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Selecting the appropriate tractor for small-scale farms is a complex process due to the multitude of 
technical, environmental, and economic criteria that must be evaluated. This study addresses this 
challenge by integrating the Analytic Hierarchy Process (AHP) with machine learning (ML) to reduce 
the number of criteria and simplify the decision-making process. The research aims to determine 
the most relevant criteria aligned with sustainable development goals for selecting the right tractor, 
focusing on small farms in the Egyptian Delta. Four tractors, with horsepower ranging from 55 to 95, 
were evaluated based on inputs from forty-two governmental service providers in the study area. 
Initially, nine criteria were identified, encompassing key technical, environmental, and economic 
factors. These criteria were reduced to three—price, power, and maintenance costs by weights 0.142, 
0.334, and 0.525, respectively—using Hierarchical Agglomerative Clustering with Euclidean distance. 
This reduction streamlined the selection process, making it more practical for farmers. Results show 
that the second tractor (T2), with a priority score of 0.326 and a normalized value of 33.4%, emerged as 
the optimal choice for small-scale farmers, outperforming the first tractor (T1) (28.7%) and third tractor 
(T3) (21%). Integrating AHP and ML simplifies tractor selection, ensuring sustainability, cost-efficiency, 
and operational effectiveness.
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The Sustainable Development Goals (SDGs), which comprise seventeen targets for the years 2015–2030, took 
the place of the eight Millennium Development Goals (MDGs) in September 2015 1. The Food and Agriculture 
Organization presented five principles for achieving sustainable development in the agricultural and food 
sectors2. Among these goals is the role of smallholder farmers in the sustainability of agriculture1. So, natural 
resource preservation and easier access are critical components of our efforts to guarantee the agriculture sector’s 
sustainability. According to the World Commission on Development and Environment, it’s also essential to 
fulfill the demands of future generations3. A substantial emphasis on agricultural mechanization is necessary 
to increase the productivity and efficiency of agricultural industry activities4,5. Mechanizing agriculture 
can also increase output and reduce crop losses6. , cut back on emissions of greenhouse gases7and lower 
manufacturing expenses8,9. The labor shortage is also a driver for using agricultural mechanization10. According 
to some academics, mechanization alternatives lead to advances in labor, land productivity, and environmental 
impact11. The key to attaining sustainability in the agriculture industry is helping smallholder farmers select 
the right automation to maximize their financial and technological gains12. Therefore, choosing appropriate 
mechanization, especially for tractor purchase or rental, is critical for small farms13,14, increasing revenues 
and land productivity15. The agricultural tractors are considered the primary source of mechanical power for 
operating agricultural mechanization at different farm sizes16,17.

One well-known method for selecting the best options is multi-criteria decision-making (MCDM)14,18. 
MCDM is an important and multidisciplinary area of operations research that has grown in prominence recently. 
Multi-attribute and multi-objective decision-making are the two primary branches of this area19. Farmers 
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use many criteria to choose the best tractor: brand, price, mechanical power, weight, and dimensions16. The 
tractor alternatives were compared by evaluation and weight of criteria to make the right decision20. Selecting 
the appropriate tractor and related equipment necessitates more research. Choosing the wrong tractor might 
have expensive repercussions. Tractor power is considered the first criterion for selecting appropriate tractors. 
Gürsoy et al21. and Shorkpour & Asakreh22applied the ability to perform agricultural operations. In addition, 
the gearbox, driving wheel, number of cylinders, tractor weight, number of gears, and rated engine speed were 
also used as tractor selection criteria23. The economic aspects of tractor selection, such as price, were also studied 
through a study conducted by Multu24. AHP is an MCDM instrument that considers both quantitative and 
qualitative factors. It is possible to establish the weights of the criteria objectively, using certain techniques that 
are not influenced by the decision-makers’ opinions, or subjectively, based on the decision-makers’ assessments 
of their significance. Many researchers have used AHP for various purposes, as shown in Table 1..

High-performance computer and big data technologies have given rise to ML, which has opened up new 
possibilities for data-intensive science in the multidisciplinary field of agri-technology46. ML has been widely 
applied in many domains and applications in agriculture and energy47. ML allows data processing with less 
computation and time. MCDM approaches are increasingly combined with ML to address complex decision-
making problems across various industries. MCDM evaluates multiple options based on competing criteria, 
while ML enhances this process through advanced data analysis and pattern recognition. This combination 
is particularly effective in fields requiring large datasets and complex criteria, such as energy management, 
inventory optimization, and urban planning48. Continual learning is necessary to ensure progress. ML is 
categorized into reinforcement, semi-supervised, supervised, and unsupervised learning49. This study will use a 
hybrid approach combining AHP with ML methods to choose the best tractor for small farms in the Egyptian 
Delta, considering subjective and objective criteria for determining weights50. Subjective criteria rely on 
decision-makers’ judgments51, while objective criteria weights are calculated using specific techniques without 
decision-maker influence52,53.

This paper introduces several innovative contributions. First, it integrates the AHP with ML (Hierarchical 
Agglomerative Clustering) for criteria reduction and streamlining tractor selection—a novel approach not 
widely used in previous studies. The research reduces decision criteria from nine to three, making the process 

Author Year Application Key Contribution

Tam and Tummala25 2001 Vendor selection in telecommunication 
systems

Demonstrated AHP’s advantage in achieving consensus and saving time in multi-criteria 
decision-making

Byun 26 2001 Car selection Combined AHP with pairwise comparison and a five-point rating scale; applied group 
weights for consistency ratio

AlKhalil27 2002 Project delivery method selection Developed a user-friendly AHP model for choosing the most suitable project delivery 
method

Kahraman et al.28 2003 Provider selection in a White Turkish factory Used fuzzy AHP with triangular fuzzy numbers to prioritize providers and analyze the 
development process for comparisons

Yurdakul29 2004 Machine tool selection in manufacturing 
strategy Integrated AHP with manufacturing strategy, focusing on investments in ML

Choughle and Ravi30 2005 Process planning in castings Proposed an AHP-based nearest neighbor algorithm for case retrieval

Bol and Mohammed31 2005 Farm machinery selection Developed a mathematical model for farm machinery selection

Ayag32 2007 ML technique selection Combined AHP and simulation to choose the best ML techniques

Grisso et al.33 2009 Farm tractor selection Used tractor test data to aid in selecting farm tractors

Osman34 2011 Farm machinery management optimization Created a linear programming model to optimize farm machinery management

Ahadi and Gha-zanfar-Rad35 2011 Rolling stock supplier selection Utilized AHP to choose the best rolling stock supplier

Kilincci and Onal36 2011 Provider selection based on customer 
satisfaction Used fuzzy AHP to prioritize providers by satisfaction levels

Zhou37 2011 Neural networks and support vector 
machines integration

Introduced a method combining Particle Swarm Optimization (PSO) with neural 
networks and support vector machines

UmaDevi et al.38 2012 Vendor selection in supply chain 
management

Developed an AHP model to choose the best vendors, accounting for both quantitative 
and qualitative factors

Russo and Camanho 39 2015 Systematic literature review on AHP criteria Reviewed thirty-three cases where AHP or fuzzy AHP was used to define and measure 
criteria weights

Amini and Asoodar17 2016 Tractor selection Applied the AHP method to select the best tractor

García-Alcaraz et al.40 2016 Agricultural tractor evaluation Suggested a hybrid AHP and TOPSIS method for evaluating agricultural tractors

Houshyar et al.41 2020 Agricultural machinery distribution in Iran Evaluated machinery distribution using fuzzy AHP and constrained weight DEA methods

Hoose et al.42 2021 Select trailers for grain transportation. Utilized AHP and Data Envelopment Analysis (DEA) techniques for selection process

Stofkova et al.43 2022 calculation and to set the proper order of 
criteria Used the AHP method as essential for strategic managerial decision-making

Veisi et al.44 2022 Select a sustainable irrigation system Used the AHP to select the irrigation system

Pant et al.45 2024 monitoring health management practices Used AHP for ranking the best alternative for monitoring health management practices in 
a smart healthcare system

Present study 2024 Tractor selection Integrates AHP with ML (Hierarchical Agglomerative Clustering) for criteria reduction 
and streamlining tractor selection

Table 1.. Chronological overview of AHP applications in various decision-making contexts
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more accessible for small-scale farmers. It is one of the first studies to apply this methodology to small farms 
in Egypt’s Delta, addressing their operational and financial constraints. Additionally, the selection framework 
aligns with global sustainability goals by incorporating technical, environmental, and economic factors. The 
findings are empirically validated through input from forty-two governmental service providers, ensuring 
practical relevance.

Materials and methods
Research area
Delta region is located in the north of the Egyptian Republic. It is one of the largest deltas in the world, with a 
total area of about 240 km². It extends from the eastern side of Port Said until it reaches the western side as far 
as Alexandria. It was given this name due to its triangular shape. Delta was formed due to the accumulation of 
silt brought by the Nile River, which ended up in the Mediterranean Sea. Over time, due to the accumulation 
of silt and Nile riverbanks’ physical weathering and flood sedimentation for thousands of years, the Delta was 
formed when the Nile River was bifurcated into two branches. One of them is the eastern Damietta Branch and 
the western Rosetta Branch. The length of the Delta is about 160 km, and it begins on the southern side at Al-
Qanater Al-Khayriyah, near the city of Cairo. The Egyptian Delta is famous for the fertility of its soil, which is 
always suitable for agriculture. The Egyptian Delta includes eight governorates, as shown in Fig. 1.

The Delta of Egypt is considered one of Egypt’s most important agricultural regions and a major source of 
agricultural production in Egypt. It is characterized by its fertile soil, which is suitable for cultivation at any time, 
and the availability of fresh water from the Nile River, which contributes to the cultivation of a wide range of 
crops such as rice, wheat, vegetables, fruits, etc. The area of agricultural land in the Delta exceeds 55% of the total 
agricultural area in Egypt. Small areas for agriculture prevail in the Delta.

Research methodology
In general, hybrid techniques were used to select the appropriate tractor between the available tractors in the 
study area using more than one method. In this study, nine criteria were identified for tractor selection. Weight 
calculation methods were used to determine the importance of each criterion identified in the work. The AHP 
method for weight calculation was used, which uses assumptions from experts’ decisions, with ML techniques 
to reduce the criteria numbers and rank the alternatives according to the weight of selected criteria. The study 
focused on tractors category B (from 55 to 95 hp), which is common in farms less than two hectares and achieves 
most of the farm operations as results from farms survey. The category of tractors was selected according to the 
American Society of Agricultural Engineers (ASAE), depending on 3-point hitch specifications and power. The 
principles mentioned can be expanded and organized into a more detailed step-by-step process, illustrated in 
Fig. 2.

Essentials of AHP
AHP is a valuable decision-support tool decision-makers (DMs) use to select or rank the most appropriate 
alternative or set of alternatives. It is widely recognized as a user-friendly tool for Multiple Criteria Analysis 
(MCA) and typically involves several stages54. These stages include selecting decision options and evaluation 
criteria, collecting performance measures for the evaluation matrix, standardizing the measures to a common 
scale, assigning weights to the criteria, ranking or scoring the options, conducting sensitivity analysis, and 

Fig. 1. Study area (ArcGIS®, Version 10.3.1.4959, License type: Advanced, Esri Inc.).
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ultimately making a decision. The DM defines the desired outcome as a goal, which serves as the target, indicating 
the preferred direction.

The AHP was selected for this study due to its proven effectiveness in handling qualitative and quantitative 
data, especially where expert judgment is required. AHP allows for subjective assessments through pairwise 
comparisons, which is crucial in agricultural decision-making where empirical data may be scarce. Its hierarchical 
structure breaks down complex problems into manageable components, facilitating a transparent decision-
making process. AHP is particularly advantageous for integrating expert knowledge, ensuring the reliability of 
subjective inputs through consistency checks, and is widely accepted in agricultural machinery selection55. It has 
been applied in various fields like alternative selection, planning, and optimization, and its flexibility allows for 
integration with methods like fuzzy logic, QFD, and linear programming56–58. AHP is widely used for multiple 
criteria decision-making due to its simplicity and hierarchical approach, which supports the measurement and 
synthesis of various components17. As a well-established MCDM method, AHP provides objective mathematics 
and logic to address subjective preferences, making it ideal for tractor selection through a multi-level hierarchy 
of goals, criteria, and alternatives. The process involves building a preference matrix, ensuring consistency, and 
calculating criteria weights that sum to 100% 59,60.

Expert participation: governmental service providers
The questionnaire used to evaluate the tractor selection criteria was distributed to forty-two governmental service 
providers in the Egyptian Delta. These governmental service providers have extensive experience in agricultural 
machinery, particularly tractors, as they are responsible for maintaining, operating, and managing tractors 

Fig. 2. The AHP Flowchart with ML method.
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on small-scale farms. Their practical knowledge of tractor performance, operational costs, and maintenance 
requirements provided crucial insights into the decision-making process. The expertise of the service providers 
is particularly relevant for this study, as they work directly with small farmers and have firsthand knowledge of 
the challenges and needs related to tractor use in the region. By relying on their practical experience, the study 
ensured that the selected criteria reflect the real-world considerations of small-scale farming operations. The 
service providers survey was distributed among the Egyptian Delta governorates, and the criteria were defined. 
These criteria were technical parameters such as power, tank capacity, overall width, and weight of the tractor, as 
well as economic criteria such as price and environmental criteria such as fuel consumption at operating power, 
as shown in Table 2.

The criteria presented in Table 2were selected based on a combination of expert input and a thorough review 
of relevant literature in the field of agricultural machinery selection. Experts in agricultural engineering were 
consulted to ensure that the chosen criteria reflect the practical needs of small-scale farms in the Egyptian Delta, 
where factors such as price, power, and maintenance costs play a crucial role in tractor selection24. Additionally, 
criteria such as tractor dimensions, fuel consumption, and operational weight were chosen due to their direct 
impact on the maneuverability and efficiency of tractors in small land areas. These criteria align with established 
principles in agricultural mechanization, which emphasize the need to select cost-effective and technically 
suitable machinery for the terrain and farm size. This combination of expert input and literature-backed criteria 
ensures that the evaluation process addresses small farms’ specific constraints while also reflecting broader 
trends in tractor selection methodologies61.

The alternative tractor was also defined from the farms’ survey and forty-two governmental service providers 
with expertise, skills, and knowledge in the field of agricultural engineering and spread on the Egyptian Delta 
governorate in addition to governorates statistics and the different alternative tractor was shown in Table 3.

In the AHP flowchart (Fig.  3), the initial step of the decision-making process involves formulating the 
decision problem as a hierarchical framework, where the top level represents the goal or objective. The middle 
levels entail identifying and selecting criteria and decomposing the problem into a systematic hierarchical 
structure, resulting in a model of decision alternatives. Once the hierarchical framework is established, pairwise 
comparison matrices are created using empirical information and data that reflect the judgments of decision-
makers and experts regarding the relative importance of each indicator compared to others.

The intensity or level of significance of the contrasted criteria is expressed on a scale from one to nine. 
Concerning the other criteria, a value of one denotes “equal importance,” and a number of nine denotes “great 
importance.” Table 4. illustrates this approach. To make sure the findings are coherent, a consistency check is 

Criteria No.
First Tractor
(T1)

Second Tractor
(T3)

Third Tractor
(T3)

Fourth Tractor
(T4)

C1 (HP) 64 60 63 56

C2 (mm) 2010 2050 1970 1830

C3 (kg) 2710 2940 4800 2940

C4 (L/h) 7 10 9 7

C5 (USD $) 36,808 12,390 28,196 30,433

C6 4 5 3 4

C7 (L) 90 78 135 60

C8 (mm) 420 350 560 400

C9 (m) 3.6 3.5 3.9 3.5

Table 3. The criteria and alternatives.

 

AHP model goals Select the appropriate tractor for agricultural production in the small farms of the Egyptian Delta

Serial Number Criterion Attributes

C1 Power (HP) Power is the power available at the flywheel of the engine

C2 Overall width (mm) The width of the tractor from the outer wheels

C3 Tractor weight (kg) The total weight of the tractor without any attachment

C4 Fuel consumption (L/h) The fuel consumption in units of L/h, in the same forward speed and same conditions for all tractors

C5 Price (USD $) The price in the same year and market

C6 Maintenance costs and spare parts Evaluation of available spare parts and their cost

C7 Fuel tank capacity (L) The capacity of the fuel tank with the same fuel type

C8 Agrotechnical clearance (mm) The agrotechnical clearance effect on tractor operations

C9 least turning radius (m) The least turning radius for the tractor on the head of the field

Table 2. AHP goal and criteria description.  *Note: The criteria were evaluated by a panel of forty-two 
governmental service providers with extensive practical experience in tractor operation, maintenance, and 
selection for small-scale farms.
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done. Decision makers should review and revise the pairwise comparisons if the consistency ratio rises beyond 
the threshold (10%). In order to ascertain the priority of criterion ratings and alternative performances, each 
comparison matrix is solved during the synthesis and prioritizing phase by computing an eigenvector value.

Four alternatives of tractors with different power levels (55 to 95 hp) were selected for the appropriate 
tractor, which is common in small farms in Egypt with less than two hectares. Experts were asked to indicate 
the importance of each criterion within the specified range for each criterion, following Saaty’s scale (Table 4.), 
and these pairwise judgments were collected59,60. The gathered information is then processed using the AHP 
method.

The AHP methodology involves determining the priority weights of a set of criteria or alternatives based on 
a square matrix of pairwise comparisons, denoted as A = [aij], which is positive. In an ideally consistent paired 
comparison judgment, the matrix is reciprocal, meaning aij = 1/aji for all ij = 1, 2, 3 … n.

The normalized weight of the i-th factor, wi, can be calculated using Eq. (1):

 
wj =

aij
(
∑ n

k=1aEj)
∀ i = 1,2, . . . . . . , n. (1)

A certain level of inconsistency is expected and tolerated since comparisons are subjective and based on personal 
preferences. Furthermore, individuals’ decisions and preferences can be intransitive and inconsistent, which may 
affect the calculation of the criteria eigenvector. To mitigate this, a consistency check is performed to validate the 
judgments and ensure the consistency of the calculated weighted values. The consistency ratio (CR) is a valuable 
feature of the AHP method63 and is used to measure the level of consistency among the pairwise comparisons. 
The weights are considered consistent when the resulting CR is below 10% 59. The CR is calculated as follows:

 i)  First, the maximum eigenvalue λ max of the matrix A is determined using Eq. (2):

 
wj =

∑ n
j=1aij wj

λ max
∀ i = 1,2, . . . . . . , n. (2)

 ii)  The consistency index (CI) is calculated by Eq. (3):

 
CI =

λ max− n

n− 1
 (3)

 iii)  Finally, Eq. (4) is used for estimating the CR:

Numerical amount 9 7 5 3 1 2, 4, 6, 8

Preferences
(oral judgment) Extreme Very Strong Strong Moderate Equal Intervals

between strong preferences

Table 4.. The scale of pairwise comparison

 

Fig. 3. The overall AHP Model structure (AHP tree).

 

Scientific Reports |        (2024) 14:26735 6| https://doi.org/10.1038/s41598-024-78023-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


 
CR =

CI

RI
, 0 CR 0.1 (4)

Table  5 provides the consistency index (random index - RI) for randomly generated reciprocal matrices of 
various sizes from scales one to nine64.

The consistency ratio (CR) is calculated as CR = CI/RI, where RI is a function of the matrix size. An acceptable 
limit for CR is CR < 0.01; otherwise, adjustments and revisions are needed. Another aspect of the hierarchy is 
synthesizing the judgments across the hierarchy to compute the overall priorities of alternatives relative to the 
goal. The weights are determined by aggregating the priority of each element according to a particular criterion 
with the weights assigned to that criterion.

The alternative comparisons in AHP
In the AHP, comparisons of alternatives involve pairwise comparisons of criteria and alternatives59. This 
technique is widely used and requires comparing each unique pair of criteria and alternatives. Based on the 
measured values of the respective criteria (both objective and subjective), decision-makers make pairwise 
comparisons to achieve the research objective. These comparisons are used to determine criteria weights and 
performance scores for decision options. Various scaling systems can be employed, and in the AHP, decision-
makers are asked to express their preference for one criterion/option over another on a nine-point scale.

Agglomerative hierarchical clustering
Three crucial issues must be considered when analyzing data for agglomerative hierarchical clustering. The visual 
inspection of the dendrograms was used to explain the clustering criteria for selecting the appropriate tractor65.

 1   Selecting a distance measurement
 2  Selecting the metric for linking
 3  Establishing the number of clusters

The object’s pairwise distances are specified by distance metrics. To calculate the distances between the samples, 
square Euclidean distances were utilized. Transforming variable values as part of the data preprocessing yields 
average zero or Z scores and standard deviation. From zero (greater similarity) to twenty-five are the dendrogram 
similarity scales generated by the Origin 2024b algorithm (lower similarity). The similarities between the 
examined samples were shown on each restaurant’s dendrogram66.

ML approach for criteria reduction
The significance of each criterion was assessed, and the most crucial ones were chosen using the hierarchical 
agglomerative clustering technique. Hierarchical clustering is an unsupervised ML algorithm that groups 
unlabeled datasets into clusters. The most common type of hierarchical clustering is agglomerative clustering, 
which groups objects into clusters based on similarity. The algorithm initially treats every object as a distinct 
cluster, which then gradually merges pairings of clusters until every object is combined into a single, sizable 
cluster. A dendrogram, or depiction resembling a tree, is produced by this technique. Three crucial issues must 
be considered when analyzing data for agglomerative hierarchical clustering: Selecting a distance measurement, 
selecting the metric for linking, and establishing the number of clusters. This study initially employed nine 
criteria, and the AHP approach was used to determine each criterion’s weight. The weights of those criteria 
were then used to determine the importance of each criterion and reduce those criteria using hierarchical 
agglomerative clustering.

The criteria reduction process employed in this study utilized hierarchical clustering, an effective unsupervised 
ML technique. Hierarchical clustering allows for grouping similar items based on their characteristics, facilitating 
the identification of the most relevant criteria for tractor selection. We used agglomerative hierarchical clustering 
to reduce the nine criteria to the three most important ones. For our analysis, we measured the similarity 
between the criteria using Euclidean distance, which quantifies the distance between pairs of criteria based 
on their attributes. This distance metric is particularly suitable for assessing criteria that can be expressed in 
continuous numerical forms. We applied Ward’s method for linkage, which is a strategy that minimizes the 
total within-cluster variance. This method effectively groups criteria in a way that preserves the integrity of their 
relationships, ensuring that the clusters formed are representative of the underlying data structure67–69. To validate 
the reliability of the reduced criteria, we implemented a consistency check by calculating the Consistency Ratio 
(CR)70. This ratio is critical in MCDM frameworks such as the AHP. Our analysis ensured that the CR remained 
below the threshold of 0.1, confirming that the pairwise comparisons used in determining the criteria weights 
were sufficiently consistent and reliable. Implementing these methodological steps strengthens the robustness of 
our criteria reduction process and enhances the overall reliability of the decision-making framework established 
in this study.

Matrix order 1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.45

Table 5. The random matrixes for incompatibility index.
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Results and discussion
Stage one: the pairwise comparison matrix analysis
Analyzing the problem using a hierarchical framework with the criteria in the middle, the options at the bottom, 
and the ultimate aim at the top is the first step in the AHP. This study’s main objective is to find the ideal tractor 
for agricultural productivity on the small farms in the Egyptian Delta. At the summit of the analytical hierarchy 
was the overarching goal, “Select the suitable tractor.” The key elements for assessing the target are the following: 
agrotechnical clearance (C8), least turning radius, power (C1), overall width (C2), tractor weight (C3), fuel 
consumption (C4), price (C5), maintenance costs and spare parts (C6), fuel tank capacity (C7), fuel consumption 
(C6), and least turning radius (C9). Four alternative tractors (T1, T2, T3, and T4) are positioned at the bottom 
of the AHP model and evaluated for each criterion to achieve the aim. Using the AHP model, experts can break 
down complex problems into a hierarchy of goals, criteria, and options based on the decision-makers’ points of 
view. Figure 4 displays a comprehensive pairwise comparison heatmap with nine sets of paired comparisons.

Decision-makers and academic experts examine the weights of the nine criteria. These results also assess 
the stability of tractor selection decisions when the criteria weights are altered44. The analysis aims to select 
appropriate tractors for small plots of land in the Egyptian Delta. The results are expressed as integer values 
ranging from one (indicating equal importance) to nine (representing significantly different degrees of 
importance). A higher number indicates that the chosen criteria are considered more important compared to 
other criteria.

Stage two: criteria weight and synthesis of the AHP model analysis
The hierarchical clustering Heatmap shows the relationship between the criteria in the matrix, as illustrated 
in Fig. 5. This shows the connection of all criteria used to select the appropriate tractor and their respective 
significance to each other. The normalized values between the criteria are expressed in different color shades, as 
shown in Fig. 5. The blue area indicates the high-effect criteria for selecting the appropriate tractor. In the main 

Fig. 4. Pairwise comparison matrix.
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hierarchical clustering, the first high-effect cluster was between C1 and C6, and the second cluster was between 
C4 and C5. then, that hierarchical clustering was collected between C1, C6, C4, and C5. The blue color map 
confirmed the clustering value; the blue area indicates the high effect criteria for selecting the appropriate tractor.

As in Eqs. (3 and 4), the aforementioned matrix’s consistency ratio (CR) is employed to look for differences. 
The number of criteria evaluated determines the experimental value of the random index. Table 6 displays the 
synthesis findings of the AHP model. The results showed that the highest-effect criteria for choosing a tractor are 
maintenance costs and spare parts (C6), with a weight factor of 0.2643, as shown in Table 6. These results agreed 
with those of Durczak et al71., who said that reliability, which is related to maintenance and failure rate, was the 

Criteria Criteria Weight Weighted Sum Value Average ʎmax

C1 0.1968 2.0859 10.6003

C2 0.0684 0.6579 9.6221

C3 0.0264 0.2508 9.5032

C4 0.1120 1.1121 9.9291

C5 0.1696 1.7788 10.4855

C6 0.2643 2.7342 10.3448

C7 0.0437 0.4077 9.3305

C8 0.0354 0.3284 9.2902

C9 0.0835 0.7961 9.5386

ʎmax 9.849373

Table 6. Synthesis results of the AHP model. Consistency index (C.I.) = 0.106172. Consistency ratio 
(CR) = 0.073222 < 0.1 (Acceptable).

 

Fig. 5. A hierarchical clustering Heatmap analysis between nine criteria.
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most important criterion. In another study, maintenance and repair costs were the main factors in the optimum 
selection for appreciating farm mechanization72.

Stage three: identify high-impact criteria via ML
Figure 6 shows the dendrogram tree structure of all criteria. The Euclidean distances between the data points and 
the criteria are presented in the dendrogram plot. From the results obtained, it was found that three criteria are 
more important than others; the method was reused to pair using the three criteria obtained again. The obtained 
criteria are C1, C5, and C6.

After applying the ML, the AHP pairwise comparison matrix was applied to calculate each weight of the 
criteria and the scale level for each indicator. A pairwise comparison is presented in Fig. 7.

The consistency ratio (CR) is computed for the matrix to ensure that the observations are accurate. We use 
Eqs. (3) and (4) to find differences. The amount of criteria that are reviewed determines the value of the random 
index, which is determined via experimentation. Table 7 shows the synthesis results of the AHP model.

One benefit of using AHP is that it makes it simple to manage many criteria with different degrees of variance. 
Figure  8 illustrates the relationship between the three criteria in the matrix using a hierarchical clustering 

Fig. 6. The dendrogram of all criteria.
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heatmap. Figure 8 displays the various color tones of the normalized values between the criteria. The criteria 
for choosing the right tractor with a high effect size are indicated in the blue region. In the primary hierarchical 
clustering, C1–C6 comprised the first high-effect cluster. Maintenance expenditures and spare components (C6) 
have a greater normalized weight of 0.524, or 52%, making them the highest-ranked criterion, according to AHP. 
The power criterion has the second-highest weight (0.334). Next, the remaining criteria were applied, which 
included price (0.142), as Fig. 9 illustrates.

Stage four: paired comparison of tractors
Figure 10 show the heatmap performance of all selected tractors and their corresponding criterion. It’s clear 
that T2 has a high relationship with C6. The results of the comparison between different alternative tractors 
appropriate for small areas in the Egyptian Delta were the three large impact criteria in the purchase decision for 
maintenance costs and spare parts, power, and price. T2 ranked highest primarily due to its competitive pricing 

Criteria Criteria weight Weighted sum value Average ʎmax

C1 0.334 1.021 3.058366

C5 0.525 1.617 3.081683

C6 0.334 1.021 3.058366

ʎmax 3.053819

Table 7. The AHP model synthesis results for the three criteria. Consistency index (C.I) = 0.026909. 
Consistency ratio (CR) = 0.046395 < 0.1 (Acceptable).

 

Fig. 7. Pairwise comparison matrix for three criteria.
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and lower maintenance costs, which are critical factors for small-scale farmers. The combination of high power 
also makes T2 particularly suitable for the terrain and operational needs of small farms in the Egyptian Delta. 
Farmers could utilize these findings to make more cost-effective purchasing decisions. The analysis revealed that 
T2 ranked highest among the evaluated tractors, primarily due to its strong performance across the three most 
important criteria: price, power, and maintenance costs. T2’s competitive pricing made it particularly appealing 
to small-scale farmers, for whom cost-efficiency is critical. In addition, the low maintenance costs associated 
with T2 further enhanced its attractiveness, as ongoing operational expenses are a significant concern for farmers 
in the Egyptian Delta. Another key factor contributing to T2’s superior ranking was its favorable power, which 
ensures efficient energy use and adaptability to the small and often challenging terrains typical of the region. 
This balance between power and weight allows T2 to perform a wide range of tasks without compromising 
fuel efficiency or operational speed, making it well-suited for small-scale farms requiring versatility in their 
machinery.

Fig. 9. The weight of different criteria.

 

Fig. 8. A hierarchical clustering Heatmap heatmap analysis between 4 three criteria.
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Given these strengths, farmers can utilize T2 to improve productivity while minimizing both upfront costs 
and long-term maintenance expenses. The findings suggest that T2 offers a cost-effective solution for farmers 
aiming to optimize tractor performance in small, resource-limited farm settings. This combination of factors 
positions T2 as the most practical and efficient option for smallholders in the region.

Based on the AHP analysis, T2 had the highest average ranking among the selected tractors, with a percentage 
of 33.4%. T1 is ranked second and T3 as third, with normalized values of 28.7% and 21%, respectively, as shown 
in Fig. 11.

Although environmental factors were initially considered in the criteria selection, the final prioritization 
focused on technical and economic factors that directly impact small farm operations in the Egyptian Delta. 
Given smallholders’ economic and technical challenges, criteria such as price, power, and maintenance costs 
were deemed to have the most immediate relevance. Nonetheless, the importance of environmental sustainability 
is fully acknowledged. Future studies will aim to integrate critical environmental metrics such as emissions and 
fuel efficiency into the decision-making framework. This approach will provide a more balanced evaluation that 
aligns with global sustainability goals and ensures that environmental considerations are adequately factored 
into tractor selection decisions.

While this study focuses on four tractor models commonly used in small farms in the Egyptian Delta, we 
acknowledge that this limits the generalizability of the findings. In future research, we aim to expand the number 
of tractor models and include other geographical regions to provide a broader application of the results.

While the relationships between tractor specifications, such as power, fuel tank capacity, and cost, may seem 
intuitive, using Multi-Criteria Decision-Making (MCDM) methods like AHP remains crucial for formalizing 
and quantifying these relationships in a structured manner. The selection of tractors for small farms involves 
multiple competing criteria—such as price, maintenance costs, power, and operational efficiency—that need 
to be evaluated simultaneously. Relying solely on intuition or direct correlations may overlook the trade-offs 
between these factors, leading to suboptimal decisions. MCDM methods allow for a systematic approach to 

Fig. 10. A hierarchical heatmap analysis between three criteria and alternative tractors.
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weighting the importance of each criterion, enabling a more nuanced decision-making process. By assigning 
appropriate weights to factors based on their relevance to the specific farming context, AHP helps to capture 
the complexities of tractor selection, providing a decision framework that is both transparent and replicable. 
Therefore, despite the apparent direct relationships between some variables, MCDM methods are essential for 
ensuring that all relevant criteria are considered holistically72.

Conclusions
This study makes several notable contributions to the field of agricultural mechanization and decision-making 
for small-scale farms. First, it demonstrates the effective application of the AHP in the context of tractor 
selection, providing a structured, multi-criteria approach that simplifies decision-making for smallholders. 
Farmers are very confused when choosing agricultural tractors from among the available alternatives due to 
the many selection criteria for agricultural tractors, and the wrong choice of agricultural tractors may lead to 
problems, including disruption of agricultural operations or financial loss, etc. In order to select the best tractor 
among the options for small farms in the Egyptian Delta, this research combined the AHP with ML. The existing 
criteria were evaluated for significance based on experts’ opinions, and the results were then reviewed. Nine 
factors encompassing economic, environmental, and technical aspects were considered to meet the aims of 
sustainable development when selecting the tractor. Among the four agricultural tractors that small farms in 
the Egyptian Delta frequently utilize, ML technology was employed to narrow down the list of criteria to the 
three most crucial ones (from 55 to 95 horsepower). The results showed that the most important criterion for 
choosing agricultural tractors was the cost of spare parts by weight (0.525). After the criteria weighting process, 
the selected tractors were ranked, and T2 obtained the highest average ranking among the selected tractors, with 
a percentage of 33.4%, then T1, followed by T3, with percentage values of 28.7% and 21%, respectively.

In conclusion, integrating AHP and ML facilitates the appropriate selection of agricultural tractors when 
purchasing them. The current research method is recommended to be used to reduce the number of criteria 
used in selecting any agricultural machinery when purchasing it. While this study provides valuable insights 
into tractor selection for small farms, future research will incorporate emissions and fuel efficiency metrics to 
ensure a more holistic approach to sustainable tractor selection that aligns with global environmental goals. We 
suggest future research about application software using programming code that uses the MCDM calculation 
methods as the best tractor.

Data availability
The manuscript data is available by the corresponding author through reasonable request.
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