Table 2.
Category | Precision | Sensitivity | Specificity | f1-score | Accuracy | AP | AUC | MCC | Cohen’s kappa |
---|---|---|---|---|---|---|---|---|---|
Angiodysplasia | 0.9279 | 0.9115 | 0.9911 | 0.9196 | 0.9115 | 0.9664 | 0.9885 | 0.9097 | 0.9097 |
Bleeding | 0.9808 | 0.9027 | 0.9978 | 0.9401 | 0.9027 | 0.9851 | 0.9977 | 0.9339 | 0.9329 |
Erosion | 0.646 | 0.8902 | 0.957 | 0.7487 | 0.8902 | 0.8396 | 0.9791 | 0.7341 | 0.7227 |
Erythema | 0.8431 | 0.7679 | 0.9916 | 0.8037 | 0.7679 | 0.8676 | 0.9796 | 0.7938 | 0.7928 |
Foreign Body | 0.9717 | 1 | 0.9967 | 0.9856 | 1 | 0.9998 | 1 | 0.9841 | 0.984 |
Lymph Follicle | 0.859 | 0.8072 | 0.9882 | 0.8323 | 0.8072 | 0.9224 | 0.99 | 0.8183 | 0.8178 |
Lymphangiectasia | 0.8615 | 1 | 0.9906 | 0.9256 | 1 | 0.9977 | 0.9999 | 0.9238 | 0.9209 |
Normal mucosa | 0.7731 | 0.9293 | 0.9705 | 0.844 | 0.9293 | 0.9483 | 0.9895 | 0.8298 | 0.8254 |
Polyp | 0.8788 | 0.7436 | 0.9866 | 0.8056 | 0.7436 | 0.8584 | 0.9766 | 0.786 | 0.7825 |
SMT | 0.9667 | 0.725 | 0.999 | 0.8286 | 0.725 | 0.9511 | 0.997 | 0.8317 | 0.8226 |
Stenosis | 0.925 | 0.7115 | 0.9969 | 0.8043 | 0.7115 | 0.9202 | 0.9912 | 0.8027 | 0.7952 |
Vein | 0.9381 | 0.9192 | 0.9934 | 0.9286 | 0.9192 | 0.9566 | 0.9923 | 0.921 | 0.9209 |
macro avg | 0.881 | 0.859 | 0.9883 | 0.8639 | 0.859 | 0.9344 | 0.9901 | 0.8557 | 0.8523 |
weighted avg | 0.883 | 0.8717 | 0.9877 | 0.8724 | 0.8717 | 0.9361 | 0.9897 | 0.8631 | 0.8602 |
Note The macro average metric treats all categories equally, ensuring that even categories with smaller sample sizes contribute equally to the model’s performance evaluation. In contrast, the weighted average metric considers the sample size of each category, assigning greater weight to categories with larger sample sizes