for the two modalities, and as such, do not exploit the complementary information that these modalities can 
provide. Unlike their work, our study underscores the advantages of integrating volumetric data from OCT 
scans and effectively harmonizing information between these two essential modalities, paving the way for more 
comprehensive and robust medical imaging solutions.

The proposed self-supervised approach provides not only robust encoders to obtain comprehensive OCT 
and fundus image representations with interpretable features suitable for downstream clinical tasks but also 
a retrieval system. The research findings demonstrate that multi-modal contrastive pre-training enhances 
model performance across various clinically relevant supervised tasks, encompassing binary classification and 
regression. Our supervised models showcase remarkable robustness to challenges such as class imbalance and 
overfitting, even when dealing with limited data (treatment requirement, GA, and CNV prediction cases, for 
example). Additionally, the performance achieved by our models on external datasets is comparable to previous 
works, with some cases surpassing the reported results.

Our results align well with existing state-of-the-art methods across several studies. Kawczynski et al.50 used 
a ResNet50v2 CNN on 3D OCT volumes to predict BCVA scores, achieving R2 = 0.660 (RMSE = 11.750), 
while our CLOOB-based model achieved R2 = 0.629 (RMSE = 12.218). Romo-Bucheli et al.46 used a deep 
learning model on longitudinal OCT data for nAMD treatment prediction, with an AUROC of 0.810, compared 
to our CLOOB-based method at 0.755 and CLIP-based method at 0.796. Our model for predicting GA/CNV 
conversion over 24 months yielded AUROC scores of 0.701 and 0.698, paralleling Schmidt-Erfurt et al.51, but 
without extensive image segmentation. Finally, Kokilepersaud et al.52 used supervised contrastive learning 
on the OLIVES dataset, achieving an AUROC of around 0.800, which our multi-modal pre-trained models 
outperformed in DME/DR prediction tasks and matched in fundus image-based experiments.

In addition to the good performance across a diverse spectrum of clinically pertinent external downstream 
tasks, we conducted a feasibility analysis to explore the intriguing prospect of interchanging imaging modalities 
for predictive purposes. The fundamental attribute of contrastive learning, characterized by the close mapping 
of corresponding pairs within the latent space, empowers us to extend insights and predictions seamlessly from 
one imaging modality to another. Our results show a performance decay of ≤ 20%, underscoring the potential 
utility of predictive models even in clinical scenarios where the more resource-intensive OCT modality may be 
inaccessible. This emphasizes the robustness and adaptability of our approach in diverse clinical contexts.

Nonetheless, this work also has a few limitations. First, the contrastive pre-training of the encoders was done 
on data acquired from nAMD patients only, and it is unclear how training with a larger dataset encompassing 
various retinal diseases would affect the latent space. Second, we did not apply any mechanism to adjust for 
image domain shift resulting from using devices from several vendors for image acquisition, which was reflected 
in the latent space. This suggests that the models learn to extract relevant features from each type of image; 
however, they do not share much information between the vendors. Furthermore, while the subsampled OCT 
volumes used in this work capture more information about the retina’s structure and disease-related changes 
than existing 2D approaches that focus solely on the central B-scan, this may limit the model from reaching 
its full potential. Due to computational constraints, an often-faced disadvantage of SSL methods, we had to 
balance efficiency and accuracy by subsampling the OCT volumes. In future work, we plan to explore methods 
for encoding the full 3D OCT volume, which would enable the capture of more detailed spatial information 
and potentially enhance the model’s performance, particularly for tasks requiring comprehensive volumetric 
analysis. Lastly, we performed the training and evaluation of the supervised models in a cross-sectional manner, 
ignoring temporal correlations and treatment effects. Exploiting temporal modeling techniques could improve 
performance and should be further explored.

In conclusion, this work highlights the potential of multi-modal contrastive deep-learning models to 
leverage vast amounts of unlabeled data, offering promising avenues for various ophthalmology-image-
interpretation tasks. This approach reduces the dependency on annotated datasets and mitigates inefficiencies 
in clinical workflows stemming from extensive labeling efforts. Our proposed method is a simple yet effective 
approach to developing 3D and multi-modal AI models and holds promise in advancing medical imaging tasks 
and facilitating more efficient and accurate patient care in ophthalmology. Future research should focus on 
enhancing the strength of multi-modal contrastive pre-training by addressing technical challenges related to 
limited training data and computational resources. Additionally, exploring the integration of further modalities 
to create robust and transferable encoders for predicting clinical visual function measures presents an intriguing 
avenue for further exploration in the clinical setting.

Data availability
The raw datasets are not publicly accessible and are the property of the respective companies. However, the data 
may be available from the Medical University of Vienna subject to local and national ethical approvals and can 
be requested from the authors via email at hrvoje.bogunovic@meduniwien.ac.at. The OLIVES dataset is publicly 
available at https://zenodo.org/records/7105232.
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Code availability
Implementing the CLIP/CLOOB-based contrastive pre-training was based on the code available on GitHub, 
accessible via this link https://github.com/ml-jku/cloob.

Received: 2 July 2024; Accepted: 31 October 2024

References
	 1.	 Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).
	 2.	 Shen, D., Wu, G. & Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017).
	 3.	 Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).
	 4.	 Esteva, A. et al. Deep learning-enabled medical computer vision. NPJ Digit. Med. 4, 5 (2021).
	 5.	 Fink, O. et al. Potential, challenges and future directions for deep learning in prognostics and health management applications. 

Eng. Appl. Artif. Intell. 92, 103678 (2020).
	 6.	 Jing, L. & Tian, Y. Self-supervised visual feature learning with deep neural networks: A survey. IEEE Trans. Pattern Anal. Mach. 

Intell. 43, 4037–4058 (2020).
	 7.	 Le-Khac, P. H., Healy, G. & Smeaton, A. F. Contrastive representation learning: A framework and review. IEEE Access 8, 193907–

193934 (2020).
	 8.	 He, K. et al. Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition. 16000–16009 (2022).
	 9.	 Albelwi, S. Survey on self-supervised learning: Auxiliary pretext tasks and contrastive learning methods in imaging. Entropy 24, 

551 (2022).
	10.	 Rani, V., Nabi, S. T., Kumar, M., Mittal, A. & Kumar, K. Self-supervised learning: A succinct review. Arch. Comput. Methods Eng. 

30, 2761–2775 (2023).
	11.	 Huang, S.-C. et al. Self-supervised learning for medical image classification: A systematic review and implementation guidelines. 

NPJ Digit. Med. 6, 74 (2023).
	12.	 Nielsen, M., Wenderoth, L., Sentker, T. & Werner, R. Self-supervision for medical image classification: State-of-the-art performance 

with∼ 100 labeled training samples per class. Bioengineering 10, 895 (2023).
	13.	 You, C., Zhao, R., Staib, L. H. & Duncan, J.  S. Momentum contrastive voxel-wise representation learning for semi-supervised 

volumetric medical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted 
Intervention. 639–652 (Springer, 2022).

	14.	 You, C., Dai, W., Min, Y., Staib, L. & Duncan, J. S. Bootstrapping semi-supervised medical image segmentation with anatomical-
aware contrastive distillation. In International Conference on Information Processing in Medical Imaging. 641–653 (Springer, 2023).

	15.	 You, C. et al. Mine your own anatomy: Revisiting medical image segmentation with extremely limited labels. In IEEE Transactions 
on Pattern Analysis and Machine Intelligence (2024).

	16.	 Azad, B. et al. Foundational models in medical imaging: A comprehensive survey and future vision. arXiv preprint 
[SPACE]arXiv:2310.18689 (2023).

	17.	 Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T. J. & Zou, J. A visual-language foundation model for pathology image analysis 
using medical twitter. Nat. Med. 29, 2307–2316 (2023).

	18.	 Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).
	19.	 Schneider, J., Meske, C. & Kuss, P. Foundation models: A new paradigm for artificial intelligence. Bus. Inf. Syst. Eng. 1–11 (2024).
	20.	 Tu, T. et al. Towards Generalist Biomedical AI. arXiv preprint[SPACE]arXiv:2307.14334 (2023).
	21.	 Singhal, K. et al. Large language models encode clinical knowledge. Nature 1–9 (2023).
	22.	 Moor, M. et al. Med-Flamingo: A Multimodal Medical Few-shot Learner. arXiv:2307.15189 (2023).
	23.	 Zakka, C. et al. Almanac: Retrieval-Augmented Language Models for Clinical Medicine (2023). arXiv:2303.01229
	24.	 Schmidt-Erfurth, U., Sadeghipour, A., Gerendas, B. S., Waldstein, S. M. & Bogunović, H. Artificial intelligence in retina. Prog. 

Retinal Eye Res. 67, 1–29. https://doi.org/10.1016/j.preteyeres.2018.07.004 (2018).
	25.	 De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350. ​h​t​t​p​s​:​/​/​

d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​5​9​1​-​0​1​8​-​0​1​0​7​-​6​​​​ (2018).
	26.	 Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N. & Folk, J. C. Pivotal trial of an autonomous AI-based diagnostic system for 

detection of diabetic retinopathy in primary care offices. npj Digit. Med. 1, article number: 39. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​7​4​6​-​0​1​
8​-​0​0​4​0​-​6​​​​ (2018).

	27.	 Keane, P. A. & Topol, E. J. With an eye to AI and autonomous diagnosis. npj Digit. Med. 1, 40 ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​7​4​6​-​0​1​8​-​0​
0​4​8​-​y​​​​ (2018).

	28.	 Yoo, T. K. et al. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep 
learning for age-related macular degeneration: a preliminary experiment. Med. Biol. Eng. Comput. 57, 677–687 (2019).

	29.	 Vaghefi, E., Hill, S., Kersten, H.  M. & Squirrell, D. Multimodal retinal image analysis via deep learning for the diagnosis of 
intermediate dry age-related macular degeneration: A feasibility study. J. Ophthalmol. 2020 (2020).

	30.	 Jin, K. et al. Multimodal deep learning with feature level fusion for identification of choroidal neovascularization activity in age-
related macular degeneration. Acta Ophthalmol. 100, e512–e520 (2022).

	31.	 Li, X., Jia, M., Islam, M. T., Yu, L. & Xing, L. Self-supervised feature learning via exploiting multi-modal data for retinal disease 
diagnosis. IEEE Trans. Med. Imaging 39, 4023–4033 (2020).

	32.	 Holmberg, O. G. et al. Self-supervised retinal thickness prediction enables deep learning from unlabelled data to boost classification 
of diabetic retinopathy. Nat. Mach. Intell. 2, 719–726 (2020).

	33.	 Azizi, S. et al. Robust and efficient medical imaging with self-supervision. arXiv preprint[SPACE]arXiv:2205.09723 (2022).
	34.	 Zhou, Y. et al. A foundation model for generalizable disease detection from retinal images. Nature 1–8 (2023).
	35.	 Radford, A. et al. Learning transferable visual models from natural language supervision. In International Conference on Machine 

Learning. 8748–8763 (PMLR, 2021).
	36.	 Fürst, A. et al. CLOOB: Modern Hopfield networks with InfoLOOB outperform CLIP. In Advances in Neural Information Processing 

Systems (Koyejo, S. et al. eds.) . Vol. 35. 20450–20468 (Curran Associates, Inc., 2022).
	37.	 Busbee, B. G. et al. Twelve-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-

related macular degeneration. Ophthalmology 120, 1046–1056 (2013).
	38.	 Prabhushankar, M. et al. OLVIES dataset: Ophthalmic labels for investigating visual eye semantics. Adv. Neural Inf. Process. Syst. 

35, 9201–9216 (2022).
	39.	 Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. In 

International Conference on Machine Learning. 1597–1607 (PMLR, 2020).
	40.	 Oord, A. V. D., Li, Y. & Vinyals, O. Representation learning with contrastive predictive coding. arXiv preprint[SPACE]arXiv:1807.03748 

(2018).
	41.	 Poole, B., Ozair, S., Van Den Oord, A., Alemi, A. & Tucker, G. On variational bounds of mutual information. In International 

Conference on Machine Learning. 5171–5180 (PMLR, 2019).

Scientific Reports |        (2024) 14:26802 11| https://doi.org/10.1038/s41598-024-78515-y

www.nature.com/scientificreports/

https://github.com/ml-jku/cloob
http://arxiv.org/abs/2310.18689
http://arxiv.org/abs/2307.14334
http://arxiv.org/abs/2307.15189
http://arxiv.org/abs/2303.01229
https://doi.org/10.1016/j.preteyeres.2018.07.004
https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.1038/s41746-018-0040-6
https://doi.org/10.1038/s41746-018-0040-6
https://doi.org/10.1038/s41746-018-0048-y
https://doi.org/10.1038/s41746-018-0048-y
http://arxiv.org/abs/2205.09723
http://arxiv.org/abs/1807.03748
http://www.nature.com/scientificreports


	42.	 Wang, T. & Isola, P. Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In 
Proceedings of the 37th International Conference on Machine Learning (III, H. D. & Singh, A. eds.). Vol. 119. Proceedings of Machine 
Learning Research. 9929–9939 (PMLR, 2020).

	43.	 Ramsauer, H. et al. Hopfield networks is all you need. In International Conference on Learning Representations (2021).
	44.	 Kay, W. et al. The Kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017).
	45.	 Wortsman, M. et al. Robust fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition. 7959–7971 (2022).
	46.	 Romo-Bucheli, D., Erfurth, U. S. & Bogunović, H. End-to-end deep learning model for predicting treatment requirements in 

neovascular AMD from longitudinal retinal OCT imaging. IEEE J. Biomed. Health Inform. 24, 3456–3465 (2020).
	47.	 Loshchilov, I. & Hutter, F. Fixing weight decay regularization in Adam. CoRR abs/1711.05101 (2017). arXiv:1711.05101
	48.	 Grill, J.-B. et al. Bootstrap your own latent—A new approach to self-supervised learning. Adv. Neural Inf. Process. Syst. 33, 21271–

21284 (2020).
	49.	 Bardes, A., Ponce, J. & LeCun, Y. VICReg: Variance-invariance-covariance regularization for self-supervised learning. arXiv 

preprint arXiv:2105.04906 (2021).
	50.	 Kawczynski, M. G. et al. Development of deep learning models to predict best-corrected visual acuity from optical coherence 

tomography. Transl. Vis. Sci. Technol. 9, 51–51 (2020).
	51.	 Schmidt-Erfurth, U. et al. Prediction of individual disease conversion in early AMD using artificial intelligence. Invest. Ophthalmol. 

Vis. Sci. 59, 3199–3208 https://doi.org/10.1167/iovs.18-24106 (2018). ​h​t​t​​​​p​s​:​/​/​a​​r​​v​o​​j​o​u​r​​n​a​l​​s​.​​o​​r​g​​/​a​r​​v​o​/​​c​o​​n​​​t​e​​n​t​_​p​u​b​l​i​c​/​j​o​u​r​n​a​l​/​i​o​v​s​/​9​
3​7​3​6​2​/​i​1​5​5​2​-​5​7​8​3​-​5​9​-​8​-​3​1​9​9​.​p​d​f​​​​​.​​​

	52.	 Kokilepersaud, K., Corona, S. T., Prabhushankar, M., AlRegib, G. & Wykoff, C. Clinically labeled contrastive learning for OCT 
biomarker classification. IEEE J. Biomed. Health Inform. (2023).

Acknowledgements
This work received financial support from the Austrian Science Fund (FWF), Grant-DOI:10.55776/FG9. The 
funder played no role in the study design, data collection, analysis, and interpretation of data or the writing of 
this manuscript. For the purpose of open access, the author has applied a CC BY public copyright licence to any 
Author Accepted Manuscript version arising from this submission.

Author contributions
E.S. and H.B. designed the experiments, with E.S. executing and E.S. and H.B. analyzing the outcomes. E.R., 
N.S., A.M., and G.K. contributed their expertise in the CLOOB model and offered technical assistance for its ap-
plication to the specific use case. U.S.E., H.B., and G.K. oversaw the project. All authors reviewed and endorsed 
the final manuscript.

Declarations

Competing interests
H.B.: Contract Research to the Medical University of Vienna: Heidelberg Engineering. U.S-E: Scientific 
Consultant: Genentech, Heidelberg Engineering, Kodiak, Novartis, RetInSight, Roche, Contract Research to 
the Medical University of Vienna: Apellis, Genentech, Kodiak. The other remaining authors have no competing 
interests to declare.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​4​-​7​8​5​1​5​-​y​​​​​.​​

Correspondence and requests for materials should be addressed to E.S. or H.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024 

Scientific Reports |        (2024) 14:26802 12| https://doi.org/10.1038/s41598-024-78515-y

www.nature.com/scientificreports/

http://arxiv.org/abs/1705.06950
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2105.04906
https://doi.org/10.1167/iovs.18-24106
https://arvojournals.org/arvo/content_public/journal/iovs/937362/i1552-5783-59-8-3199.pdf
https://arvojournals.org/arvo/content_public/journal/iovs/937362/i1552-5783-59-8-3199.pdf
https://doi.org/10.1038/s41598-024-78515-y
https://doi.org/10.1038/s41598-024-78515-y
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Multi-modal representation learning in retinal imaging using self-supervised learning for enhanced clinical predictions
	﻿Materials and methods
	﻿Datasets
	﻿Data processing and augmentation
	﻿Data partitioning and stratification for experimental setup


	﻿Methodology
	﻿Contrastive pre-training
	﻿Adaptation to downstream tasks
	﻿Uni-modal baselines
	﻿Interchanging retinal imaging modalities

	﻿Results
	﻿Multi-modal contrastive pre-training yields an effective retrieval system
	﻿The learned representations improve predictive performance on external downstream tasks
	﻿Interchanging retinal imaging modalities can preserve predictive power

	﻿Discussion
	﻿References


