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Shining a light on the impact of antifungals on Aspergillus 
fumigatus subcellular dynamics through fluorescence imaging
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ABSTRACT Fluorescent proteins (FPs) are indispensable tools used for molecular 
imaging, single-cell dynamics, imaging in infection models, and more. However, 
next-generation FPs have yet to be characterized in Aspergillus. Here, we characterize 
18 FPs in the pathogenic filamentous fungus Aspergillus fumigatus spanning the visible 
light spectrum. We report on in vivo FP brightness in hyphal and spore morphotypes 
and show how a fluoropyrimidine-based selection system can be used to iteratively 
introduce four distinct FPs enabling the simultaneous visualization of the cell membrane, 
mitochondria, peroxisomes, and vacuoles. Using this strain, we describe and compare 
the dynamic responses of organelles to stresses induced by voriconazole, amphoteri
cin B, and the novel antifungal drugs olorofim and manogepix. The expansion to the 
fluorescent genetic toolbox will overcome boundaries in research applications that 
involve fluorescence imaging in filamentous fungi.

KEYWORDS Aspergillus, fluorescence, antifungal agents, fluorophores, Aspergillus 
fumigatus, fungal disease, imaging, microscopy

A spergillus fumigatus is a saprotrophic fungus found in a wide range of ecological 
niches, which can cause allergic, invasive, and chronic diseases in humans that are 

difficult to diagnose and treat (1). Recent estimates indicate that between one and two 
million people are diagnosed with life-threatening invasive aspergillosis annually, where 
mortality rates can exceed 40% (2–4). The first-line treatment for invasive infections is 
the triazoles; however, resistance to this class of compounds is increasing globally and is 
associated with poorer treatment outcomes [25% increase in mortality (2)]. Major gaps 
remain in our understanding of A. fumigatus pathobiology, virulence, treatment and 
evolution.

Molecular research on filamentous fungi such as A. fumigatus relies on the develop
ment of novel genetic tools and techniques, which have been mainly adapted from 
model organisms such as Aspergillus nidulans and Neurospora crassa (5, 6). In the past 
20 years, multiple fluorescent proteins (FPs) have been developed that can be used in 
filamentous fungi, with sGFP, a synthetic GFP variant comprising a serine to threonine 
substitution at position 65 of the protein sequence, being the first one specifically 
designed for this task (7). Since then, in addition to GFP S65T, other fluorophores have 
been used in A. fumigatus covering blue, green, yellow, orange, and red FPs (8–15). These 
have enabled investigations into the developmental biology of this pathogen as well 
as the subcellular dynamic in response to specific treatments, including antifungals (16–
18). These FPs originate from different sources; namely Aequorea victoria and Discosoma 
species and have different dimerization properties and different predicted brightness. 
This can lead to complications when visualizing proteins that are expressed at low levels, 
often leading to a need to overexpress the proteins of interest, which may not be 
physiologically relevant.
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Significant advances in FP engineering have led to increased brightness and 
photostability, together with reduced oligomerization and maturation times (19–21). 
Photostability is a major consideration in live-cell fluorescence microscopy. Photobleach
ing measurements in vivo have been found to be consistent with measurements in 
vitro, but stability can be affected by the culture medium or microscopy technique: 
laser-scanning confocal microscopy, used in this work, bleaches FPs faster than widefield 
microscopy (22, 23). However, many FPs perform differently across different organisms. 
While many FPs have been developed for and evaluated in other fungal species such 
as Candida albicans (24), Cryptococcus neoformans (25) N. crassa (26), and Saccharomyces 
cerevisiae (27, 28), no extensive direct comparisons of FPs have been carried out in A. 
fumigatus. Furthermore, characterizing a diverse set of FPs covering a wide range of 
wavelengths allows for multicolor imaging experiments and the potential to design 
Förster resonance energy transfer (FRET) systems (29, 30).

In this work, we characterize the brightness of cytoplasmic FPs that are expressed 
using a common A. nidulans promoter, PgpdA (31), from single-copy integrations at a 
defined locus within an isogenic strain of A. fumigatus. We describe a strain labelled 
with four different FPs, which was generated using four endogenous counter-selecta
ble markers, enabling the simultaneous visualization of the mitochondria, peroxisomes, 
vacuoles, and the cell membrane. We use this strain to monitor the effects of voricona
zole, amphotericin B, olorofim, and manogepix on these subcellular compartments at the 
population level. Finally, we examine the temporal response to manogepix, a first-in-class 
glycosylphosphatidylinositol biosynthesis inhibitor (32) at the individual level.

MATERIALS AND METHODS

Oligonucleotides, strains, and growth conditions

Oligonucleotides and plasmids used in this study are listed in Table S1. To generate 
conidia for experiments, strains were grown on solid Aspergillus minimal medium (AMM) 
(33) at 37°C for 5 days in vented tissue culture flask (Corning) and harvested through 
Miracloth (Millipore) in PBS + 0.01% Tween-20. Phenotyping on solid medium was 
carried out by point inoculation of 1 × 104 of each strain in a total volume of 5 µL 
PBS + 0.01% Tween-20 on solid AMM, pH 5. Plates were incubated for 48 h at 37°C. 
Liquid growth curves were carried out by inoculating 5 µL of a 1 × 105 spores/mL solution 
of each strain in 200 µL liquid AMM, pH 7. Microdilution plates were incubated for 
48 h at 37°C, and optical density at 600nm (OD600) was measured every 10 min on a 
BioTek Synergy2 plate reader. Growth rates were calculated as the slope of the linear 
part of the growth curve (12–18 h). These were compared by a one-way ANOVA (n = 
3) with Šidák multiple comparisons. PgpdA-FP-expressing strains were imaged in liquid 
AMM, pH 7. Germlings were grown by inoculating 1 × 104 spores in 200 µL in a µ-Slide 
8-well high glass bottom chamber (Ibidi) or a microfluidic chamber made in-house 
(described in section 2.3) at 30°C for 16 h. PxylP-FP-expressing strains were imaged in 
liquid RPMI-1640 supplemented with 1 mg/L amphotericin B (Sigma-Aldrich), 0.5 mg/L 
voriconazole (Sigma-Aldrich), 0.016 mg/L olorofim (Concept Life Sciences) or 0.6 mg/L 
manogepix (Selleck Chemicals), with 1% xylose to induce gene expression.

Transformation and CRISPR-Cas9-mediated strain generation

FP knock-in cassettes were generated using fusion PCR (34) (Fig. S1a), or by linearization 
of plasmids where the PxylP promoter and FP were already sequential on a vector (see 
Table S1 and supplemental methods). The construction of plasmids and the tetrachrome 
strain is described in detail in the supplemental methods. Transformations were either 
performed by homologous recombination following Zhao et al. (35) or by CRISPR-Cas9-
mediated transformation based upon (33). The method used to generate each strain 
is found in Table S2. In summary, A. fumigatus A1160P+ (36) was grown overnight 
at 37°C in a shake flask culture (130 rpm, 37°C). A protoplasting solution was made 
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by dissolving 1 g/10 mL Vinotaste Pro (Novozymes) in 0.6 M KCl + 100 mM citric 
acid and added to the shake flask culture for 3 h at 130 rpm 37°C. Protoplasts were 
filtered through Miracloth to remove hyphae and debris, followed by three washes 
in 0.6 M KCl. Protoplasts were resuspended in 0.6 M KCl + 50 mM CaCl2. 25 µL of 
PEG6000 solution, and ~500 ng knock-in cassette was added to the protoplast suspen
sion. If CRISPR-Cas9-mediated transformation was used, ribonucleoproteins (RNPs) were 
assembled by incubating crRNA with tracrRNA (Integrated DNA Technologies, Inc.) in 
duplex buffer and further incubated with purified SpCas9 (Integrated DNA Technologies, 
Inc.). RNPs were added at this stage. Protoplast suspensions were incubated for 50 min 
on ice. 600 µL of PEG6000 solution was added followed by incubation for 20 min at room 
temperature. Suspensions were plated onto AMM + 1 M sucrose-containing 100 mM 
citrate buffer (pH 5). Selection procedures using counter-selectable markers fcyB, fcyA, 
and uprt were conducted as described previously for A. fumigatus (14, 37, 38). In the 
case of cntA-based counter-selection, plates containing 50 µg/mL 5-fluorouridine (5FUR) 
were supplemented with 50 µg/mL of clorgyline (CLG). Strain descriptions and sources 
for each FP used in each cassette are found in Tables S2 and S3, respectively.

Fluorescence microscopy image acquisition

The microfluidic device utilized in this study is fabricated through a process involving 
photolithography and dry etching to create a negative template. Polydimethylsiloxane 
(PDMS) is then cast using a 1:5 ratio based on the layout defined by the negative. Inlets 
and outlets are created by punching holes into the PDMS. Following this, the PDMS and 
KOH-cleaned glass substrate are subjected to plasma treatment to enhance bonding. The 
glass substrate and the channel side of the PDMS are then brought together, forming a 
chemically bonded structure. To reinforce the bonding, the assembled device is placed 
glass side down on a hotplate at 90°C for 10 min. After cooling, the channels are 
cleared by injecting a 1:1,000 Tween-20 dilution for 30 min, followed by inoculation 
with cell suspensions. The spores are allowed to incubate for an hour before applying 
a flow rate of 0.8 mL/h through the channels. Germlings were grown as in section 2.1. 
To confirm the predicted vacuolar localization of Vam3 along the hyphae, ΔfcyA::GFP 
S65T-Vam3PxylP cultures were stained with 2 µM of CellTracker Blue CMAC dye and 
further incubated for about 45–60 min as previously described for A. fumigatus (17). 
Fluorescence microscopy images were captured with a fully motorized Leica SP8x laser 
scanning confocal microscope equipped with a 40×/0.85NA HCX PL APO dry objective 
or a 63×/1.4NA HC PL APO CS2 oil objective. Imaging was performed at 37°C. All images 
were captured in 8-bit at 1,040 × 1,040 pixels. Blue FPs were excited using the 405 nm 
diode laser at 10%. All other FPs were excited using a white light laser at 20%. Excita
tion wavelengths were chosen to match the excitation maxima of the FPs, apart from 
mTagBFP2 and mTurquoise2 where the 405 nm diode laser was used. The fluorescence 
signal was captured in a 20 nm bandwidth spanning the maximum emission. For relative 
brightness measurements (Fig. 1a), the 40× objective with a pinhole of 1 AIRY unit, a scan 
speed of 400 Hz, and a line average of 4 was used. The gain was set to 300%. For the 
representative image (Fig. 1b), the 63× objective with 3× zoom, a pinhole of 1 AIRY unit, 
a scan speed of 400 Hz, and a line average of 8 was used. The gain was set to 150%. FPs 
were captured using HyD detectors. For the tetrachrome strain, mTagBFP2per was excited 
at 405 nm with a diode laser. The remaining FPs were excited with at white light laser at 
the following wavelengths GFP S65Tvac at 490 nm captured, Katushka2Smit at 670 nm, and 
mKO2mem at 588 nm.

Quantitative measurement of relative fluorescent signal

Thirty individual germlings from each strain were assessed for FP relative fluorescent 
signal. The mean grey value of 30 2 × 2 µm sections deemed in focus by viewing the 
brightfield image was quantified. Fluorescence intensities are displayed in arbitrary units. 
For each strain, the same settings (magnification, scan speed, laser power, emission 
range, gain) were used on the background strain, A1160P+, to capture autofluorescence 
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FIG 1 Brightness of 18 FPs in A. fumigatus hyphae using confocal microscopy. (a) Strains expressing each FP were imaged via confocal microscopy. Fluorophores 

were excited at the peak excitation derived from FPbase and captured at the peak emission ±10 nm bandwidth. mTagBFP2 and mTurquoise2 were excited at 

405 nm due to white light laser constraints. Thirty germlings were assessed via ImageJ for each strain. Lines are at mean ± SD. (b) Cytosolic expression of FPs 

(Continued on next page)
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at each excitation/emission. This value was subtracted to give the practical brightness 
value. Relative fluorescent intensity plots were processed using GraphPad Prism 9.3.1. 
The brightness of mTagBFP2 and mTurquoise2 were compared using an unpaired t-test. 
The brightness of all other FPs were compared using a Kruskal–Wallis test with Dunn’s 
multiple comparisons.

Imaging flow cytometry

Fluorescent strains were individually cultured on Sabouraud dextrose (SAB) agar for 72 h 
at 37°C. Spores were harvested with spore buffer for imaging flow cytometry processing. 
For each strain, 5,000 events were recorded with two technical replicates. All images and 
data were collected using an ImageStreamX Mark II Imaging Flow Cytometer (Merck). 
Total events were filtered to exclude speed beads, clumps of spores and out-of-focus 
spores. Fluorescence data were collected using IDEAS software. Excess speed bead 
images acquired were further excluded through gating. Gating to distinguish between 
spores and beads in scatter channel was determined by locating the area of spores 
using previously used fluorophore tdTomato in channel 3 (560–595) and applying the 
region containing all spores onto the brightfield channel. Median relative fluorescence 
intensity values were collected for each fluorophore across six channels: (Channel 1 – 
excitation 488 nm (emission 480−560 nm), Channel 2 – excitation 488/561 nm (emission 
560−595 nm), Channel 3 – excitation 488/561 nm (emission 595−640 nm), Channel 4 – 
excitation 488/561 nm (emission 640−745 nm), Channel 5 – excitation 405 nm (emission 
430−505 nm), Channel 6 – excitation 642 nm (emission 640−745 nm) . All fluorescence 
values were compared relatively to the non-fluorescent strain A1160P+. Fluorescence 
density plots were created in R using the ggplot2 package. The interacting effects 
of practical brightness and theoretical brightness were calculated using simple linear 
regression.

Quantitative measurement of drug effects on the tetrachrome strain

Data were acquired using ImageJ. Distance between neighboring peroxisomes was 
measured by auto-thresholding the image and using the nearest neighbor plugin 
(author Yuxiong Mao). Vacuole area was measured using the “analyze particles” function 
with a minimum size of five pixel units and a circularity of 0.20–1.00. Mitochondrial 
fragmentation was measured using the “analyze particles” function with a minimum size 
of 10 pixel units. Plots and statistical analyses were processed using GraphPad Prism 
9.3.1. Significance was determined using a Kruskal–Wallis test with Dunn’s corrects for 
vacuole area, peroxisome internal, and mitochondrial fragmentation. To model the effect 
of exposure time of DSMO on mitochondria and vacuole area a mixed effects linear 
model was fitted to the data using the lmer package in R. The model fit the mitochon
dria area or vacuole area to the interacting effects of time and DSMO treatment, with 
replication modelled as a random effect. The model allowed the intercept and the 
slope to differ between treatments and replicates which resulted in a lower Akaike’s 
Information Criterion. Normality and linearity of the residuals satisfied the assumptions 
of the model.

FIG 1 (Continued)

within A. fumigatus germlings. Representative images were captured via confocal laser scanning microscopy using a 63× objective. Germlings were grown in 

AMM for 18 h at 30°C and 1 h at 37°C. Scale bar, 5 µm. (c) Practical vs. theoretical brightness of FPs in A. fumigatus germlings. Theoretical brightness values 

were extracted from FPbase (molecular brightness), relative to the molecular brightness of GFP S65T. Practical brightness values were extracted from mean 

values from the brightness in A. fumigatus germlings. Theoretical and practical brightness values were moderately positively correlated [Pearson’s correlation 

Theoretical: Practical T17 = 2.7877, P = 0.01263, r (17) = 0.314]. Shaded areas show a 95% confidence interval. (d) Plate growth assays of FP-expression strains. 

Strains were point inoculated on solid AMM pH 5, and images were acquired after 48 h of incubation at 37°C. Scale bar, 1 cm.
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RESULTS

Generation of a brighter FP palette in A. fumigatus

Fluorescence imaging in A. fumigatus has relied mostly on a limited number of flu-
orophores, with the avGFP derivatives; even though GFP, eGFP, and GFP S65T are 
most commonly used (39), however, the relatively low brightness of these FPs makes 
visualizing proteins that are expressed at low levels difficult. Paired with stability and 
oligomerization issues (40, 41), this makes the current FP palette sub-optimal in A. 
fumigatus. However, some next-generation FPs are documented to be brighter, have 
more compatible spectra for multicolor imaging, and tend to be monomeric, overcoming 
many of the previous caveats for using FPs in A. fumigatus. The use of such FPs opens 
up novel applications such as single-cell experimentation. To assess next-generation FPs 
in A. fumigatus, we gathered a collection of fluorophores that have been used in C. 
neoformans, N. crassa and several fluorophores that have shown excellent performance 
in mammalian cells: mTagBFP2 and mTurquoise2 (blue); GFP S65T, mGreenLantern, the 
photoswitchable mEOS3.1, and mNeonGreen (green); EYFP and Citrine (yellow); mKO2, 
tdTomato, and TagRFP-T, and mRuby3 (orange); mApple, mScarlet-I3, mScarlet-3, and 
mRFP1 (red); and Katushka2S and mMaroon1 (far-red). These fluorophores span the 
visible spectrum, have different excitation optima, and have different oligomerization 
states (Table S3).

To enable systematic testing of the relative brightness of each FP, we generated 
strains expressing each FP driven by the A. nidulans gpdA promoter from the fcyB locus 
(Fig. S1a) (14, 42) as a single-copy integration (Fig. S1b). To assess the practical brightness 
of this set of FPs in A. fumigatus germlings, we imaged each strain and measured the 
relative fluorescence intensity using confocal microscopy (n = 30) (Fig. 1a). To compare 
FPs, the peak excitation wavelength was used and a 20 nm bandwidth spanning the 
maximum theoretical emission wavelength. However, it should be noted that excitation 
at 405 nm was used for mTurquoise2 and mTagBFP2 due to laser constraints and were 
therefore analyzed separately. The mean practical brightness ± SD for each FP is shown 
in Table 1. In the blue channel, the brightest blue protein was mTagBFP2, which was 22% 
brighter than mTurquoise2 (t = 4.999, df = 58, P < 0.0001). The brightest green protein 
was mNeonGreen, which was 146% brighter than GFP S65T (P < 0.0001). The yellow 
fluorescing protein Citrine was 159%, which was brighter than GFP S65T (P < 0.0001) and 
70% brighter than EYFP (P < 0.0001). The brightest orange FP, mKO2, was 117% brighter 
than GFP S65T (P < 0.0001) and 283% brighter than the least bright orange FP, TagRFP-T 
(P < 0.0001). Aggregates could be observed in mKO2-expressing hyphae, apparent as 
bright areas ~0.5 µm in diameter (Fig. 1b), suggesting that this protein is poorly tolerated 
when overexpressed in the cytoplasm under constitutive expression in A. fumigatus, 
similar to previously reported results in S. cerevisiae (28). mApple was the brightest red 
FP, which was 108% brighter than GFP S65T (P < 0.0001) and 2,638% brighter than the 
least bright red FP, mRFP1 (P < 0.0001). While mRFP1 was considered the least bright 
fluorophore in all tested strains, we could still observe fluorophore under the microscope 
upon increasing the exposure time and gain. Katushka2S was the brightest overall FP in 
hyphae. It was 203% brighter than GFP S65T (P < 0.0001) and 705% brighter than the 
other far-red FP tested here, mMaroon1 (P < 0.0001).

A moderate but significant positive correlation was found between the mean 
practical brightness of each FP compared to the theoretical brightness from FPbase 
[Pearson’s correlation Theoretical: Practical T17 = 2.7877, P = 0.01263, r (17) = 0.314] (Fig. 
1c). FPs such as mRuby3 or mEOS3.1 (in the un-photoconverted, green state) are brighter 
in theory—when calculated as the product of extinction coefficient and quantum yield 
(43)— compared to how they perform in A. fumigatus, whereas Citrine and KatushkaS2 
appear brighter in vivo. As PgpdA is reported to induce high expression (44, 45), we 
assessed the potential growth defects of strains expressing FPs. PgpdA-driven overexpres
sion caused no growth defects in solid media (Fig. 1d) or had a significant effect on the 
growth rate in liquid media (Fig. S1c).
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As many experimental setups in A. fumigatus rely on the infectious propagules, 
conidia, we assessed fluorescent signals of all the proteins when expressed in conidia. 
Conidia produced by all fluorescent constructs were distinguishable from non-fluores-
cent wild-type spores in at least one channel (Fig. S2). The brightest FP in the 430–505 
nm channel was mTurquoise2. The brightest in the 480–560 nm channel was mEOS3.1. 
In the 560–595 nm channel, mKO2 was the brightest FP. Only a single FP showed peak 
emission within the 595–640 nm channel (mScarlet-3) and in the 640–745 nm channel 
(Katushka2S).

Multi-organelle imaging using the tetrachrome A. fumigatus allows tracking 
of the response to antifungals

We have previously described a strategy to integrate three DNA sequences of inter
est into the A. fumigatus genome by exploiting the pyrimidine salvage pathway (14). 
In A. nidulans, CntA (NCBI accession number: XP_663097, A. fumigatus homologue 
AFUB_001570) has been described as the main importer of 5FUR (46). As the activity 
of 5FUR can be enhanced by the addition of the broad-spectrum inhibitor of fungal 
efflux pumps CLG (47, 48), we used a combination of 50 µg/mL of 5FUR with 50 µg/mL 
CLG to improve selection for cntA-disrupted colonies (Fig. S3a). This way, we were able 
to use cntA together with the endogenous counter-selectable markers fcyB, fcyA and 
uprt in a sequential manner (Fig. S3b and c). Replacement of all four loci did not 
affect A. fumigatus growth morphology on a plate assay (Fig. S3d). In addition, the 
replacement of all four loci did not change the MIC/MEC to voriconazole, amphoteri
cin B, olorofim, and manogepix compared to the wild-type strain. Also, addition of 
xylose to the culture medium did not change the MIC/MEC to these antifungals (Fig. 
S4f ). Constructs that were integrated at these genomic loci were used to visualize 
the mitochondria using the CitA40 sequence (49), vacuoles by tagging the Aspergillus 
oryzae Vam3 homologue (50), the peroxisomes using PTS1-consensus tripeptide SKL 
(51), and the cell membrane tagging the A. nidulans homologue UapC (52). This single 
strain, referred to as the tetrachrome strain, allows the visualization of mitochondria 
(CitA40-Katushka2S), vacuoles (GFP S65T-Vam3), peroxisomes (mTagBFP2-SKL) and cell 
membrane (UapC-mKO2) simultaneously. We further assessed the potential effect of 

TABLE 1 Relative brightness of FPs used in this worka,b

FP TB TB relative to GFP S65T (%) Relative brightness in hyphae Relative brightness in spores
Mean PB ± SD Median PB ± SD

mTagBFP2 32.38 91.99 105.25 ± 18.05 12,755.9 ± 18,065.9
mTurquoise2 27.90 79.26 86.04 ± 10.81 4,909.4 ± 2,139.7
GFP S65T 35.20 100.00 68.84 ± 11.11 27,042.8 ± 11,988.3
mGreenLantern 73.30 208.24 121.60 ± 12.53 36,189.8 ± 16,735.6
mEos3.1 (green state) 73.37 208.44 64.30 ± 10.32 48,706.6 ± 20,583.1
mNeonGreen 92.80 263.64 169.26 ± 20.90 19,247.1 ± 10,058.1
EYFP 44.89 127.53 104.83 ± 16.46 492.9 ± 8,022.2
Citrine 58.52 166.25 178.12 ± 25.45 36,709.4 ± 15,740.8
mKO2 39.56 112.39 149.27 ± 15.62 84,972.1 ± 33,642.4
tdTomato 95.22 270.51 140.85 ± 22.93 48,122.2 ± 25,771.4
TagRFP-T 33.21 94.35 38.96 ± 8.48 2,154.1 ± 1,793.5
mRuby3 57.60 163.64 43.04 ± 6.52 5,467.1 ± 2,452.0
mApple 36.75 104.40 143.45 ± 13.20 2,660.5 ± 1,601.1
mScarlet-I3 68.25 193.89 125.77 ± 14.65 7,729.53125 ± 3,345.3
mScarlet-3 78.00 221.59 128.41 ± 14.44 16,116.7 ± 6,162.5
mRFP1 12.50 35.51 5.24 ± 1.06 8,277.2 ± 3,618.6
Katushka2S 29.48 83.75 208.60 ± 16.17 15,794.9 ± 9,506.7
mMaroon1 8.80 25.00 25.92 ± 3.96 736.3 ± 488.0
aTB data are from FPbase (https://www.fpbase.org). PB is calculated in this work.
bPB, practical brightness; TB, theoretical brightness.
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ectopic expression of GFP S65T tagged Vam3 by simultaneously staining with CMAC, 
which showed colocalization to the vacuoles as normal (Fig. S3f ). Signal from FP 
expression under the control of the xylose inducible promoter was quantifiable after 1 h 
and signal increased during the observation period (Fig. S3g). Growth of the tetrachrome 
strain did not differ from the wild-type strain in different concentrations of xylose (Fig. 
S3h).

To investigate subcellular dynamics in the tetrachrome strain over a period of 2 h (Fig. 
2a), we assessed the four tagged organelles simultaneously using automated analysis 
(Fig. 2b, individual channels in Fig. S4). The distance between peroxisomes (peroxisome 
interval) was measured as a proxy for peroxisome abundance to account for growing 
hyphae. This showed that within the first hour, the peroxisome interval became smaller 
(0 h median 2.002 µm, 1 h median 1.583 µm) indicating that as hyphae age, peroxisomes 
become more abundant (P = 0.0059). Within the first 2 h, we observed that mitochondrial 
fragments became larger (0 h median 4.197 µm, 2 h median 8.622 µm, P = 0.04), which 
was likely due to cellular growth. The vacuole area remained unchanged.

Next, we investigated the effect of antifungals on the tetrachrome strain. We exposed 
hyphae grown for 18 h to 2× MIC amphotericin B and monitored the effects on organ
elles. Amphotericin B exposure significantly reduced the peroxisome interval over 1 h 
(0 h median 1.615 µm, 1 h median 1.108 µm, P < 0.0001) and 2 h (2 h median 1.276 µm, P 
< 0.0001). This indicates more peroxisomes per cellular volume. Compared to the wild-
type strain, the peroxisomes differed after 1 and 2 h (both P < 0.0001). We observed the 
mitochondrial fragment size decreased over the course of 2 h (0 h median 5.206 µm, 2 h 
median 2.473 µm, P = 0.02), but this was not statistically different to the no-drug control 
(P = 0.87). The vacuole area increased over the same period (0 h median 0.618 µm, 1 h 
median 1.479 µm, P = 0.0014), which was significantly different to the no-drug control (P 
= 0.0006). Hyphae treated with amphotericin B for 2 h were visually deflated (Fig. 2a), 
suggestive of hyphal elements dying from exposure to the drug and organelle degrada
tion.

We further investigated the effect of 2× MIC voriconazole on cellular morphology. An 
increase in vacuole area was observed (0 h median 0.72 µm, 2 h median 2.54 µm, P = 
0.0004) after 1 h, which seemed to plateau at 2 h, seemingly distinct from the vacuole 
behavior seen for amphotericin B indicating an adaptive response to voriconazole 
includes compartmentalization of the drug, a toxic by-product resulting from drug action 
or the recycling of proteins. Additionally, a statistically significant difference to the no-
drug control was observed for peroxisome interval after 1 (P < 0.0001) and 2 h (P = 
0.0019), and for mitochondrial fragmentation at both time-points (1 h P = 0.01, 2 h P < 
0.0001). Upon 2× MIC olorofim exposure, no statistical difference was observed in the 
peroxisome interval and mitochondrial fragment area. Vacuole area increased after 2 h 
upon olorofim exposure (0 h median 0.68 µm, 2 h median 2.79 µm, P = 0.0002). Increased 
vacuole size has previously been documented in response to olorofim exposure (17). Our 
data reveal a direct correlation between the increase in vacuole size and mitochondrial 
fragmentation following exposure to voriconazole and amphotericin B. It is not clear 
whether the apparent fragmentation is caused by a direct effect of the compounds on 
mitochondrial structure, or an indirect effect of the vacuoles spatially restricting 
mitochondrial structure. We also observed the colocalization of UapC-mKO2 with the 
vacuoles during voriconazole treatment. This colocalization also occurs with olorofim 
and manogepix treatment. This translocation of UapC from the plasma membrane to the 
vacuolar compartment has been observed in A. nidulans upon ammonium exposure (53). 
It is not clear what exactly is causing the translocation of UapC to the vacuoles.

Temporal changes in organelles in response to manogepix exposure

Lastly, we investigated the effect of 2× MEC manogepix exposure on subcellular 
morphology. Surprisingly, no statistical difference in peroxisome interval, mitochondrial 
fragment area, and overall vacuole area was found. However, we saw a clear change in 
the distribution of vacuolar size. In the absence of drug, vacuoles exhibited a Gaussian 
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FIG 2 Multi-organelle tracking of the effect of antifungals using four FPs. (a) A. fumigatus hyphae were grown in RPMI-1640. 

Representative images of the four-color strain imaged in RPMI-1640 with no drug, 1 mg/L amphotericin B, 0.5 mg/L 

voriconazole, 0.016 mg/L olorofim, or 0.6 mg/L manogepix. Images were acquired 5 min after the addition of the drug, and 

1 and 2 h post-addition of the drug. Scale bar, 10 µm. (b) Quantification of the distance between neighboring peroxisomes, 

mitochondria fragment area, and vacuole area for each condition. Lines are at medians with a 95% confidence interval. 

Significance was determined using a Kruskal–Wallis test with Dunn’s corrections (*<0.05, **<0.01, ***<0.001, ****<0.0001).
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distribution; however, upon the application of manogepix distribution of vacuole size 
was the binary response (large > 6 µm2 or small < 0.3 µm2, Fig. 2b). To investigate the 
response to manogepix in more detail, we looked at individual hyphae over 4.5 h at 
15 min intervals (Fig. 3). The addition of drug vehicle, in this case DMSO, did not 
significantly increase or decrease vacuole or mitochondria fragment area over time (Fig. 
S5b and c). During manogepix exposure, mitochondrial fragments within individual 
hyphae became more numerous, and the mean mitochondrial fragment size decreased. 
At 5 min post-exposure, the mitochondria appeared tubular. There were 60 mitochon
drial fragments, and the mean fragment area was 25.09 µm2 (±7.32 SEM). Fragmentation 
of the mitochondrial network was apparent by 20 min and most obvious by 35 min. At 35 
min, the mean mitochondrial fragment size was 7.686 µm2 (±1.59 SEM), and the number 
of fragments increased to 147. After 35 min, the number of mitochondrial fragments 
plateaued (Fig. 3b). Over time, vacuoles appear to fuse. At 5 min manogepix exposure, 
there were 75 vacuoles, and the average area was 14.97 µm2 (±1.56 SEM) (Fig. 3c). At 2 h, 
vacuole size increased to an average of 46.15 µm2 (±6.91 SEM) and the number of 
vacuoles decreased to 27 (Fig. 3c). After 3 h, vacuole area appears to decrease (Fig. 3a, 
lower hyphae at 3.5 h). Interestingly, loss of signal is detected in these hyphae in the 
mitochondria (Katushka2s) channel by 3.5 h. We observed disruptions in the vacuoles, in 
which they suddenly burst and condensed, potentially releasing their contents (Fig. 3d).

DISCUSSION

There are currently >1,000 entries of FPs on the open-source community database 
https://www.fpbase.org/ (27 August 2024). An ever-increasing choice of FPs with 
increased brightness, an increasing number of monomeric fluorophores, and longer 
lifetime properties are becoming more available. However, a well-performing fluoro-
phore in one organism or experimental design may not translate to a different system 
(54). Therefore, we sought to explore a palette of next-generation FPs in A. fumigatus, the 
major mould pathogen of humans, to be used for multicolor imaging, allowing for 
temporal imaging of responses to antifungals.

First, we determined the in vivo brightness of 18 FPs in both hyphae and spores. The 
majority of FPs investigated have markedly improved brightness compared to the widely 
used fluorophore, GFP S65T. The brightest blue we found was mTagBFP2. The brightest 
green was mNeongreen, derived from lanYFP of Branchiostoma lanceolatum (55). This 
fluorophore has recently been used in A. fumigatus integrated into the genome to tag a 
protein, although under high expression levels (56). The next brightest green FP was 
mGreenlantern, derived from avGFP of A. victoria. Citrine and mTurquoise2 have also 
been derived from this FP, potentially highlighting that certain fluorophore lineages or 
sources might perform better than others in A. fumigatus. Similarly, mTagBFP2, 
Katushka2S, and mMaroon1 are all derived from eqFP578 of Entacmaea quadricolor. The 
brightest orange mKO2 is the only FP derived from KO of Verrillofungia concinna. While 
we did not attempt different codon optimization algorithms, in C. albicans, there is not 
one clear strategy to improve FP characteristics by codon optimization (24). Improve
ments to codon optimization may lead to even further improvements to FP performance.

These next-generation FPs can be used in microscopy to investigate cell biological 
phenomenons in general and aid antifungal drug discovery in particular, by identifying 
protein-protein interaction inhibitors, assessing drug effects in subcellular structures, or 
studying drug targets (17, 57–59). Using brighter FPs can be used at lower expressed 
proteins broadening their range of applications to include fluorescent genetic barcoding, 
gene expression reporters, and host-pathogen interactions. Overcoming oligomerization 
issues with FPs, using monomeric FPs can allow for more robust use of a split-FP system, 
overcome protein aggregation issues, and reduce background noise. In addition, we 
have characterized far-red shifted proteins in A. fumigatus; this may allow for deeper 
tissue imaging in infection models such as zebrafish, which have been previously 
described using C. albicans (60).
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FIG 3 High-resolution organelle dynamics upon manogepix exposure. (a) A. fumigatus hyphae were grown in RPMI-1640 and imaged after the addition of 

0.6 mg/L manogepix. Images of the mitochondria and the vacuoles were acquired 5 min after the addition of the drug, and then in 15 min intervals. Scale bar, 

10 µm. Quantification of the (b) number and area of mitochondrial fragments, and (c) number and area of vacuoles, were performed using ImageJ. (d) Vacuole 

morphology during manogepix treatment. Scale bar, 5 µm.
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We used FPs with minimal spectral overlap to generate the tetrachrome strain to 
visualize the cell membrane, mitochondria, peroxisomes, and vacuoles simultaneously. 
Four-color imaging has previously been described in N. crassa (26), and S. cerevisiae (61), 
but to our knowledge, this is the first time, four FPs have been used simultaneously in a 
human pathogenic fungus. We expanded the genetic marker toolbox with the new 
endogenous counter-selectable marker cntA, to achieve in combination with the 
previously described markers fcyB, fcyA, and uprt, the insertion of four different FP-fusion 
cassettes. Importantly, the simultaneous loss of fcyB, fcyA, uprt, and cntA did not 
compromise A. fumigatus growth and development (Fig. S3d and h).

We investigated the changes in the subcellular compartments in response to two 
well-characterized antifungal drugs with different mechanisms of action: amphotericin 
B and voriconazole. Our data suggest a generalized response to both drugs, in which 
the distance between peroxisomes decreases, indicating an increase in peroxisomes. 
Peroxisomes are important in A. fumigatus to overcome oxidative stress (62), which 
has been known to be induced by the azoles and amphotericin B (63, 64). Mitochon
dria became fragmented in response to both antifungals. This switch from tubular to 
clustered and fragmented mitochondria has previously been observed in response to 
oxidative stress, cell death,and azole resistance (62). A sustained increase in vacuole size 
was only seen upon amphotericin B exposure. Vacuole disruption has been observed in 
response to amphotericin B in C. albicans (65) and S. cerevisiae (66). Our results highlight 
that the mechanism of action correlating with effects on subcellular structures could be 
elucidated via analysis of our tetrachrome strain.

We further characterized the response to the novel antifungals olorofim and 
manogepix, both of which are currently in the antifungal pipeline (67). In line with 
previous findings, we found vacuoles to become larger upon olorofim exposure (17). 
Upon manogepix exposure, we could not find any statistical differences in the morphol
ogy of peroxisomes, mitochondria, or vacuoles after 2 h of exposure. However, a clear 
biphasic response in the vacuole area was seen, which we explored in detail. We observe 
rapid mitochondrial fragmentation upon manogepix exposure, a known precursor for 
fungal cell death (62). Our data suggest that vacuoles rapidly enlarge and fuse in 
the first 2 h of exposure, and then diminish in size, possibly due to releasing their 
contents. However, the precise mechanisms driving these observations remain to be 
further investigated.

In summary, our results open new opportunities to advance fluorescence imaging 
in A. fumigatus. Our identification of successful FPs in A. fumigatus will provide valuable 
tools for not only molecular assays but also drug discovery and efficacy studies. We 
describe new approaches to evaluate and quantify the mechanisms behind antifungal 
treatments and reiterate the need for in vivo assays to validate FP usability in the species 
of choice as described in a previous work on FPs in other fungal species.
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