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Abstract

Although microvascular decompression (MVD) is a reliable treatment for hemifacial spasm (HFS),

postoperative delayed relief is one of its main issues. We previously evaluated the morphology of the

lateral spread response (LSR) and reported correlation between delayed relief after MVD and polypha-

sic morphology of the LSR. This study aimed to investigate the morphology of LSR and the course of

recovery of the compound motor action potential (CMAP), to better understand the pathophysiology

of delayed healing of HFS. Based on the pattern of the initial LSR morphology on temporal and mar-

ginal mandibular branches stimulation, patients were divided into two groups: the monophasic and

polyphasic groups. The results of MVD surgery and sequential changes in the CMAP were evaluated 1

week, 1 month, 1 year, and final follow-up after the surgery. Significantly higher rates of persistent

postoperative HFS were observed in patients with the polyphasic type of initial LSR at 1 week and 1

month after the surgery (P < 0.05, respectively). In the polyphasic group, the amplitude of the CMAP

tended to gradually improve with time, while in the monophasic group, the amplitude of the CMAP

decreased on the seventh postoperative day, followed by its gradual improvement. There is a signifi-

cant correlation between delayed relief after MVD and polyphasic morphology of the initial LSR in pa-

tients with HFS. In the polyphasic group, CMAP recovered earlier and showed less reduction in ampli-

tude, suggesting segmental demyelination, with less damage to peripheral nerves.
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Introduction

Hemifacial spasm (HFS) is a motor disorder character-

ized by involuntary tonic-clonic activity of the muscles in-

nervated by the facial nerve (FN) on the ipsilateral side of

the face.1,2) Since vascular compression of the FN at the

root exit zone (REZ) is widely accepted as the main cause

of HFS,3-6) microvascular decompression (MVD) of the FN is

a well-established surgical treatment for HFS, producing

relatively good results with minimal complications.7-12) Al-

though most of the patients immediately become spasm-

free, approximately 10%-40% still experience residual

spasm after MVD surgery.13-20)

Terasaka et al. revealed a significant correlation between

preoperative anticonvulsant therapy and delayed cure after

MVD in a multivariate analysis,19) and Sato et al. men-

tioned non-transposition as one of the causes of delayed

relief in HFS,21) although the other causes of delayed symp-

tom relief in HFS remain unclear.

Lateral spread responses (LSRs), elicited by electrically

stimulating one branch of the FN while recording electro-

myographic responses from a muscle innervated by an-

other branch of the FN, are useful for the electrophysi-

ological diagnosis of HFS, because they represent an ab-
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normal electromyographic response characteristic in HFS

patients.22,23) So far, LSR waves have only been assessed as

“residual” or “diminished” during MVD and have not been

evaluated qualitatively.

We previously focused on the morphology of the LSR

waveform and reported significant correlation between de-

layed relief after microvascular decompression and

polyphasic morphology of the LSR in patients with HFS.24)

To perform further qualitative evaluation, we investigated

the relationship between the morphology of the LSR wave-

form and sequential long-term electrophysiological

changes in motor function of the FN, evaluated using the

compound motor action potential (CMAP), after MVD sur-

gery. To our knowledge, this study is the first to examine

the correlation between initial LSR morphology and se-

quential changes in CMAP after MVD in patients with

HFS.

Materials and Methods

Study design

All participants provided informed consent, and the

study protocol was approved by the Ethics Committee of

Nakamura Memorial Hospital and was performed in accor-

dance with the principles of the Declaration of Helsinki.

Participants in this observational, nonrandomized study

were identified via a retrospective electronic chart review

of HFS patients treated by MVD between January 2015 and

March 2020 at the Nakamura Memorial Hospital. All surgi-

cal procedures were performed by a senior doctor (N.S.), a

skilled neurosurgeon with 23 years of experience.

Patients

To allow evaluation of the unaffected FN, patients who

met the following criteria were excluded: (1) past medical

history of botulinum neurotoxin injection, (2) previous

MVD surgery, (3) presence of preoperative facial weakness,

and (4) history of Bell’s palsy, trauma, or other surgical

treatment around the FN area. Patients with (5) an un-

measurable initial LSR or in whom all the waveform am-

plitudes were less than 10 μV and (6) early loss to CMAP

follow-up were also excluded.

Intraoperative LSR monitoring

Intraoperative LSR monitoring during MVD surgery was

performed using a Neuromaster MEE-1232 or a Neuromas-

ter G1 MEE-2000 monitoring system (Nihon Kohden, Inc.,

Tokyo, Japan). After induction of general anesthesia, one

needle was inserted into the orbicularis oculi muscle and

the other into a subcutaneous electrically inactive site. For

the mentalis muscle, electrodes were implanted in the

same manner. All needles used a length of 0.4×13 mm.

LSRs were recorded from the mentalis muscle after electri-

cal stimulation of the temporal branch of the FN and from

the orbicularis oculi muscle after stimulation of the mar-

ginal mandibular branch of the FN. LSRs were recorded

using amplifiers with a frequency band of 20 to 3 kHz. The

initial LSR was recorded by supramaximal stimulation be-

fore opening the dura mater, after confirming the depth of

general anesthesia with bispectral index monitoring. The

initial LSR was measured several times to confirm its re-

peatability. Subsequently, LSR was continuously recorded

at 1-min intervals during surgery. Cases in which the LSR

disappeared with stimulation of both the temporal and

marginal mandibular branches were defined as showing

LSR disappearance.

Stimulation and recording of CMAP

The nerve conduction study measurement was per-

formed as described in a previous report.2,25) Briefly, the pa-

tients lay on a bed in the supine position in a warm room.

The FNs were stimulated using a bipolar surface electrode

with the cathode positioned below the ear lobe and the

anode on the mastoid tip. The recording electrodes were

disks 5 mm in diameter, placed on the inferior part of the

orbicularis oculi muscle. The ground electrode was placed

on the forehead. A square wave stimulus of 0.2 ms at 1 Hz

frequency was used to generate the highest level of muscle

action potential. We measured the CMAP amplitude on

both sides of the face, and subsequently recorded the am-

plitude ratio of the affected and unaffected sides. A Care-

Fusion Nicolet EDX with Viking Software system (Natus

Neurology, Middleton, WI, USA) was used for the stimula-

tions and measurements.

Evaluation of surgical results

The results of surgery for HFS were evaluated 1 week, 1

month, and 1 year and final follow up after the surgery.

Based on the classification proposed by the Japan Society

for Microvascular Decompression Surgery, the symptoms of

HFS were evaluated as either being cured or not at the

time of each follow-up. In this study, all follow-ups in the

patients were conducted only by the senior doctor (N.S.).

Analysis of the initial LSR morphology

LSRs were classified based on their pattern as monopha-

sic and polyphasic types (Fig. 1). Briefly, waveforms with

up to two spikes of over 30% of the maximum amplitude

were defined as the monophasic type, while those with

three or more spikes were defined as the polyphasic type.

The number of spikes, their duration, and the maximum

amplitude of the initial LSR were measured and compared

between the two types of waveforms. LSR morphology was

analyzed by three experienced neurosurgeons blinded to

the clinical data. In cases where there were discrepancies

in the results of waveform evaluations, the majority deci-

sion was given priority.

Clinical and statistical analysis

Based on the results of the initial LSR morphology with
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Fig. 1 Classification of the lateral spread response.

The patterns of the lateral spread response (LSR) were classified as monophasic and polyphasic types. Briefly, waveforms with up

to two spikes over 30% of the maximum amplitude were defined as monophasic type and those with three or more spikes as poly-

phasic type. 

Table　1　Evaluation results of lateral spread response

Evaluation of each waveform Polyphasic wave Monophasic wave P value

Temporal branch stimulation, n  5 36

Number of spikes (mean ± SD), n 5.4 ± 3.2 1.4 ± 0.5 0.00

Duration (mean ± SD), ms 30 ± 10.6 20.6 ± 6.7 0.00

Maximum amplitude (mean ± SD), μV 124.4 ± 72.1 109.9 ± 83.7 0.36

Marginal mandibular branch stimulation, n 17 24

Number of spikes (mean ± SD), n 4.3 ± 2.8 1.6 ± 0.5 0.00

Duration (mean ± SD), ms 29.4 ± 7.9 22.5 ± 6.6 0.00

Maximum amplitude (mean ± SD), μV 58.1 ± 37.7 86.1 ± 92.0 0.12

Polyphasic waves, consisting of waves with a long duration, appeared with both temporal and mar-

ginal mandibular branch stimulation. SD, standard deviation

orbicularis oculi and mentalis muscle stimulation, the pa-

tients were divided into two groups: patients with a mono-

phasic spike pattern in the initial LSR for both muscles

were categorized as the monophasic group and those with

a polyphasic LSR pattern in even one of the muscles evalu-

ated were classified as the polyphasic group.

The primary outcome was the amplitude ratio of the

CMAP (CMAP affected side/CMAP unaffected side) preop-

eratively, and at 1 week, 1 month, and 1 year, after the sur-

gery. Each group was also evaluated for baseline character-

istics; healing rate of residual HFS at 1 week, 1 month, and

1 year and final follow up after the surgery; intraoperative

LSR disappearance rate; and permanent complications

rate.

Categorical variables were analyzed using the chi-

squared test or Fisher’s exact test, as appropriate. Continu-

ous variables were analyzed using the unpaired t test or

Mann-Whitney U test, as appropriate. A P value of <0.05

was considered statistically significant. All statistical analy-

ses were performed using SPSS version 23.0 (IBM, Armonk,

NY, USA).

Results

Evaluation of monophasic and polyphasic waves

Table 1 shows the results of evaluation of the waveforms

in terms of the type of LSR. The polyphasic wave consisted

of long duration waves that appeared with both temporal

and marginal mandibular branch stimulation. In this study,

the initial LSR morphology showed no mixing of polypha-

sic and monophasic waves despite several stimulations

during decision-making regarding each patient’s initial

wave.

Clinical information

We analyzed the data of 41 of 152 consecutive patients

who underwent MVD for HFS at our hospital during the

study period, after excluding 66 patients with a past his-

tory of botulinum neurotoxin injection, 2 patients with

prior MVD surgery, 25 patients with an unmeasurable in-

itial LSR or in whom all the waveform amplitudes were

less than 10 μV, 3 patients with preoperative facial weak-

ness, and 18 patients who were lost to follow-up of CMAP.
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Table　2　Baseline characteristics of the study groups

Baseline characteristics Polyphasic group

 (n = 19) 

Monophasic group

 (n = 22) 

P value

Age (mean ± SD), years 53.3 ± 12.5 51.3 ± 13.7 0.31

Male, n (%)  5 (26.3) 13 (59.1) 0.07

Side (left), n (%) 12 (63.2) 15 (68.2) 0.99

Symptom duration (mean ± SD), months 57.1 ± 49.0 60.3 ± 72.6 0.43

Risk factors, n (%) 

Hypertension  5 (26.3) 2 (9.1) 0.22

Diabetes mellitus  2 (10.5) 0 (0.0) 0.21

Dyslipidemia  2 (10.5)  3 (13.6) 1

Offending vessels, n (%) 

AICA 17 (89.5) 12 (54.5) 0.02

PICA  5 (26.3) 10 (45.5) 0.35

VA  3 (15.8)  9 (40.9) 0.1

Complex  6 (31.6)  7 (31.8) 0.75

Baseline data did not differ between the two groups, except for the percentage of cases in which the 

AICA was the offending vessel. SD, standard deviation; AICA, anterior inferior cerebellar artery; PICA, 

posterior inferior cerebellar artery; VA, vertebral artery

None of the patients had a history of Bell’s palsy, trauma,

or other surgical treatment around their FN area, but

three cases had preoperative facial weakness. Table 2

shows the general characteristics of the subjects stratified

according to the pattern of the initial LSR. Baseline data

did not differ between the two groups, except for the per-

centage of cases in which the anterior inferior cerebellar

artery (AICA) was the offending vessel. None of the pa-

tients had the complication of facial palsy at the time of

follow-up.

Primary outcome measures

Figure 2 shows the progress of CMAP. In the polyphasic

group, the amplitude ratio of the CMAP (amplitude of

CMAP on the affected side/amplitude of CMAP on the un-

affected side) tended to gradually improve with time,

whereas in the monophasic group, the amplitude ratio of

the CMAP decreased on the seventh postoperative day, fol-

lowed by its gradual improvement (polyphasic group/

monophasic group; preoperative, 87.8 ± 37.9/81.0 ± 31.6, P

= 0.54, 1 week postoperative, 93.6 ± 40.5/69.3 ± 28.5, P =

0.03, 1 month postoperative, 98.9 ± 57.9/71.1 ± 34.0, P =

0.06, 1 year postoperative, 98.1 ± 29.2/84.2 ± 30.1, P = 0.14).

Other parameters

There were significantly higher rates of residual postop-

erative HFS in the polyphasic group at 1 week and 1

month after the surgery (P < 0.05, respectively), as assessed

using Yates’ chi-squared test and Fisher’s exact test (Table

3). Conversely, the rate of residual postoperative HFS at 1

year and final follow-up after surgery did not differ be-

tween the two groups (P = 0.46).

Intraoperative LSR remained in 2 cases in the polyphasic

group and 7 cases in the monophasic group, with no dif-

ference between the 2 groups. Of these 9 patients, 4 had

delayed relief of HFS, and the frequency of delayed relief

was 44.4%.

There were no differences in permanent complications

rate between the two groups.

Discussion

Although MVD is a reliable treatment for HFS, the exact

reasons for surgical failure remain unclear. In particular,

delayed postoperative cure of persistent HFS is one of the

most challenging issues. In previous reports, intraoperative

LSR, the pattern of neurovascular compression, good clini-

cal outcomes at 3 months after MVD, and intraoperative

evidence of the severity of the REZ indentation were pro-

posed as prognostic factors for better outcomes.17,26,27) The

percentage of delayed cures in the polyphasic group in the

present study (52.6% at 1 week after surgery and 42.1% at

1 month after surgery) was higher than those reported in

previous reports (10%-40%).13-20) Our results suggest that the

initial morphology of the LSR might be an important fac-

tor for estimating a delayed cure after MVD. To our knowl-

edge, only one previous paper has evaluated the correla-

tion between intraoperative morphology of the LSR and

cure rates of HFS after MVD, although they did not exam-

ine the correlation between the morphology of the LSR

and delayed cure.28)

Mechanism of polyphasic wave formation in LSRs

Previous studies have proposed two possible sites of ori-
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Fig. 2 Progress of compound motor action potential.

Figure 2 shows the progress of CMAP. In the polyphasic group, the amplitude ratio of the CMAP (amplitude of CMAP of the affect-

ed side/amplitude of CMAP of the unaffected side) tended to improve gradually with time, whereas in the monophasic group, the

amplitude ratio of the CMAP decreased on the seventh postoperative day, followed by gradual improvement (polyphasic group/

monophasic group; preoperative, 87.8±37.9/81.0±31.6, P=0.54, 1 week postoperative, 93.6±40.5/69.3±28.5, P=0.03, 1 month postop-

erative, 98.9±57.9/71.1±34.0, P=0.06, 1 year postoperative, 98.9±57.9/71.1±34.0, P=0.06, 1 year postoperative, 98.1±29.2/84.2±30.1, 

P=0.14).

gin for the lateral spread of impulses responsible for the

LSR seen in HFS: (1) coactivation of many abnormal hy-

perexcitable motoneurons following antidromic invasion or

reflexive activation of the facial nucleus22,29) or (2) ephaptic

transmission at the vascular compression site along the in-

tracranial extra-axial segment of the FN.30-34) In addition to

the above possible origins for lateral spread of the impulse,

the electrical shocks intended for the FN could simultane-

ously activate cutaneous sensory fibers, inducing a blink

reflex.35,36) Recent studies suggest the role of cutaneous af-

ferent volleys via the trigeminal nerve, which enhances the

reflexive excitability of the FN motoneurons. Elicitation of

an LSR after subthreshold stimulation of the FN also sug-

gests mediation of an aberrant impulse by trigeminal in-

puts.36) Therefore, the LSR waveform is considered to be

the sum of several components of ephaptic transmission at

the vascular compression site or coactivation of many ab-

normal hyperexcitable motoneurons and a waveform

evoked by the blink reflex.

Two factors might cause the LSR waveform to be

polyphasic. One is the degree of demyelination at the vas-

cular compression site. Several papers have shown that de-

myelination of the FN is one of the mechanisms of HFS37,38)

and that the morphology of the wave in polyphasic-type

LSRs is very similar to the demyelinating wave of temporal

dispersion seen in electrophysiological evaluation in pa-

tients with demyelinating polyneuropathy, such as chronic

inflammatory demyelinating polyneuropathy, or Guillain-

Barré syndrome.39-43) When depolarization reaches a critical

level due to contralateral stimulation, the voltage-gated Na

channel opens, leading to generation of an action poten-

tial. The action potential is constant regardless of the type

and size of the stimulus during the generation process,

thus obeying the all-or-none law.44-47) Therefore, the LSR

waveform is considered to be a change that strongly re-

flects the effect of demyelination after ephaptic transmis-
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Table　3　Clinical outcomes of the study groups

Clinical outcomes Polyphasic group

 (n = 19) 

Monophasic group

 (n = 22) 

P value

Follow-up period (mean ± SD), months 43.9 ± 24.5 50.6 ± 29.5 0.22

Residual spasm, n (%) 

Within 1 week 10 (52.6) 3 (13.6) 0.02

Within 1 month  8 (42.1) 1 (4.5) 0.01

Within 1 year 1 (5.3) 0 (0.0) 0.46

Final follow-up 1 (5.3) 0 (0.0) 0.46

Intraoperative AMR disappearance, n (%) 17 (89.5) 15 (68.2) 0.14

Complications

Subdural hemorrhage 0 (0.0) 1 (4.5) 1

Hoarseness 1 (5.3) 0 (0.0) 0.46

Dysphagia 1 (5.3) 1 (4.5) 1

There were significantly higher rates of residual postoperative hemifacial spasm in the polyphasic 

group at both 1 week and 1 month after the surgery (P < 0.05, respectively), as assessed using Yates’ 

chi-squared test and Fisher’s exact test.

sion. Our results suggest that the presence of the polypha-

sic LSR is associated with the degree of demyelination of

the temporal and mandibular branches of the FN at the

vascular compression site. In cases that showed both

monophasic and polyphasic waveforms, the degree of de-

myelination differed between the temporal and mandibular

branches, and multilayered waveforms were only seen

when the signal was transmitted to the side with the

stronger demyelination.

The other factor that might be responsible for the

polyphasic waveform is involvement of the blink reflex.

Blink reflexes are frequently present in patients with

FHS.48-52) The blink reflex elicited by electrical stimulation

of the supraorbital nerve has two orbicularis oculi contrac-

tion components: one with a latency of 10 to 12 ms (R1),

and the other with a latency of 30-40 ms (R2).53,54) While

the blink reflex seldom involves muscles other than the or-

bicularis oculi in normal subjects, it usually involves other

muscles in patients with HFS.55,56) This is consistent with

our results, which showed significantly more polyphasic

waves during orbicularis oculi recordings following stimu-

lation of the mandibular branch of the FN. Stimulation by

the electrode would activate peripheral nerve branches of

the trigeminal nerve or skin sensory receptors, and

thereby, could elicit trigeminal facial reflexes. The impulse

then travels afferently to the FN nucleus. We believe that

the threshold for signal propagation from the FN nucleus

might be lower in cases with hyperexcitation of the FN nu-

cleus, leading to a greater likelihood of induction of blink

reflexes, although further case accumulation and investiga-

tion are needed.

Causative vessel and LSR waveform

In this study, the AICA was found to be the offending

vessel significantly more often in the polyphasic group

than in the monophasic group. Previous studies have also

described that the AICA was the vessel most frequently re-

sponsible for compression at the site of the FN REZ.57,58)

The FN REZ is commonly defined as the proximal seg-

ment of the nerve, from the facial root exit point to the

transition zone.59-61) With oligodendrocyte-derived myelin,

the REZ is structurally weaker and more vulnerable to the

influence of vascular compression.62,63) In addition, the REZ

of the healthy FN is ensheathed by only the arachnoid

membrane and lacks interfascicular connective tissue that

usually separates the fibers and epineurium.62,64) These ana-

tomical characteristics might make the REZ slightly more

vulnerable to injury by vascular compression.65) This sup-

ports the observation of the greater frequency of the AICA

as the offending vessel causing compression of the ana-

tomically fragile REZ in the polyphasic group, in which de-

myelination was observed to be more strongly involved.

Considerations related to CMAP progression

The CMAP is a summation of the action potentials of

muscle fibers in a given muscle group and is an indication

of the number of functioning muscle fibers. To our knowl-

edge, few studies have objectively investigated motor func-

tion of the FN in HFS patients and assessed the long-term

influence of surgery on the facial motor nerve. Asayama et

al. reported the first study to identify the characteristics

and clinical outcomes of preoperative and postoperative

facial motor weakness in HFS patients, which examined

the long-term sequential electrophysiological changes in

FN motor function pre- and post-MVD in patients with

HFS.25) They showed that CMAP amplitude values were sig-

nificantly lower in patients with preoperative facial motor

weakness, who were considered to have strong axonal de-
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generation, than in other patients.

In the polyphasic group in this study, early recovery of

the CMAP was observed starting on postoperative day 7,

with a small decrease in amplitude, resembling the

changes seen in segmental demyelination with little dam-

age to the stimulating site of the peripheral nerve. In the

monophasic group, there was a marked decrease in ampli-

tude, which was considered a strong finding of axonal de-

generation. Previous reports have described the pathology

of early Wallerian degeneration in the stroke area, which is

seen from a few days to a week after the onset.66-69) We pre-

viously identified imaging changes suggestive of early

Wallerian degeneration at the first week after MVD for

trigeminal neuralgia, which might be evidence of the ax-

onal degeneration associated with intraoperative interven-

tion.70) This is consistent with the timing of the decline in

CMAP, i.e., at 1 week postoperatively in the monophasic

group. The course of CMAP in this study, in which cases

without Bell’s palsy or Botox treatment and without pre-

or postoperative facial palsy were selected, allowed us to

confirm the obliterative nerve changes caused by intracra-

nial FN injury. It is possible that cases with more severe

axonal damage in the monophasic group developed more

pronounced inflammatory changes secondary to mechani-

cal stimulation during MVD, which might have resulted in

the progression of Wallerian degeneration.

Correlation between demyelination of the facial nerve

and delayed cure from HFS after MVD

Based on the current understanding of the pathophysi-

ological mechanisms underlying HFS, vascular compression

of the FN seems to play a crucial role in HFS.3) Previous

studies have suggested that irritation of the FN due to its

close contact with a blood vessel promotes hyperactivity

and hyperexcitability of the FN nucleus.33) As in previous

reports,20) there was no correlation between the intraopera-

tive LSR disappearance rate and outcomes at 1 year in this

study, suggesting that hyperexcitability of the facial nu-

cleus might normalize progressively over several months or

even years after MVD. This process of normalizing the hy-

perexcitability of the nucleus is thought to manifest as de-

layed cure of HFS.71,72) The likelihood of triggering blink re-

flexes might indicate hyperexcitability of the facial nucleus,

and evaluation of polyphasic waveforms can provide real-

time visualization of hyperexcitability of the nucleus. In

addition to these theories, we suggest that demyelination

of the FN at the vascular compression site might enhance

facial muscle excitability, leading to spatial dispersion from

the facial nucleus to lower threshold motor neurons of the

FN. Alternatively, due to the state of strong axonal degen-

eration in the monophasic group, impulses from the FN

nucleus were less likely to propagate to the periphery,

causing the facial spasm to disappear immediately after

surgery.

This study has some limitations. First, since this was a

retrospective study of a single center with a small sample

size, further studies with a larger sample size are required

to confirm our results. Second, we evaluated residual post-

operative HFS 1 week, 1 month, and 1 year and final

follow-up after the surgery. We need to accumulate more

detailed follow-up data to determine the appropriate tim-

ing for evaluation of delayed cure after MVD.

Conclusion

There is a significant correlation between delayed relief

after MVD and polyphasic morphology of the initial LSR in

patients with HFS. In the polyphasic group, CMAP recov-

ered earlier and was less amplitudinally reduced, suggest-

ing similar changes as seen in segmental demyelination,

with less damage to peripheral nerves.
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