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Abstract
Background  Limited diagnostic testing for drug-resistant TB (DR-TB) may lead to high rates of misdiagnosis and 
undertreatment. Current diagnostic tests focus only on detection of rifampicin-resistant TB (RR-TB). This study aims to 
determine the impact of improved diagnostic testing for a wider range of drug resistance on DR-TB outcomes in high-
burden TB settings, using the Philippines and Thailand as case studies.

Methods  A dynamic compartmental model was designed to simulate population level TB transmission, accounting 
for acquired drug resistance from treatment failure of drug susceptible TB. Three scenarios were analyzed: (1) Use of 
GeneXpert MTB/RIF on all presumptive TB cases (Status Quo); (2) GeneXpert MTB/RIF + GeneXpert XDR, (3) GeneXpert 
MTB/RIF + targeted Next Generation Sequencing (tNGS). Scenarios were modelled over a 10-year period, from 2025 to 
2034.

Results  Compared to the status quo, Scenario 2 results in a fourfold increase in annual DR-TB cases diagnosed in 
the Philippines and a fivefold increase in Thailand. DR-TB treatment failure decreases by 20% in the Philippines and 
23% in Thailand. Scenario 3 further increases DR-TB case detection, reducing DR-TB treatment failure by 26% in the 
Philippines and 29% in Thailand. Reductions in DR-TB incidence and mortality ranged from 3 to 6%.

Conclusion  The use of GeneXpert XDR or tNGS as an additional diagnostic test for DR-TB significantly improves 
DR-TB case detection and reduces treatment failure, supporting their consideration for use in high burden settings. 
These findings highlight the importance of detecting a wider range of TB resistance in addition to RR-TB, the potential 
impact these improved diagnostic tests can have on DR-TB outcomes, and the need for additional research on cost-
effectiveness of these interventions.

Keywords  Tuberculosis, Drug resistance, Infectious disease modelling, Diagnostic testing, Acquired drug resistance, 
High-burden settings
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Background
Tuberculosis (TB) remains a serious public health con-
cern in Southeast Asia, a region that accounts for 46% of 
incident cases worldwide and an estimated 170,000 drug-
resistant TB cases in 2022 [1]. Drug-resistant tuberculo-
sis (DR-TB) poses a major challenge to global prevention 
and elimination efforts. Early and accurate diagnosis and 
susceptibility profiling are critical for timely and optimal 
treatment. Scaling up the use of modern diagnostics is 
identified as a priority action to achieve the 2030 End TB 
Goals [2].

Current WHO guidelines recommend using Gen-
eXpert (Xpert MTB/RIF or Xpert Ultra) as the initial 
diagnostic test for adults and children with signs and 
symptoms of pulmonary TB, as it detects rifampicin-
resistant TB (RR-TB) [3]. However, isoniazid-resistant 
rifampicin-susceptible TB (Hr-TB) has a higher preva-
lence globally and is not detected by rapid molecular 
diagnostic tests currently used in most high-burden set-
tings [4]. The misdiagnosis and treatment of Hr-TB with 
first-line drugs results in increased treatment failure and 
mortality [5, 6]. Modelling studies have shown that treat-
ment failure for Hr-TB can also lead to amplification of 
drug resistance, thereby contributing to higher rates of 
multidrug-resistant TB (MDR-TB) [7, 8].

GeneXpert XDR and targeted Next-Generation 
Sequencing (tNGS) are identified as potential front-line 
diagnostic tools to detect a wider range of drug resis-
tance, including Hr-TB [9, 10]. GeneXpert XDR can 
detect resistance to isoniazid (INH), fluoroquinolones 
(FLQ), ethionamide (ETH), and second-line injectables 
(amikacin, kanamycin, capreomycin) [3]. Targeted NGS 
can detect resistance to at least 13 anti-TB drugs, includ-
ing newly introduced treatment regimens with bedaqui-
line (BDQ), with the flexibility to update tNGS assays to 
include additional targets for detecting novel resistance 
mutations as they emerge [11, 12].

This study aims to use dynamic modelling to determine 
the impact of improved diagnostic testing on DR-TB out-
comes in high-burden TB settings, using the Philippines 
and Thailand as case studies. According to 2022 WHO 
estimates, TB incidence in the Philippines is approxi-
mately 638 per 100,000 population, compared to 155 
per 100,000 population in Thailand. Drug resistance is 
reported as RR/MDR-TB incidence, at 27 per 100,000 
population in the Philippines and 3.7 per 100,000 popula-
tion in Thailand [1]. Building on previous models of TB 
transmission [7, 13–15], the proposed model will account 
for all forms of DR-TB in addition to RR/MDR-TB, as 
well as acquired drug resistance resulting from treat-
ment failure of drug-susceptible TB (DS-TB). The key 
output of the model will be to measure the impact of dif-
ferent DR-TB diagnostic tools and strategies on DR-TB 

diagnosis, treatment failure, prevalence, incidence, and 
mortality over a 10-year period.

Methods
A deterministic differential equation model was devel-
oped using Vensim DSS v10.1.4 (see Fig.  1). The model 
distinguishes fourteen subpopulations: (1) susceptible 
to TB infection (S); (2) exposed with early latent DS-TB 
(LAS); (3) exposed with DS-TB in late latency (LBS); (4) 
exposed with early latent DR-TB (LAR); (5) exposed 
with DR-TB in late latency (LBR); (6) active, undiag-
nosed DS-TB (IS); (7) active, undiagnosed DR-TB (IR); 
(8) active, correctly diagnosed DS-TB (DS); (9) active, 
correctly diagnosed DR-TB (DR); (10) DR-TB incorrectly 
diagnosed as DS-TB (DX); (11) correctly treated DS-TB 
(TS); (12) correctly treated DR-TB (TR); (13) incorrectly 
treated DR-TB (Tx); and (14) successfully completed TB 
treatment and considered recovered (R). The total pop-
ulation size N(t) is the sum of the population across all 
fourteen stocks:

	

N (t) = S (t) + LAS (t) + LBS (t) + LAR (t)

+ LBR (t) + IS (t) + IR (t) +DS (t)

+DR (t) +DX (t) + TS (t)

+ TR (t) + TX (t) + R (t)

� (1)

The Susceptible population is infected by DS-TB or 
DR-TB at a rate of βS

(
IS
N

)
 or βR

(
IR
N

)
, respectively, and 

moves into the early latency phase LA. The indicator β  
represents the transmission coefficient, which is the aver-
age number of contacts per year multiplied by the prob-
ability of contracting TB from TB-positive contact. Flow 
from the Recovered to Susceptible stock occurs at rate 
(γ), allowing for TB reinfection after recovery. The crude 
birth rate (η ) and the crude death rate (µ ) are used to 
account for overall population change over time. The 
equation for the Susceptible population (S) is defined as:

	

dS

dt
= ηN − SβS

(
IS
N

)
− SβR

(
IR
N

)
+ γR− µS � (2)

Previous studies have determined that tuberculosis 
models that employ two latent compartments, one for 
fast activation and one for slow activation, can repro-
duce TB latency dynamics more accurately, according to 
observed empirical data [16, 17]. The model presented 
herein, therefore, includes an early latency stock (LA) and 
a subsequent late latency stock (LB) to allow for both fast 
and slow activation, respectively, to the infected com-
partment (I). Due to the length of late latency, reinfec-
tion may occur in latent stock LB in the context of high 
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endemicity and repeated exposure, resulting in flow back 
to initial latency stock LA at rate φ , defined as follows:

	
φS = YLBSβS

(
IS
N

)
� (3)

	
φR = YLBRβR

(
IR
N

)
� (4)

	
φSR = YLBSβR

(
IR
N

)
� (5)

	
φRS = YLBRβS

(
IS
N

)
� (6)

TB cases either undergo fast activation (αfast ) and flow 
from early latency (LA) to Infected stocks, or else undergo 
progression to late latency at rate κ . From late latency 
(LB), TB cases undergo slow activation (αslow ) to being 
Infected. The following equations describe the subpopu-
lations in early latency (LA) and late latency (LB):

	
dLAS

dt
= SβS

(
IS
N

)
− κLAS + φLBSβS

(
IS
N

)
− αfastLAS − µLAS � (7)

	
dLBS

dt
= κLAS − αslowLBS − φLBSβS

(
IS
N

)
− µLBS � (8)

	
dLAR

dt
= SβR

(
IR
N

)
− κLAR + φLBRβR

(
IR
N

)
− αfastLAR − µLAR � (9)

	
dLBR

dt
= κLAR − αslowLBR − φLBRβR

(
IR
N

)
− µLBR

� (10)

Once infected, individuals may naturally recover or 
‘spontaneously self-cure’ at rate (ε ) and move to the 
recovered stock (R), die from untreated TB (µu) or from 
other causes of mortality (µ ), or else be diagnosed with 
TB and move to the diagnosed compartment (D). TB 
cases that have experienced treatment failure may flow 
from the Treated stock (T) back to the Infected stock (I) 
at rate (1 - ω ), where ω represents treatment success. This 
flow is also affected by the rate of acquired resistance (ρ ), 
which determines the proportion of treated DS-TB cases 
(TS) that develop active, undiagnosed DR-TB (IR).

	

dIS
dt

= αfastLAS + αslowLBS − εIS − ISδS

+ TS (1− ρ) (1− ωS)− µIS − µUIS

� (11)

Fig. 1  Dynamic compartmental model structure. S = susceptible population, LA = latent population, LB = population in late latency, I = infected popu-
lation, D = diagnosed population, T = treated population, R = recovered population, N = initial population, η  = crude birth rate, µ  = crude death rate, µ u 
= mortality rate from untreated TB, β = transmission coefficient, α fast = fast activation rate, α slow = slow activation rate, κ  = progression to late latency, 
ε  = rate of spontaneous self-cure, δ  = rate of diagnosis, τ  = time to treatment, ω  = treatment success rate, ρ  = proportion of acquired resistance, and 
γ  = loss of immunity. Subscripts S, R and X denote stocks and transitions related to DS-TB, DR-TB, and DR-TB diagnosed and treated as DS-TB, respectively
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dIR
dt

= αfastLAR + αslowLBR − εIR

− IRδR − IRδX + Tsρ (1− ωS)

+ TR(1− ωR)− µIR − µUIR

� (12)

For diagnosis of DS-TB, the annual case detection rate 
C is used, based on annual data for the Philippines and 
Thailand from the 2023 WHO Global Tuberculosis 
Report. For diagnosis of DR-TB, the case detection rate 
is modified by ν , the proportion of cases tested with a 
rapid diagnostic at time of diagnosis, the sensitivity of the 
diagnostic test used (θ), and the rate of empiric diagno-
sis (E), which is the proportion of DR-TB diagnosed in 
the absence of a rapid diagnostic test. Most importantly, 
DR-TB diagnosis is dependent on detectable resistance 
(σ ) , which is the proportion of DR-TB cases that can be 
detected by the rapid diagnostic used. The diagnosis rates 
for DS-TB (δ S), DR-TB (δ R) and DR-TB mis-diagnosed 
as DS-TB (δ X) are defined as:

	 δS = C (1− ε) � (13)

	 δR = C (1− ε) * (νσθ + C − Eν)� (14)

	 δX = C (1− ε) * (1− νσθ− E + Eν)� (15)

The following equations describe the populations diag-
nosed and treated for DS-TB, DR-TB and DR-TB mis-
diagnosed and treated as DS-TB:

	

dDS

dt
= ISδS −DS

(
1

τS

)
− µDS − µUDS � (16)

	

dDR

dt
= IRδR −DR

(
1

τR

)
− µDR − µUDR � (17)

	

dDX

dt
= IRδX −DX

(
1

τS

)
− µDX − µUDX � (18)

	

dTS

dt
= DS

(
1

τS

)
− TS (1− ρ) (1− ωS)

− Tsρ (1− ωS)− TS

(
ωS

λS

)
− µTS − µSTS

�(19)

	

dTR

dt
= DR

(
1

τR

)
− TR (1− ωR)

− TR

(
ωR

λR

)
− µTR − µRTR

� (20)

	

dTX

dt
= DX

(
1

τS

)
− TX (1− ωX)

− TX

(
ωX

λX

)
− µTX − µXTX

� (21)

The following equation describes the Recovered popu-
lation (R) that has successfully completed TB treatment 
and is considered cured:

	

dR

dt
= εIS + εIR + TS

(
ωS

λS

)

+ TR

(
ωR

λR

)
+ TX

(
ωX

λX

)
− γR − µR

� (22)

Model calibration
The model was calibrated to estimated TB incidence and 
reported diagnosis and treatment rates for the Philip-
pines and Thailand from 2010 to 2019, as published in the 
WHO Global Tuberculosis Report, 2023. Data from 2020 
to 2022 were not utilized due to the impact of COVID-19 
on TB detection and treatment during this period and is 
expected to revert to pre-COVID-19 rates. Epidemiologi-
cal parameters were used from published literature on 
tuberculosis transmission dynamics, as summarized in 
Table 1. DR-TB prevalence was calibrated to most recent 
national drug resistance survey data for TB (see Supple-
mental Material, Table S1). Calibrated data and future 
projections for key outcomes from 2010 to 2034 are 
shown in Fig. 2 for the three diagnostic testing scenarios 
in the Philippines and Thailand.

Diagnostic testing scenarios
To investigate the impact of using different diagnostic 
tools, three scenarios are proposed for analysis: (1) Status 
quo, representing the use of GeneXpert MTB/RIF on all 
presumptive TB cases; (2) GeneXpert MTB/RIF + Gen-
eXpert XDR, and; (3) GeneXpert MTB/RIF + tNGS. In all 
scenarios, GeneXpert MTB/RIF remains the initial diag-
nostic for detection of Mycobacterium tuberculosis, with 
GeneXpert XDR and tNGS proposed as additional tests 
for more comprehensive detection of DR-TB.

The intervention for Scenario 2 and 3 is simulated to 
be implemented in 2024, with outcomes modelled across 
a 10-year period from 2025 to 2034. Results are summa-
rized in Table  2 to compare outcomes across each sce-
nario for DR-TB diagnosis, mortality, treatment failure, 
incidence, and prevalence by 2034.

The value for Detectable resistance (σ) reflects coun-
try specific RR/MDR-TB rates in Scenario 1, is increased 
to 80% in Scenario 2 to reflect GeneXpert XDR capac-
ity to detect a wider range of drug resistance and is 
further increased to 98% in Scenario 3 to reflect even 
higher DR-TB detection capacity of tNGS. In Scenario 1, 
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detectable resistance represents the proportion of DR-TB 
cases that can be detected with the current use of Gen-
eXpert MTB/RIF. This value is calibrated to DR-TB case 
detection and adjusted to be in line with most recent 
drug resistance survey estimates for RR/MDR-TB preva-
lence (see Supplemental Material, Table S1), resulting 
in baseline detection of 18% and 15% of overall DR-TB 
cases in the Philippines and Thailand, respectively. Non-
rifampicin-resistant strains of TB are not detected, such 
as resistance to commonly used first-line drugs including 
isoniazid, ethambutol, or pyrazinamide, as well as resis-
tance to fluoroquinolones and second-line injectables. 
Accounting for test sensitivity and ability to detect addi-
tional strains of DR-TB, the use of GeneXpert XDR in 
Scenario 2 increases the proportion of detectable resis-
tance to 80%, and the use of tNGS in Scenario 3 increases 
detectable resistance to 98%. Both tests had comparable 
pooled specificity for detection of resistance across all 
targeted TB drugs, at 96% for tNGS and 98% for GeneX-
pert XDR [3].

Sensitivity analysis
The sensitivity analysis was first conducted using uni-
variate analysis for 18 parameters listed in Table 1, with 
+/-25% variation in parameter values (See Supplemen-
tal Material, Table S2). Holding other parameter values 
constant across 1000 simulations, one-way sensitivity 
analysis was performed to determine which parameters 
have the greatest impact on key outcomes related to 
DR-TB incidence, diagnosis, mortality, and treatment 
failure. Six parameters resulted in the highest variation 
from the mean (> 14% variation for the Philippines and 
> 5% for Thailand) for at least one key outcome and were 
selected for multivariate analysis (see Fig. 3). To estimate 
variability in key outcomes from simultaneous variation 
in parameters, multivariate sensitivity analysis was con-
ducted for each scenario to determine 95% confidence 
interval (95% CI) and minimum and maximum range for 
reported results (see Table 2).

Table 1  Estimation of parameters
Parameter Description Estimated value, 

Philippines
Estimated value, 
Thailand

Source

N(0) Initial population (2010) 95,000,000 68,000,000 [18]
η Crude birth rate Annual data Annual data [18]
µ Crude death rate Annual data Annual data [18]

βS Transmission coefficient DS-TB 11 1.4 Fitted
βR Transmission coefficient DR-TB 7 1.4 Fitted
αfast Fast activation rate 0.0826 0.0826 [16]
αslow Slow activation rate 0.0049 0.0049 Fitted
κ Progression to late latency 0.872 0.872 [16]
ϒ Risk of reinfection once infected 0.21 0.21 [7]
ε Spontaneous self-cure 0.20 0.20 [7, 19]
ρ Rate of acquired resistance 0.20 0.20 [20]
C Case detection rate Annual data Annual data [1]
θ Sensitivity of initial diagnostic 0.96 0.96 [3]
σ Detectable resistance Survey data Survey data [21–25]
ν Proportion of cases tested with rapid diagnostic at time 

of diagnosis
Annual data Annual data [1]

E Empiric diagnosis DR-TB 0.04 0.01 Fitted
τS Time to treatment DS-TB 5 days 5 days [26]
τR Time to treatment DR-TB 7 days 7 days [26]
ω S Treatment success rate DS-TB Annual data Annual data [1]
ω R Treatment success rate DR-TB Annual data Annual data [1]
ω X Treatment success rate DR-TB treated as DS-TB 0.70 0.70 [5, 8]

λ S Length of DS-TB treatment 0.55 years 0.50 years Fitted

λ R Length of DR-TB treatment 0.75 years 0.60 years Fitted

µU Mortality untreated TB 0.20 0.20 [7, 13]
µS Mortality DS-TB 0.01 0.10 [1]
µR Mortality DR-TB 0.12 0.21 [1]
µX Mortality DR-TB treated as DS-TB 0.14 0.28 [6, 8]
γ Loss of immunity 0.1 0.1 [14]
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Results
In Scenario 1, Status quo, the use of GeneXpert MTB/RIF 
is limited to detection of RR/MDR-TB which represents 
less than 20% of overall DR-TB cases. As a result, more 
than 60,000 and 10,000 DR-TB cases are misdiagnosed 
and undertreated as DS-TB with first-line TB drugs each 
year in the Philippines and Thailand, respectively.

The use of GeneXpert XDR in Scenario 2 increases 
the proportion of detectable resistance to 80%, result-
ing in immediate and sustained improvements, from 
2024 onwards, in the diagnosis of DR-TB compared 

to Scenario 1 (Fig.  2A: Correctly Diagnosed DR-TB). 
By 2034, this translates to a fourfold increase in annual 
DR-TB cases diagnosed in the Philippines (from 10,870 
to 43,500 cases) and a fivefold increase in Thailand (from 
1,219 to 6,081 cases); the majority of which are Hr-TB 
cases that would not have otherwise been detected. The 
increase in DR-TB detection is coupled with a propor-
tionate reduction in DR-TB cases misdiagnosed and 
subsequently undertreated as DS-TB (Fig.  2B: DR-TB 
diagnosed as DS-TB).

Fig. 2  Modelling outcomes for Scenarios 1, 2 and 3. Results have been modelled across six key outcomes: (A) Correctly diagnosed DR-TB, (B) DR-TB Mis-
diagnosed as DS-TB, (C) DR-TB Mortality, (D) DR-TB Treatment Failure, (E) DR-TB Incidence and (F) DR-TB Prevalence. Scenario 1, shown in blue, represents 
baseline data for current use of GeneXpert MTB/RIF. Scenario 2, shown in red, represents use of GeneXpert XDR and Scenario 3, shown in green, repre-
sents use of tNGS. Scenarios 2 and 3 are implemented starting in 2024, with results modelled across 10-years from 2025 to 2034
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As a result of accurate initial diagnosis of DR-TB, there 
is also a marked reduction in DR-TB treatment failure, 
which decreases by 20% in the Philippines and 23% in 
Thailand (Fig. 2D: DR-TB treatment failure). Total DR-TB 
Mortality (Fig.  2C) and Treatment failure (Fig.  2D) are 
summed across all DR-TB cases (Fig.  2A and B), which 
include correctly diagnosed DR-TB cases as well as 
DR-TB cases mis-diagnosed as DS-TB.

In Scenario 3, the use of tNGS would allow for the 
detection of 98% of DR-TB cases, which would result in 
over 52,000 cases detected in the Philippines and over 
7,000 cases detected in Thailand annually by 2034. In 
Scenario 3, treatment failure decreases by 26% in the 
Philippines and 29% in Thailand.

Trends in DR-TB incidence and mortality are the same 
as those of DR-TB treatment failure, showing a slight 
downward trend by 2034. Scenario 1 has the least number 
of DR-TB cases diagnosed (Fig. 2A), which results in the 
highest rates of DR-TB mortality (Fig. 2C) and, because 
of undetected DR-TB cases that continue to infect others 
in the population over time, leads to the highest DR-TB 
incidence (Fig. 2E). As expected, increased DR-TB diag-
nosis rates in Scenarios 2 and 3 are associated with lower 
DR-TB mortality and lower DR-TB incidence, as more 

DR-TB cases receive appropriate treatment and are pre-
vented from infecting others in the population. In the 
Philippines, DR-TB mortality is reduced by 3%, and 
DR-TB incidence is reduced by 5% in Scenario 2 and 6% 
in Scenario 3. In Thailand, both DR-TB mortality and 
DR-TB incidence are reduced by 4% in Scenario 2 and 5% 
in Scenario 3.

In terms of DR-TB prevalence (Fig.  2F), the large 
increases in DR-TB diagnosis lead to initial increases 
in DR-TB prevalence, as observed in Scenarios 2 and 3. 
Since case detection rates are held constant as an inde-
pendent variable from the diagnostic testing intervention, 
DR-TB cases are moving from misdiagnosed to correctly 
diagnosed with little change in the absolute number of 
cases. However, this initial increase in prevalence is bal-
anced out over time by reductions in DR-TB mortality 
and incidence, resulting in a small overall reduction (< 1% 
in both countries) in total DR-TB prevalence by 2034.

Outcomes were most sensitive to variation in DR-TB 
transmission coefficient, DS-TB transmission coefficient, 
slow activation rate, the success rate for DR-TB misdiag-
nosed and treated as DS-TB, and the proportion of cases 
receiving rapid diagnostic. Results from the univariate 
analysis are shown in Fig.  3 as tornado graphs for each 

Table 2  Key outcomes across scenarios. Mean values for six key DR-TB outcomes are reported, along with 95% confidence interval (CI) 
range and minimum and maximum values. Baseline values are reported (2019) as well as outcome values for year 2034 for each of the 
three diagnostic testing scenarios.
Outcome Year Philippines Thailand

Baseline Scenario 1 Scenario 2 Scenario 3 Baseline Scenario 1 Scenario 2 Scenario 3
2019 2034 2034 2034 2019 2034 2034 2034

Diagnosed DR-TB
(people/year)

Mean 7,896 10,870 43,500 52,447 1280 1219 6081 7354
95% CI 110 200 733 863 17 17 73 85
Min 4,316 5,117 20,875 25,630 683 648 3519 4356
Max 15,241 25,948 94,632 111,143 2262 2207 9775 11,442

DR-TB Mis-diagnosed as DS-TB
(people/year)

Mean 64,586 66,203 29,885 19,942 10,837 9767 4437 3041
95% CI 833 1,172 516 346 119 112 49 34
Min 38,240 34,026 15,534 10,319 6986 6153 2790 1891
Max 118,982 158,864 64,974 42,146 16,438 15,186 6888 4786

DR-TB Mortality
(people/year)

Mean 37,036 35,804 34,871 34,660 5732 4930 4745 4699
95% CI 451 613 572 568 60 54 48 47
Min 22,794 18,688 18,422 18,305 3806 3199 3195 3193
Max 64,823 81,791 72,245 69,839 8398 7415 6808 6774

DR-TB Treatment Failure
(people/year)

Mean 19,788 21,177 16,851 15,720 3157 2851 2193 2026
95% CI 527 641 363 300 80 74 38 29
Min 5,351 5,335 6,644 6,981 941 824 1052 1104
Max 53,252 73,363 46,062 39,373 6771 6257 3994 3470

DR-TB Incidence
(people/year)

Mean 131,176 136,123 129,809 128,191 19,746 17,693 16,946 16,758
95% CI 1,636 2,350 2,102 2,052 203 191 168 163
Min 79,667 69,589 70,345 70,014 13,232 11,532 11,750 11,807
Max 229,852 308,273 265,455 256,898 28,395 26,180 23,418 22,777

DR-TB Prevalence
(people)

Mean 191,633 186,242 185,547 185,571 25,802 21,867 21,733 21,715
95% CI 2,338 3,189 3,027 3,016 268 239 221 219
Min 117,671 97,485 99,287 99,513 17,166 14,214 14,650 14,764
Max 336,130 426,616 385,822 375,450 37,707 32,801 31,142 31,281
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Fig. 3  Tornado plots for one-way sensitivity analysis. Results are shown separately for the Philippines and Thailand. The six parameters that resulted in 
greatest variation from the mean are shown: DR transmission coefficient, DS transmission coefficient, Slow activation, Rapid diagnostic rate, Success mis-
diagnosed DR-TB and Spontaneous self-cure. Bars show the percentage variation from the mean by 2034 for each outcome, with ±25% variation in that 
parameter. “Success mis-diagnosed DR-TB” refers to the treatment success rate for DR-TB cases mis-diagnosed and treated as DS-TB
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outcome in 2034. Results from the multivariate analysis 
conducted with simultaneous variation across these six 
key parameters are summarized in Table 2.

Discussion
Results from this modelling study demonstrate how improv-
ing diagnostic testing to detect a wider range of TB resis-
tance in high burden settings, in line with the capability of 
newer diagnostic tools such as GeneXpert XDR and tNGS, 
can have an immediate and significant impact in increas-
ing accurate DR-TB detection, leading to large reductions in 
DR-TB treatment failure. These modelling results have also 
highlighted the magnitude of DR-TB cases misdiagnosed 
and undertreated as DS-TB due to the limitation of current 
diagnostic tests which focus only on rifampicin-resistant TB.

Using case-studies for the Philippines and Thailand, this 
study has illustrated the importance of diagnostic testing 
for DR-TB detection in high-burden settings. Although 
the Philippines has higher TB incidence and prevalence 
than Thailand, both countries demonstrated a large impact 
in DR-TB diagnosis and reductions in treatment failure 
with improved diagnostic testing, proportional to overall 
DR-TB cases. It is also important to note that although the 
transmission coefficient in Thailand was lower than in the 
Philippines, it did not differ between DS-TB and DR-TB 
(Table  1). This suggests that at lower transmission rates, 
the effect of reduced fitness of DR-TB is less pronounced, 
which supports findings from other modelling studies 
which indicate decreased prevalence of TB can lead to an 
increased proportion of DR-TB strains [20, 27]. Therefore, 
while DR-TB prevention efforts are important in the Phil-
ippines due to the sheer volume of cases requiring accu-
rate diagnosis and treatment, DR-TB prevention efforts in 
Thailand would impact a larger proportion of overall TB 
burden despite the smaller absolute number of cases.

Surprisingly, univariate sensitivity analysis revealed that 
the rate of acquired drug resistance, or treatment failure 
of DS-TB resulting in DR-TB, was not a significant fac-
tor in overall DR-TB outcomes. The volume of cases that 
acquire drug resistance is impacted by treatment failure 
and, due to the high rates of treatment success for DS-TB 
in both the Philippines (87% in 2019) and Thailand (85% 
in 2019), the proportion of DS-TB cases that fail treat-
ment and result in acquired drug resistance is low, mak-
ing this a weak contributor to overall DT-TB outcomes. 
Instead, the treatment success rate for misdiagnosed 
DR-TB, which was calibrated to 70% for both the Philip-
pines and Thailand, was identified as a key parameter. This 
indicates that reducing treatment failure of misdiagnosed 
DR-TB treated as DS-TB would have a large influence on 
overall DR-TB outcomes and may potentially impact rates 
of MDR-TB through reduced amplification of resistance.

Future studies on the cost of implementing improved TB 
diagnostic tests such as GeneXpert XDR and tNGS will be 

essential to determine the cost effectiveness of these inter-
ventions in high burden settings. While tNGS can detect 
a wider range of drug resistance than GeneXpert XDR, 
sequencing technology remains expensive, especially in 
resource-limited settings, and would require additional 
training and expertise on testing protocols and interpre-
tation of results [28], whereas many countries are already 
familiar with the GeneXpert platform. These tradeoffs will 
influence which diagnostic test, or potential combination 
of tests, would be most cost effective in reducing DR-TB 
outcomes over time. Future studies could also investigate 
the marginal benefits of targeting additional diagnostic 
tests on high-risk groups for DR-TB, including previously 
treated TB cases and patients with TB co-morbidities such 
as human immunodeficiency virus (HIV) or diabetes.

Several assumptions were made to balance model sim-
plicity with accuracy. The model does not include age or 
comorbidities with TB, which may affect transmission 
rates as well as diagnosis and treatment outcomes. The 
model is focused on pulmonary TB transmission and 
therefore does not include extra-pulmonary TB data or the 
effect of BCG vaccination which does not protect against 
pulmonary TB. The model does not account for loss to fol-
low up during treatment, as all patients are accounted for 
in one of four treatment outcomes: relapse, acquired resis-
tance, recovery or death. The model does not differentiate 
between new cases and previously treated TB cases within 
the “Active TB” stock, which may affect their rates of diag-
nosis and treatment outcomes. The model is performed 
on the total country population and does not account 
for migration or sub-national factors such as population 
density or socioeconomic status, which may affect TB 
transmission. Finally, the model was calibrated to WHO 
reports and therefore the accuracy of model estimates are 
dependent on the accuracy of reported country data.

Despite these limitations, results from this dynamic 
modelling have several policy implications. First, there 
is a clear need for improved TB diagnostic testing, early 
in the diagnostic pathway, to detect TB drug resistance 
prior to treatment to prevent DR-TB treatment failure 
and potential amplification of resistance. In addition, 
accurate detection of Hr-TB could incentivize countries 
to adopt modified treatment regimens for patients with 
Hr-TB, as recommended by WHO in 2018, to further 
reduce DR-TB treatment failure and mortality. Finally, 
these findings highlight the importance of detecting a 
wider range of TB resistance given limited current and 
forecasted availability of anti-TB drugs, and to pro-
tect the introduction of new treatment protocols in the 
region. To address these many concerns, the use of Gen-
eXpert XDR or tNGS as an additional diagnostic test for 
DR-TB can significantly improve DR-TB case detection 
and treatment outcomes, supporting their consideration 
for use in high burden settings.
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