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Abstract

This study was undertaken to determine if knee acoustic emissions (KAE) measured at the 

point of care with a wearable device can classify knees with pre-radiographic osteoarthritis 

(pre-OA) from healthy knees. We performed a single-center cross-sectional observational study 

comparing KAE in healthy knees to knees with clinical symptoms compatible with knee OA 

that did not meet classification criteria for radiographic knee OA. KAE were measured during 

scripted maneuvers performed in clinic exam rooms or similarly noisy medical center locations 

in healthy (n=20), pre-OA (n=11), and, for comparison, OA (n=12) knees. Acoustic features 

were extracted from the KAE and used to train models to classify pre-OA, OA, and control 

knees with logistic regression. Model performance was measured and optimized with Leave-

One-Out Cross-Validation. Regressive sensitivity analysis was performed to combine acoustic 

information from individual maneuvers to further optimize performance. Test-retest reliability 

of KAE was measured with intraclass correlation analysis. Classification models trained with 

KAE were accurate for both pre-OA and OA (94% accurate, 0.96 and 0.99 area under a 

receiver operating characteristic curve (AUC), respectively). Acoustic features selected for use 

in the optimized models had high test-retest reliability by intrasession and intersession intraclass 

correlation analysis (mean intraclass correlation coefficient 0.971 +/− 0.08 standard deviation). 

Analysis of KAE measured in acoustically uncontrolled medical settings using an easily accessible 
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wearable device accurately classified pre-OA knees from healthy control knees in our small 

cohort. Accessible methods of identifying pre-OA could enable regular joint health monitoring and 

improve OA treatment and rehabilitation outcomes.

Graphical Abstract

Index Terms—

pre-radiographic osteoarthritis; early osteoarthritis; knee; acoustics; crepitus

I. Introduction

Osteoarthritis of the knee is typically diagnosed at advanced stages when patients present 

with persistent knee pain and radiographic changes on x-ray. Radiographic knee OA is 

defined as Kellgren-Lawrence (KL) grade 2 or higher changes such as osteophyte formation 

and joint space narrowing [1]. Knee OA is a slowly progressive disease and by the time a 

knee has KL2 changes, the disease has been progressing for many years and the joint has 

considerable mechanical dysfunction that may hinder the efficacy of non-surgical therapies 

[2]. As such, efforts to develop disease-modifying therapies at this stage of advanced 

radiographic osteoarthritis (OA) have been unsuccessful [3], [4]. There is considerable 

interest in defining, characterizing, and identifying an earlier stage of knee OA, such as 

pre-radiographic OA (pre-OA) where an individual has stereotypic symptoms without such 

advanced structural changes, that may be more amenable to treatment or prevention [5]. 

Clinically available tools for diagnosis of pre-OA are insufficient–x-rays lack sensitivity 

and MRI is overly sensitive but lacking specificity for symptoms of disease or risk of 

progression to OA [6]–[9]. Further, x-rays require radiation exposure and MRI is time-

consuming and expensive. Better methods for identification of pre-OA are needed.

The human knee generates noise and vibration which can be heard and felt, termed crepitus, 

that has long been associated with and is part of some clinical classification criteria for 

knee OA [10]. Evidence for crepitus as a sign of an earlier knee OA disease state is 

contradictory. In the Rotterdam Study, crepitus either heard or palpated by study personnel 

was associated with incident patellofemoral, but not tibiofemoral OA changes on MRI 

[11]. In the Osteoarthritis Initiative (OAI), subjective report of crepitus on the Knee Injury 

and Osteoarthritis Outcome Score (KOOS) was associated with incident symptomatic OA 

primarily in participants with preexisting asymptomatic tibiofemoral radiographic OA, while 
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palpable vibratory crepitus was not associated with incident radiographic OA development 

over four years in participants with baseline frequent knee symptoms [12], [13]. Crepitus 

is an inherently qualitative and unreliable metric and thus, it is unlikely that the clinically 

observed phenomenon of crepitus is a sensitive or specific enough measure to identify 

individuals with early disease [14].

Knee acoustics, termed knee acoustic emissions (KAE), are a highly sensitive and 

quantifiable recording of crepitus measured with airborne or contact microphones 

(accelerometers). KAE can be recorded non-invasively with a wearable device in 

acoustically uncontrolled settings and during dynamic movements, as well as in all knees, 

whether healthy or pathologic, for comparison in the context of knee health status [15]–

[17]. Further, KAE contain information about the biomechanical and tribological forces 

experienced by the knee and can differentiate knees with radiographic OA from knees 

without OA [18]–[22]. To determine if quantitative analysis of crepitus via KAE has 

the potential to identify or characterize early knee OA, we undertook a pilot study first 

measuring knee acoustics in clinical settings using a wearable device and then combining 

them with machine learning techniques to predict whether the recording was from a knee 

with pre-OA or from a healthy knee.

II. Methods

A. Participant Recruitment Criteria

Participants were recruited from the Minneapolis Veterans Affairs Medical Center 

(MVAMC). This study was approved by the MVAMC Institutional Review Board and 

participants signed written informed consent (IRB #1594824). Pre-OA was defined as 

a participant having persistent knee pain but not meeting classification criteria for 

radiographic knee OA. Persistent knee pain was defined as an affirmative answer to the 

question “Have you had pain within the last year in or around the knee that occurred 

on most days for at least a month?” [20]. Radiographic knee OA classification criteria, 

which were also used to define our OA participant group, are defined as grade II or 

higher on the standardized KL grading scale used to assess the severity of knee OA [23]. 

Pre-OA participants with KL 0 x-rays had an MRI of the knee demonstrating damage 

to the tibiofemoral articular cartilage [24]. X-rays and MRIs were read by a trained 

musculoskeletal radiologist and reviewed by the primary author (DE). Healthy knees 

were defined as those without symptoms by patient self-report and no history of serious 

knee trauma or surgery. In a subset of participants with persistent knee pain, symptoms 

were further characterized with the Knee Injury and Osteoarthritis Score (KOOS) [25]. 

Participants who answered anything other than “never” for KOOS symptoms question 2 

(S2: “Do you feel grinding, hear clicking or any other type of noise when your right knee 

moves?”), were designated as having crepitus [12]. Patients who had active inflammatory 

arthritis, or who had undergone knee surgery or had serious knee trauma in the past year 

were excluded.
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B. Wearable System Design

Our group designed a fully wearable device, that is made of relatively inexpensive 

components and can be assembled outside of a niche research laboratory, for quickly 

measuring KAEs with high-fidelity in clinical environments. The device consists of a printed 

circuit board previously developed by our group, 3-D printed case, 500 mAh lithium-ion 

battery, and four piezoelectric contact microphones (BU-23173–000, Knowles, Itasca, IL) 

(Fig. 1A) [15]. Schematics and detailed written instructions were used to produce new 

devices by an independent team at our clinical recording site (MVAMC). To summarize 

elements of our system, the printed circuit board used a custom analog front-end, a four-

channel analog-to-digital (ADC) converter, and the SAM4L8 microcontroller (Microchip 

Technology Inc., Chandler, AZ, USA) to record KAEs simultaneously from multiple 

locations around the knee joint [15]. Contact microphones were selected for their compact 

design, large bandwidth, and robustness to ambient noise artifacts, and have been successful 

in capturing KAEs in existing literature [26]–[28]. Microphones were sampled at 46.875 

kHz, with microphone characterization showing linear response until approximately 12 kHz 

[29]. Our analyses filtered all data to at most below 5 kHz where the vast majority of 

KAE spectral energy is located, thereby being unaffected by this non-linearity [30]. All 

data were saved locally to a 32-gigabyte micro-SD card. A micro-USB port was used 

both for downloading saved data from the micro-SD card as well as battery charging [15]. 

Untethered design, large storage capacity and extended battery life allowed for several hours 

of recording as well as rapid donning and doffing of the system. The cost of our device’s 

components was approximately $725.

Our contact microphones were positioned medial and lateral to the superior and inferior 

aspects of the patella using double sided adhesive tape dots (3M, St. Paul, MN). 

Microphones were placed at the pre-specified locations anatomically by study personnel 

with clinical training in the evaluation and treatment of knee disorders who had expert 

knowledge of knee anatomy. Microphone cables were highly flexible and attached to the 

leg via an elastic band to minimize the potential for cable bumping noise artifacts [31]. The 

main housing was secured to each patient’s shank using a soft Velcro strap to allow for 

flexible sizing. This configuration was used for all measurements (Fig. 1B).

C. Measurements of Knee Acoustic Emissions

Participants were asked to perform scripted maneuvers, consisting of flexion and extension, 

sit-to-stand, and walking, while recording KAE for 40 seconds (Fig. 1C and Fig. 1D) in 

clinic exam rooms or office locations in the medical center with similarly uncontrolled 

ambient noise. Knee angle was measured with a dual-axis goniometer (Biometrics, Newport, 

UK) for flexion-extension. Participants were encouraged to perform flexion-extension and 

sit-to-stand at a standardized pace (0.25 Hz) using a visual timer and to walk at a 

self-selected comfortable pace. To preserve data, if a participant was unable to complete 

a scripted maneuver or there was an error in acoustic measurement identified after the 

participant’s visit, data for only that maneuver was excluded from the dataset.
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D. KAE Preprocessing and Feature Extraction

KAE were filtered from 250 Hz to 5 kHz for flexion-extension and sit-to-stand, and 

150 Hz to 1 kHz for walking (Fig. 1E) [19]. All maneuvers were then segmented into 

movement cycles: flexion-extension using goniometer data, sit-to-stand and walking data 

using energy peaks in the acoustic signal envelope occurring from the impact of sitting 

onto an exam table and heel strike, respectively. Flexion-extension and sit-to-stand cycles 

faster than 0.4 Hz were excluded to standardize joint loading conditions [18], [32]. No cycle 

exclusion criteria were used for walking. Cycles were subdivided into 30 ms windows with 

20 ms overlap, and 59 spectral, temporal, Mel-cepstral, and band power-derived acoustic 

features were extracted from each window. These features were selected to characterize the 

pace, shape, and amplitude of the acoustic signal and have been previously validated for 

assessing joint health in other articular diseases [18], [26], [33]. Windowed features were 

then averaged across each cycle to improve signal robustness to outliers and quantify feature 

distribution within cycles. A feature matrix of m rows of movement cycles by n columns of 

features was created for each microphone, as well as a combined matrix which concatenated 

features from all microphones. Cycles were labeled one of three classes: healthy, pre-OA, 

or OA. This process was repeated for all maneuver types. All KAE preprocessing, feature 

extraction, and feature visualizations were performed using MATLAB (The MathWorks Inc. 

Natick, MA).

E. KAE Data Analysis

1) Comparison of Acoustics Between Healthy, Pre-OA, and OA knees—
Acoustic Features were averaged across movement cycles and compared between groups 

using density plots to estimate feature distribution probabilities for each group. After finding 

non-normal feature distributions with the Shapiro-Wilk Test, Kruskal-Wallis Test was used 

to compare feature medians between groups. Dunn’s test was used for post-hoc analyses 

with the Bonferroni correction using RStudio (PBC, Boston, MA). Principal component 

analysis (PCA) was also used to reduce the dimensionality of all acoustic features to further 

visualize data variability. Movement cycles were color-labeled by disease status of the knee 

from which they were measured, and their first two principal components were plotted for 

aggregate feature comparison.

2) Model Development for Classifying Knee Health Status—We used acoustic 

features to train classification models for predicting knee health status using binomial 

and multinomial logistic regression and measured model performance with Leave-One-

Out Cross-Validation (Fig. 1E). All machine learning algorithms and visualizations were 

performed in Python (Scotts Valley, CA). Acoustic features were organized into feature 

sets by scripted maneuver movement cycle and health status label (healthy, pre-OA, 

OA). Feature sets were separated into training and testing sets, the training set being all 

knees except the “left-out” knee, which was the testing set. For participants with bilateral 

measurements, data from the participant’s contralateral knee was excluded from the training 

set when testing his or her index knee to avoid data leakage. Training and testing sets were 

then converted to a standard normal distribution of the training data with a mean of zero 

and standard deviation of one. Training set knee acoustics were used to train each model, 

which was then tested on the left-out knee. This cross-validation was repeated for all knees 
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for each scripted maneuver. Recursive feature elimination was used during each round of 

cross-validation on the training data to reduce model inputs to acoustic features which best 

optimized performance by scripted maneuver and disease state.

Two primary models were developed to compare classification of pre-OA with KAEs 

compared to that of OA: healthy vs pre-OA, and healthy vs OA. Two additional models 

were also evaluated using all three knee health status classes: healthy vs all grades of OA, 

and multi-class classification of the three groups. Each model estimated the probabilities for 

acoustic features from a given movement cycle being produced by each respective health 

status classification. For our binary models, this predicted whether KAEs were produced 

by a “healthy” knee or an “injured” knee, while our multi-class classifier estimated the 

likelihood KAEs were produced by a “healthy”, “pre-OA”, or “OA” knee. Probabilities 

for each health status class were averaged across all cycles for each scripted maneuver 

to produce a ‘Knee Score’ for each maneuver. A composite Knee Score was calculated 

by combining and weighting Knee Scores from each individual scripted maneuver. We 

used regressive sensitivity analysis to determine the optimal weighting of each scripted 

maneuver’s Knee Score with a second stage of classification using Knee Scores as input 

features for logistic regression to optimize accuracy measured with Leave-One-Out Cross-

Validation. Missing Knee scores were imputed from the average of a participant’s other 

scores for any who did not have data for all three maneuvers. By rounding each participant’s 

Knee Score to the closest number – 0 for “healthy”, 1 for “injured” – to determine disease 

status predictions, the accuracy, sensitivity, and specificity each model was calculated 

for each individual maneuver as well as the combination of maneuvers. Overall model 

performance of binary classifiers was quantified by calculating the area under a receiver 

operating characteristic curve (AUC). Because the DeLong test, a commonly reported 

methodology for comparison of AUC, is not appropriate for nested models derived from 

the same dataset, composite model performances were compared to that of a model using 

only age and BMI as features by bootstrapping Knee Score distributions to calculate the 

means, standard deviations, and 95% confidence intervals for the difference in each model’s 

mean AUC [34], [35]. Mean and standard deviation of Knee Scores aggregated for all three 

scripted maneuvers were compared between “healthy” and “injured” labeled knees with the 

healthy vs pre-OA and healthy vs OA models using Mann-Whitney U tests.

3) Evaluation of KAE Test-Retest Reliability—The reliability of KAE was evaluated 

for 10 knees of varying disease severity from five participants. Participants’ KAE were 

measured four times across two measurement days. The first measurement was captured 

from both knees across all three maneuvers. The wearable system was then completely 

removed, the electronics swapped between knees, and all maneuvers were recorded a 

second time. Participants returned one week later to repeat this process for the third and 

fourth measurements. Acoustic features were then extracted from all four measurements 

in the same manner as used in our classification analysis for each scripted maneuver. 

Intra-class correlation analysis as used to compare intrasession and intersession reliability 

of features recorded from each respective microphone measurement location. Features with 

an intraclass correlation coefficient (ICC) value below 0.75 were deemed to have poor 

repeatability and were therefore excluded from model feature selection [36].
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III. Results

A. Participants

KAE were measured from 43 knees (20 control, 12 OA, 11 pre-OA) from 32 participants. 

Mean age of participants was 52.2 years (SD 18.5 years) and mean BMI was 31.6 (SD 

7.9). 71% of participants were male. Five pre-OA knees had KL 0 with tibiofemoral 

articular cartilage damage on MRI and the other six had KL 1. Of the 5 KL0 knees, 

4 had degenerative medial meniscus tears; none had lateral meniscus tears; 4 of 5 had 

patellofemoral cartilage damage; 4 had medial tibiofemoral cartilage damage, and the other 

had lateral tibiofemoral cartilage damage. Five radiographic OA knees were KL2, 5 were 

KL3, and 2 were KL4. Demographics and per group measurements by scripted maneuver 

are included in Supplementary Table 1 - 2, respectively. KOOS subscales and frequency 

of crepitus for the pre-OA and OA participants who completed a KOOS questionnaire are 

included in Supplementary Table 3.

B. Comparison of Acoustic Features

Groupwise distributions of acoustic features, selected for model performance optimization 

during cross-validation, demonstrated changes in feature densities from healthy, to pre-OA, 

and to OA (Fig. 3). Some mean feature values were significantly different between groups, 

particularly for flexion-extension and sit-to-stand feature sets (Fig. 3, Supplementary Table 

4). PCA of aggregate acoustic features generally showed a separation between healthy knees 

and knees with OA, with pre-OA knees clustered between (Supplementary Fig. 1). Cluster 

separation of groups was most evident during flexion extension and sit-to-stand and from the 

inferomedial and inferolateral microphones.

C. Acoustic Feature Selection

Acoustic features selected for model performance optimization were different between 

scripted maneuvers and, to a lesser extent, model (Fig. 4). Flexion-extension features chosen 

for classification of pre-OA, such as spectral centroid and the first Mel-frequency Cepstral 

Coefficient (MFCC 1), evaluated the shape of the acoustic spectrum and emphasized the 

larger concentration of signal power at lower frequencies in arthritic knees, while OA 

classification favored power-based and cepstral features for optimal performance [26]. Both 

sit-to-stand models emphasized cepstral features and zero-crossing rate, which is often 

used for identifying high-pitched sounds from percussive noise [37]. Features selected for 

walking more broadly represented the acoustic energy spectrum and included many spectral 

features.

D. Classification Performance of Pre-Radiographic Knee OA

Mean composite Knee Scores, the models’ probability estimate of a knee being “arthritic”, 

for healthy knees were lower than for pre-OA (0.30 +/− 0.20 vs 0.81 +/− 0.15, p < 0.001, 

95% confidence interval for between-group difference (CI) : 0.37 – 0.65) and for OA (0.24 

+/− 0.22 vs 0.82 +/− 0.13, p < 0.001, CI: 0.45 – 0.71) (Fig. 5A and 5B, Table 1 and 

Supplementary Table 5, respectively). Accuracy of our acoustic classifier trained with the 

combined dataset from all three scripted maneuvers was higher than classifiers trained with 
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any individual maneuver’s dataset (Fig. 6). As such, we chose the combined maneuver 

acoustic classifiers as our model of choice and compared its performance to a classifier 

using age and BMI alone (Table 1).

Both the healthy vs pre-OA model and the healthy vs OA model were 94% accurate 

with an AUC of 0.96 and 0.99, respectively. Sensitivity and specificity were 1.0 and 0.90, 

respectively, for both the healthy vs pre-OA and healthy vs OA models. Classification 

of pre-OA using age and BMI alone was 83% accurate with an AUC of 0.78 and a 

sensitivity and specificity of 82% and 85%, respectively. Classification of OA using age 

and BMI alone was 59% accurate with sensitivity, specificity, and AUC of 67%, 55%, and 

0.72, respectively. The AUC for both our pre-OA and OA models were higher than their 

corresponding classification models using age and BMI alone (pre-OA: p-value = 0.0476, CI 

= [0.004–0.402], OA: p-value = 0.004, CI = [0.097–0.476]) (Fig. 6D, Table 1).

The optimal weighting of scripted maneuvers for model performance was different between 

healthy vs pre-OA and healthy vs OA models. Healthy vs pre-OA was optimized with 40%, 

35%, and 25% respective weights for flexion-extension, sit-to-stand, and walking. Healthy 

vs OA, however, was optimized predominantly with flexion-extension (70%) and, to a lesser 

extent, sit-to-stand (30%), with negligible contribution from walking measurements.

The models combining knee health status classes were also moderately successful 

(Supplementary Table 6 and 7). Our model classifying healthy knees from all grades of 

OA was 84% accurate with an AUC of 0.89. While the sensitivity of this model was high 

(96%), this configuration resulted in lower specificity (70%) due to struggling to classify 

healthy knees from older participants (of the 7 knees misclassified, 6 were healthy and 

classified as OA, average age of these participants was 66; the other was pre-OA, age 39, 

and classified as healthy). Our multi-class classification model for healthy, pre-OA, and OA 

knees was also less accurate than individual binary models (71% multi-class accuracy), with 

the model struggling most at classifying pre-OA (individual class accuracies of 75%, 55% 

and 83% for healthy, pre-OA, and OA respectively). Inclusion of available patient-reported 

outcomes, KOOS subscales as well as the presence or absence of crepitus, as features in 

our multiclass model was also investigated but did not improve classification accuracy (70% 

overall; 75%, 55% and 75% for healthy, pre-OA, and OA respectively).

E. Test-Retest Reliability of Knee Acoustics

Acoustic features were highly repeatable for all maneuvers and all 4 microphone locations. 

Intrasession and intersession intraclass correlation coefficients (ICC) for each feature and 

averaged between microphones were nearly all greater than 0.75 (Supplementary Table 8). 

ICC values were greater than 0.95 for all features selected for model optimization with 

recursive feature elimination. Arithmetic and geometric means were the only features with 

ICCs below our 0.75 repeatability threshold.

IV. Discussion

Our pilot study demonstrates the potential to use knee acoustics for identification and 

characterization of pre-OA in standard clinical settings. We measured KAE in acoustically 
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uncontrolled real-world settings using a portable device and used them to train and optimize 

a classification model which accurately classified knees with early OA as “injured” relative 

to “healthy” knees in our small cohort. This innovates on prior studies investigating KAE 

in osteoarthritis of the knee by demonstrating that KAEs can successfully differentiate 

osteoarthritic knees from healthy knees at an earlier stage of disease than has yet been 

reported and using a portable device at the point of care rather than in a controlled research 

setting.

It has been established that radiographic knee OA can be clearly differentiated from a 

healthy knee based on KAE [21], [22]. Our study replicated these observations. Other 

groups have had mixed success identifying radiographic knee OA in a study population of 

individuals with knee pain compatible with knee OA [20], [38]. Like these observations, 

which even with a larger sample size than ours had difficulty using acoustics to differentiate 

pre-radiographic from radiographic knee OA, our multi-class classification models for 

healthy vs all OA and healthy vs pre-OA vs OA generally produced poorer results than 

those of individual binary models. Clinically, however, the capacity to differentiate between 

stages of knee OA is not meaningful. Identification of individuals with early knee OA 

before it has progressed to the point that it is apparent on x-rays and without an expensive, 

time-consuming MRI is practical and an unmet clinical need. Thus, this was the primary 

strength and goal of our study. Identification of knee OA at an earlier stage of disease is a 

priority for OA research and clinical care because it may be more reversible or amenable to 

disease-modification with early and effective interventions.

Another strength of our study was inclusion of acoustics data from multiple different types 

of movement. The differential contribution of scripted maneuvers to and features selected 

for our optimized models suggest that the discriminatory information contained in KAE 

changes with the type and severity of underlying knee pathology in the context of knee 

biomechanics. Indeed, comparison of the performance of our classification models trained 

with the combined dataset vs those trained with individual maneuvers suggest that the 

combination of acoustic information from both non-weight-bearing and weight-bearing 

activities enhances model predictions. However, recording clean KAEs during dynamic, 

vigorous movements is non-trivial. The biomechanical complexity of weight-bearing 

movements like sit-to-stand and walking introduces the potential for noise. Variability 

between participant biomechanics due to physical fitness, kinematic adaptation to disease, 

or natural musculoskeletal variation could significantly alter acoustic features. Some of 

this variability can be accommodated for by selection or exclusion of movement cycles 

meeting certain criteria (i.e., pace or frequency) during signal processing or by utilizing 

measurements from specific anatomically placed microphones during model training. Future 

studies of KAE should include quantitative gait and movement measurements tightly 

coupled to KAE.

Additionally, the advantages of our design cannot be overstated. The portable nature of 

our device enables KAE measurements during multiple functionally relevant movements 

and at the point of care, which in the future would offer time savings for patients and 

immediate information for clinicians. Current modalities for evaluation of knee pain require 

a separate trip to a radiology suite, and in the case of MRI, a second thirty-to-sixty-minute 
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appointment typically on a different day and possibly at another location. The success of 

our classification algorithm in noisy environments also emphasizes the viability of KAE 

measurement in standard clinical environments. Further, the affordable nature of the design 

– approximately $725 – grants far more accessibility to joint health evaluation compared 

to traditional imaging methods which require large up front capital expenditure as well as 

significant operating costs.

Future work will improve upon wearable device limitations such as system size and form 

factor. The piezoelectric contact microphones we used were effective at isolating KAEs 

in our noisy clinical environment and have been validated for joint health monitoring in 

previous studies [15], [27]. However, recent advancements in microphone technology and 

form factor could potentially improve microphone robustness during complex movements 

and improve KAE signal-to-noise ratio [39]. additionally, the inclusion of IMUs in future 

designs would also eliminate the need for an external goniometer to estimate joint angle, 

improving system donning time and allowing for analysis in even more challenging 

environments [40]. Device form factor was not altered throughout the study for consistency, 

but our group also explored incorporating device hardware into an orthotic sleeve for 

intuitive donning of the system and improvements to cable management. Future work should 

investigate an orthotic design which can improve system usability without compromising 

signal quality with orthotic-derived noise artifacts.

Clinical limitations of our study include a small sample size, lack of a standardized 

definition of early knee OA, and cross-sectional design. It is highly likely that age, BMI, 

and contralateral knee OA, which are knee OA risk factors and uncontrolled for in our small 

cohort, influenced knee acoustics. Schluter et al. described both BMI and contralateral knee 

pain as influencing knee acoustics, albeit by different metrics than those we used [41]. While 

both our binary pre-OA and OA models using acoustic features significantly outperformed 

their counterpart models using age and BMI alone, age and BMI classification performance 

was still high for pre-OA relative to OA. Our pilot study size limited our ability to control 

for these covariates and thus we cannot rule out the possibility that our classification 

algorithm is implicitly capturing these variables to optimize performance. Further, we only 

collected KOOS on a subset of participants with pathologic knees. In a small pilot study, 

it would not be possible to robustly integrate patient-reported outcomes, such as KOOS, 

into our models because there is considerable heterogeneity in symptoms of knee OA 

cross-sectionally by radiographic stage as well as longitudinally in early knee OA [42], [43]. 

Future studies should be sufficiently powered to adjust for age, BMI, contralateral knee 

health status, and symptoms of knee OA, as well as to enable more data-intensive learning 

approaches. Next, there is currently not a universally accepted definition of early knee OA. 

Our pre-OA participants all had symptoms of knee OA (clinical classification criteria) and 

it is likely that these individuals, who did not have advanced enough radiographic changes 

to meet classification criteria for radiographic knee OA, are on the progressive spectrum 

of the natural history of knee OA and may not represent the earliest stages of disease 

or that is more reversible than established radiographic OA. Finally, while we feel our 

study is provocative in its identification of early disease, its cross-sectional nature precludes 

generation of any novel prognostic information. Identification of patients with pre-OA and 

a high likelihood of symptomatic or radiographic progression or transition to total knee 
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replacement is an unmet need in OA research. Further study of baseline or dynamic changes 

in acoustics on prediction of knee OA progression are warranted.

V. Conclusion

In summary, the results of our pilot study suggest that knee acoustic emissions measured 

with a wearable device at the point of care can accurately classify knees with pre-

radiographic knee OA from healthy knees. Development of this technology could lead to 

improved access to tools for evaluation of knee health, lower costs, and potentially to better 

outcomes via earlier interventions for early disease.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Illustration of hardware and acoustic data processing pipeline used in this study. (A) A 

custom printed circuit board designed by our group was integrated into a wearable form 

factor to record knee acoustic emissions. (B) The device was secured to the shin and 

microphones were attached to the knee with double sided adhesive and cables were secured 

with kinesiology tape. (C) Acoustic emissions were recorded from participants’ knees while 

they performed three scripted maneuvers. (D) Example acoustic emissions data during 

flexion extension from healthy, pre-OA, and OA knees with similar demographics (Male, 

age 37, BMI 24.0 – 25.0). (E) Acoustic data were filtered and segmented into cycles either 

using a dual-axis goniometer or locating peaks in the acoustic signal envelope. Cycles 

were further subdivided into 30 millisecond windows with 20 millisecond overlap. Spectral, 

temporal, Mel-cepstral and band power features were then extracted from each window 

and averaged across each cycle to be used in evaluating classification models (E). Logistic 

regression with leave-one-out cross-validation was used to derive a ‘Knee Score’ denoting 

the likelihood a participant’s knee was arthritic. Knee Scores were calculated for each 

scripted maneuver, and a composite Knee Score was calculated both by averaging scores 

across maneuvers as well as regressively weighting each

Nichols et al. Page 17

IEEE Sens J. Author manuscript; available in PMC 2024 November 06.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Fig. 2: 
Groupwise density plots (distribution curves) and mean +/− standard deviation (circle and 

bars, respectively) for individual acoustic features selected for optimization of classification 

models and as measured during flexion-extension. Y axis denotes the probability density 

estimate using a gaussian kernel displaying the probability of feature distribution for each 

group. Acoustic features (x-axis) selected for classification model optimization during 

recursive feature elimination. Colored circles are the mean feature value, and the adjacent 

bars are the standard deviation. Feature-level visualization demonstrates how acoustic 

features change with increasing arthritic severity. [−]: unitless; [Hz]: hertz; *: p-value less 

than 0.025 with Dunn’s post-hoc analyses; pre-OA: early pre-radiographic osteoarthritis; 

OA: radiographic osteoarthritis.
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Fig. 3: 
Feature selection prevalence from recursive feature selection during leave-one-out cross-

validation of classification models. The number of features selected for each maneuver was 

optimized by increasing the number of included features until model accuracy improvement 

was saturated to avoid overfitting. Similar numbers of features were selected as optimal 

from each maneuver for healthy vs pre-OA and healthy vs OA models: 4 features each for 

flexion-extension, 4 features each for sit-to-stand, and 10 and 11 features each for walking. 

Features which were selected most frequently during cross-validation are highlighted. 

Feature selection across both models broadly emphasized consistent, low-frequency crepitus 

which was present in arthritic but not healthy knees. MFCC: Mel-Frequency Cepstrum 

Coefficient; RMS: root-mean-square value.
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Fig. 4: 
Model performance characteristics. Box-and-whisker plots of Knee Scores from our 

classifier comparing healthy and pre-OA (A) and healthy and OA (B). Knee Scores were 

lower across all maneuvers for healthy controls compared to pre-OA participants (FE: 0.38 

+/− 0.19 vs. 0.61 +/− 0.16, EF = 1.18; STS: 0.29 +/− 0.27 vs. 0.74 +/−0.17, EF = 1.73; 

walking: 0.41 +/− 0.15 vs. 0.59 +/− 0.12, EF = 1.16; composite 0.37 +/− 0.12 vs. 0.66 +/− 

0.13, EF = 2.46; p-value < 0.005 for all comparisons), and for healthy controls compared 

to OA participants (FE: 0.20 +/− 0.22 vs. 0.83 +/− 0.15, EF = 3.01; STS: 0.20 +/− 0.29 vs. 

0.78 +/− 0.22, EF = 1.98; walking: 0.38 +/− 0.20 vs. 0.60 +/− 0.18, EF = 1.07; composite: 

0.240 +/− 0.22 vs. 0.82 +/− 0.13, EF = 3.17; p-value < 0.005 for all maneuvers except 

walking, where the p-value was 0.007). *: p-value less than 0.005, **: p-value = 0.007, EF: 

effect size (Hedge’s g), diamond: outlier, pre-OA: early pre-radiographic osteoarthritis; OA: 

radiographic osteoarthritis; FE: flexion-extension, STS: sit-to-stand.
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Fig. 5: 
Receiver operating characteristic curves for flexion-extension (A), sit-to-stand (B), walking 

(C), and the composite of all three maneuvers compared to classification using age and 

BMI (D) for healthy vs pre-OA and healthy vs OA. Sit-to-stand had the highest AUC of 

the three individual scripted maneuvers for our healthy vs pre-OA model (AUC = 0.88) 

while flexion-extension elicited the best individual performance for our healthy vs. OA 

model (AUC = 0.97). Models trained with combined maneuver dataset had higher absolute 

AUC values than models trained with individual maneuvers (healthy vs. pre-OA AUC = 

0.96, healthy vs. OA AUC = 0.99). Composite models using KAEs also had higher AUC 

values than models using age and BMI for classification (healthy vs. pre-OA AUC = 0.78, 

healthy vs. OA AUC = 0.72). (E) Confusion matrix for composite healthy and pre-OA 
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classification. (F) Confusion matrix for composite healthy and OA classification. pre-OA: 

early pre-radiographic osteoarthritis; OA: radiographic osteoarthritis; AUC: area under the 

curve; FE: flexion-extension, STS: sit-to-stand; KAE: Knee acoustic emissions.

Nichols et al. Page 22

IEEE Sens J. Author manuscript; available in PMC 2024 November 06.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript

Nichols et al. Page 23

TA
B

L
E

 I

H
ea

lth
y 

vs
. P

re
-O

A
 C

la
ss

if
ic

at
io

n 
Pe

rf
or

m
an

ce

M
ov

em
en

t 
T

yp
e

H
ea

lt
hy

 M
ea

n 
± 

S.
D

.
A

rt
hr

it
ic

 M
ea

n 
± 

S.
D

.
P

 v
al

ue
E

ff
ec

t 
Si

ze
 (

H
ed

ge
’s

 g
)

C
I 

95
%

R
O

C
 A

U
C

A
cc

ur
ac

y
Se

ns
it

iv
it

y
Sp

ec
if

ic
it

y

Fl
ex

io
n-

E
xt

en
si

on
0.

38
 ±

 0
.1

9
0.

61
 ±

 0
.1

6
<

0.
00

5
1.

18
[0

.0
9 

0.
37

]
0.

82
76

%
82

%
72

%

Si
t-

to
-S

ta
nd

0.
29

 ±
 0

.2
7

0.
74

 ±
 0

.1
7

<
0.

00
5

1.
73

[0
.2

5 
0.

64
]

0.
90

88
%

10
0%

81
%

W
al

ki
ng

0.
41

 ±
 0

.1
5

0.
59

 ±
 0

.1
2

<
0.

00
5

1.
16

[0
.0

7 
0.

29
]

0.
81

80
%

80
%

80
%

C
om

po
si

te
0.

30
 ±

 0
.2

0
0.

81
 ±

 0
.1

5
<

0.
00

5
2.

46
[0

.3
7 

0.
65

]
0.

96
94

%
10

0%
90

%

A
ge

 / 
B

M
I

0.
36

 ±
 0

.2
0

0.
65

 ±
 0

.2
5

0.
00

6
1.

26
[0

.0
5 

0.
43

]
0.

78
83

%
82

%
85

%

IEEE Sens J. Author manuscript; available in PMC 2024 November 06.


	Abstract
	Graphical Abstract
	Introduction
	Methods
	Participant Recruitment Criteria
	Wearable System Design
	Measurements of Knee Acoustic Emissions
	KAE Preprocessing and Feature Extraction
	KAE Data Analysis
	Comparison of Acoustics Between Healthy, Pre-OA, and OA knees
	Model Development for Classifying Knee Health Status
	Evaluation of KAE Test-Retest Reliability


	Results
	Participants
	Comparison of Acoustic Features
	Acoustic Feature Selection
	Classification Performance of Pre-Radiographic Knee OA
	Test-Retest Reliability of Knee Acoustics

	Discussion
	Conclusion
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	TABLE I

