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Abstract
Background  The emergence of Multidrug-Resistant Tuberculosis (MDR-TB) poses a significant threat to global 
tuberculosis control efforts. This study aimed to examine the influence of mutations in Toxin-Antitoxin system genes 
on the global transmission of MDR-TB caused by Mycobacterium tuberculosis (M. tuberculosis).

Methods  Whole-genome sequencing was conducted on 13,518 M. tuberculosis isolates. Genes of the Toxin-Antitoxin 
system were obtained from the National Center for Biotechnology Information (NCBI) Gene database. Techniques 
such as Random Forest, Gradient Boosting Decision Tree, and Generalized Linear Mixed Models were employed to 
identify mutation sites in Toxin-Antitoxin system-related genes that facilitated the transmission of MDR-TB.

Results  4,066 (30.08%) were identified as MDR-TB strains of all analyzed isolates. We found significant associations 
between specific gene mutations and MDR-TB transmission clusters including mutations in Rv0298 (G213A), Rv1959c 
(parE1, C88T), Rv1960c (parD1, C134T), Rv1991A (maze, G156A), Rv2547 (vapB, C54G), Rv2862A (vapB23, T2C), and 
Rv3385c (vapB46, G70A). Additionally, several gene mutations associated with MDR-TB transmission clades such as 
Rv1956 (higA, G445T), Rv1960c (parD1, C134T), and Rv1962A (vapB35, G99A) were noted. Certain gene mutations 
including vapB35 (G99A), higA (G445T), and parD1 (C134T) correlated with cross-regional transmission clades.

Conclusion  This study highlights the significant association between specific gene mutations in the Toxin-Antitoxin 
system and the global transmission of MDR-TB, providing valuable insights for developing targeted interventions to 
control MDR-TB.
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Background
The emergence of drug-resistant tuberculosis (DR-TB) 
poses a significant challenge to global efforts in control-
ling tuberculosis (TB). It is estimated that 3.3% of newly 
diagnosed TB patients and 17% of those who have previ-
ously received treatment may be affected by multidrug-
resistant tuberculosis (MDR-TB) [1]. MDR-TB refers to 
a type of TB caused by Mycobacterium tuberculosis (M. 
tuberculosis) strains that are resistant to at least two of 
the most potent anti-TB drugs, namely isoniazid and 
rifampicin. The ongoing transmission and development 
of MDR-TB present a severe threat to the global control 
of TB. Mono-resistant tuberculosis (MR-TB) refers to 
M. tuberculosis that shows resistance to a specific anti-
tuberculosis drug, particularly isoniazid, while remain-
ing sensitive to other anti-tuberculosis medications. This 
form of resistance poses significant challenges for treat-
ment, as it can lead to prolonged illness and complicate 
management strategies. The toxin-antitoxin system is a 
genetic module composed of a toxin and its correspond-
ing antitoxin, which has been found to play a role in vari-
ous bacterial processes. M. tuberculosis stands out for 
having an exceptionally high number of toxin-antitoxin 
loci. Among the various toxin-antitoxin systems encoded 
by the M. tuberculosis H37Rv strain, most belong to the 
type II category, where both the toxin and antitoxin are 
proteins. This type of system is the most common and 
abundant among toxin-antitoxin systems. In type II 
toxin-antitoxin systems, an unstable antitoxin tightly 
binds to its specific toxin, forming a stable protein com-
plex that deactivates it [2]. If the antitoxin is degraded, 
the toxin becomes active and inhibits essential processes, 
such as DNA replication or protein synthesis, until anti-
toxin production resumes [2]. Despite being widespread 
in bacteria, the precise physiological roles of toxin-anti-
toxin systems still need to be fully understood. Some 
have been associated with functions like plasmid mainte-
nance, immunity against bacteriophages, and the forma-
tion of dormant persisters tolerant to antibiotics [3–10]. 
Toxin-antitoxin systems may enhance the ability of M. 
tuberculosis to resist host and antibiotic pressures by reg-
ulating growth under different stress conditions. These 
toxin-antitoxin systems in M. tuberculosis are considered 
promising targets for developing new anti-TB drugs. Dis-
rupting the type II or III toxin-antitoxin complex could 
provide a new approach to antibacterial therapy. Overall, 
toxin-antitoxin systems in M. tuberculosis play a crucial 
role in the transmission and development of MDR-TB, 
making the study of genetic mutations in these systems 
highly significant [11, 12].

Whole genome sequencing (WGS) is increasingly 
being utilized in the field of epidemiology to provide 
comprehensive insights into the transmission dynam-
ics of M. tuberculosis [13]. By allowing researchers to 

examine genetic variations at a high resolution, WGS 
enables the identification of specific mutations associated 
with virulence, resistance, and transmission patterns. In 
this study, we employed WGS not only to estimate the 
transmission dynamics but also to reevaluate the influ-
ence of gene mutations in the toxin-antitoxin system on 
the global transmission clusters of MDR strains. This 
approach provides a more detailed understanding of how 
genetic factors contribute to the spread of MDR-TB in 
different populations, thereby informing public health 
strategies for controlling outbreaks.

Methods
Clinical isolates
The present study analyzed M. tuberculosis strains 
from two sample sets. The first set consisted of a newly 
sequenced WGS dataset comprising 1,550 patients with 
culture-confirmed TB cases and drug-susceptibility 
testing results reported to the TB Surveillance Sys-
tem in Shandong Province between 2011 and 2018. 
Ethical approval for the study protocol (Approval No. 
2017 − 337) was obtained from the Center for Ethics in 
Human Research at Shandong Provincial Hospital, affili-
ated with Shandong First Medical University. The sec-
ond set aimed to encompass a comprehensive dataset of 
12,411 M. tuberculosis strains from 52 countries and 18 
regions [14–22]. Isolate metadata was retrieved from the 
Sequence Read Archive (SRA) repository, and additional 
filtering was performed using the outlined methods. 
The code used for this analysis has been uploaded to our 
GitHub repository, which can be accessed at ​h​t​t​​p​s​:​/​​/​g​i​​t​h​​u​
b​.​​c​o​m​/​​s​h​e​​n​m​​e​m​i​n​g​z​i​h​e​s​h​i​/​S​t​a​t​i​s​t​i​c​a​l​-​c​o​d​e​.​g​i​t​​​​​.​​

Whole genome sequencing and single nucleotide 
polymorphism identification
We analyzed 1,550 M. tuberculosis isolates, extracting 
their genomic DNA using the cetyltrimethylammonium 
bromide (CTAB) method [23], which is known for its 
effectiveness in isolating high-quality nucleic acids from 
resilient bacterial cell walls. CTAB (C₁₉H₄₂BrN, 95%) 
was purchased from Sigma-Aldrich. The quality of the 
extracted DNA was assessed with a Nanodrop spectro-
photometer to measure the A260/A280 ratio, ensuring it 
fell within the range of 1.8 to 2.0, indicative of pure DNA. 
Additionally, we evaluated the integrity of the DNA by 
running a portion on an agarose gel, confirming that the 
majority of samples exhibited clear and distinct bands 
without significant degradation or shearing. All proce-
dures were conducted according to standard protocols, 
and reagents were sourced from reputable manufactur-
ers, including Sigma-Aldrich for CTAB. This stringent 
quality control ensured that the DNA met the necessary 
standards for subsequent sequencing. Nonetheless, 103 
isolates were deemed unsuitable for further study due to 

https://github.com/shenmemingziheshi/Statistical-code.git
https://github.com/shenmemingziheshi/Statistical-code.git
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extraction issues and subpar DNA integrity. The remain-
ing 1,447 isolates were sequenced on the Illumina HiSeq 
4000 platform (Illumina, San Diego, CA, USA) using 
an Illumina HiSeq 3000/4000 SBS kit with 300 cycles. 
Libraries were pooled for sequencing in a paired-end 
format with 250 bp reads, targeting a coverage of > 200×.
The ensuing sequence data was archived in the NCBI 
database under the BioProject ID PRJNA1002108. Unfor-
tunately, two samples were compromised during pro-
cessing, leaving 1,445 isolates for in-depth analysis. The 
reads from the Shandong cohort and 12,073 worldwide 
strains were aligned against the H37Rv reference genome 
(NC_000962.3) using bwa mem (version 0.7.17-r1188). 
We utilized samclip (v 0.4.0) and samtools markup (v 
1.15) to eliminate duplicate and truncated alignments. 
Samples with under 98% coverage or a depth of less than 
20x were excluded [24, 25]. Additionally, any strain indi-
cating mixed lineage or Mycobacterium bovis contamina-
tion was removed from the dataset. After applying these 
criteria, 13,518 isolates, including 12,073 from the global 
dataset and 1,445 from Shandong, qualified for the analy-
sis. For a comprehensive inventory of the isolates, please 
consult Supplementary Data 1 and Supplementary Data 
2.

Variant detection in our study was conducted using the 
combined efforts of Samclip (version 0.4.0) and SAM-
tools (version 1.15). Post variant detection, we further 
refined the quality of our findings by applying additional 
filters through Free Bayes (version 1.3.2) and Bcftools 
(version 1.15.1). The criterion set for this refinement pro-
cess was stringent: only variants with a genotype of ‘1/1’, 
a quality score of at least 100, a depth of 10 or more, and 
an allele frequency greater than 0.5 were considered. We 
also excluded single nucleotide polymorphisms (SNPs) 
located within known repetitive regions, such as PPE, PE-
PGRS genes, and those associated with mobile genetic 
elements and repeats, as identified by Tandem Repeat 
Finder (version 4.09) and Repeatmask (version 4.1.2-p1) 
[26, 27]. The variant call format (VCF) files that success-
fully passed through our filtration were then annotated 
with snpEff (version 4.3t), providing us with a curated set 
of SNPs for our analysis [28].

Genotypic drug resistance prediction and lineage 
assignments
To categorize the lineages and forecast drug resistance in 
M. tuberculosis WGS data, we employed TBProfiler (ver-
sion 4.3.0), a web-based analytical tool [29, 30]. This tool 
leverages the Tuberculosis Database, a curated reposi-
tory for drug-resistance identification validated with 
over 17,000 samples carrying genotypic and phenotypic 
data. Polymorphisms related to resistance (including 
SNPs and indels) unveiled by TBProfiler were reassessed 
according to the catalog endorsed by the World Health 

Organization (WHO). This catalog lists molecular tar-
gets for drug-susceptibility testing in the M. tuberculo-
sis complex, providing standardized interpretations for 
resistance based on genotypic findings [31]. In our study, 
genotypic MDR was defined as detecting mutations 
resisting both isoniazid and rifampicin.

Phylogenomic analyses
Phylogenetic and phylogenomic evaluations were carried 
out utilizing the maximum-likelihood method facilitated 
by IQ-TREE software (version 1.6.12). We constructed 
the phylogenetic tree applying the general time revers-
ible (GTR) model for nucleotide substitutions, adding 
the GAMMA distribution to account for rate hetero-
geneity across sites. To determine the robustness of the 
phylogenetic branches, we executed 1000 bootstrap rep-
licates. The phylogenetic structure was anchored using 
the genome of Mycobacterium canettii strain CIPT 
140,010,059 (NC_15848.1) as an outgroup, providing a 
comparative baseline for our analysis [32]. The resulting 
phylogenetic tree was created with IQ-TREE (v1.6.12).

Acquisition of toxin-antitoxin system genes
We sourced a comprehensive set of 78 toxin-antitoxin 
system genes from the NCBI database. Utilizing Python 
scripts, we detected mutations within these specific 
genes associated with the toxin-antitoxin systems (Sup-
plementary Data 3).

Transmission dynamic
Transmission cluster and clade
In our novel research, we investigated the influence of 
toxin-antitoxin system gene mutations on the trans-
mission of M. tuberculosis. We analyzed SNPs within 
branches leading to either leaf nodes or transmis-
sion clusters/clades. A transmission cluster, defined as 
strains with a genetic distance of 12 SNPs or less, indi-
cates recent transmission events. On the other hand, a 
transmission clade, encompassing strains with up to 25 
SNPs differences, captures both recent and more dis-
tant transmission occurrences. These findings, based on 
established precedents in the scientific literature [33–35], 
open new avenues for understanding the transmission of 
M. tuberculosis (Supplementary Data 1 and Supplemen-
tary Data 2).

Clade size
Transmission clades were classified into three categories 
based on the number of isolates within each clade: large 
(above the 75th percentile), medium (between the 25th 
and 75th percentile), and small (below the 25th percen-
tile) [36].
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Cross-regional clade
A cross-regional clade was defined as two or more M. 
tuberculosis strains within a clade isolated in at least two 
regions.

Statistical analysis and modeling
We presented categorical data in terms of frequen-
cies and percentages. Our statistical analyses used gen-
eralized linear mixed models (GLMM) within the R 
statistical environment (version 4.2.3). In addition, we 
employed Python (version 3.7.4), specifically leverag-
ing the Scikit-learn library to implement sophisticated 
machine learning algorithms such as random forest and 
gradient-boosting decision trees. We constructed predic-
tive models using these machine learning techniques and 
validated their performance by partitioning the dataset 
into training and testing sets in a 7:3 ratio. The efficacy of 
the predictive models was meticulously evaluated using 
a suite of metrics, including Kappa, sensitivity, specific-
ity, accuracy, as well as predictive values (positive and 
negative), likelihood ratios (positive and negative), and 
the area under the receiver operating characteristic curve 
(AUC). Post-modeling, we performed a feature impor-
tance analysis to discern the impact of each variable on 
the predictions, identifying the most significant predic-
tors by intersecting the top-performing variables across 
both models. This methodological rigor allowed us to 
pinpoint the key features driving the accuracy of our risk 
factor predictions. We adhered to a stringent statistical 
significance threshold, recognizing P-values below 0.05 
in two-tailed tests.

Results
MDR population structure
A total of 13,518 M. tuberculosis isolates were analyzed, 
out of which 7,732 isolates (57.20%) were susceptible to 
all tested drugs, indicating pan-susceptibility. Among 
the isolates, 4,066 (30.08%) were identified as MDR-
TB strains. Eight hundred fifty-eight isolates (6.35%) 
showed resistance to isoniazid only, which are classified 
as MR-TB. Additionally, 862 isolates (6.38%) were catego-
rized as other DR strains, as shown in Table 1.

The incidence of MDR-TB, a global health concern, 
varied significantly among different lineages. In lineage 1, 
the rate of MDR-TB was observed to be 7.52% (n = 64), 
while in lineage 2, it was significantly higher at 48.88% 
(n = 2509). Lineage 3 had an MDR rate of 8.67% (n = 84), 
whereas lineage 4 had a rate of 21.42% (n = 1390). Lineage 
5 exhibited a rate of 47% (n = 19), while both lineage 6 
and lineage 7 had a 0% rate of MDR-TB. In the 18 regions 
designated by the United Nations (UN) Geoscheme, the 
highest incidence of MDR-TB was found in Central Asia 
(95.27%), South America (88.49%), Melanesia (79.63%), 
and Middle Africa (79.61%). On the other hand, North-
ern Europe (4.12%), Eastern Africa (3.87%), Northern 
America (1.82%), and Western Europe (1.65%) exhibited 
the lowest rates of MDR-TB, as shown in Fig. 1. The con-
struction of the phylogenetic tree for MDR-TB isolates 
was described in Supplementary Fig. 1.

Relationship between toxin-antitoxin system gene 
mutations and MDR-TB transmission clusters
Our study refined our analysis by filtering out loci with 
fewer than 10 mutations, ultimately focusing on 72 
SNPs that showed potential relevance to the transmis-
sion clusters of MDR-TB. Using GLMM, we identified 
seven SNPs significantly associated with MDR-TB clus-
ters (P < 0.05), see Table 2. These seven SNPs comprised 
two nonsynonymous SNPs, one start loss mutation, one-
stop gain mutation, and three synonymous SNPs. Specifi-
cally, these mutations included Rv0298 (G213A) with a 
frequency of 26.76% (n = 1088), Rv1959c (parE1, C88T) 
at 4.53% (n = 184), Rv1960c (parD1, C134T) at 1.08% 
(n = 44), Rv1991A (maze, G156A) at 0.3% (n = 13), Rv2547 
(vapB, C54G) at 4.67% (n = 190), Rv2862A (vapB23, T2C) 
at 0.2% (n = 8), and Rv3385c (vapB46, G70A) also at 0.3% 
(n = 12). Moreover, we developed prediction models 
using the random forest and gradient boosting decision 
tree methods, as detailed in the supplementary materi-
als (Supplementary Table 4, Supplementary Tables 9, and 
Supplementary Fig.  2). The modeling outcomes high-
lighted that the SNPs Rv0298 G213A, parE1 C88T, parD1 
C134T, maze G156A, vapB C54G, vapB23 T2C, and 
vapB46 G70A were significant contributors to the predic-
tive accuracy of both models. In summary, our findings 
showed a positive correlation between the SNPs Rv0298 

Table 1  The characteristics of TB isolates
Characteristic N (%)
MDR-TB
4066(30.08%)

Lineage Lineage1 64(1.57%)
Lineage2 2509(61.71%)
Lineage3 84(2.07%)
Lineage4 1390(37.19%)
Lineage5 19(0.47%)

Cluster Yes 1803(44.34%)
No 2263(55.66%)

Clade Yes 2328(57.26%)
No 1738(42.74%)

Clade size Small 582(25%)
Medium 956(41.07%)
Large 790(33.93%)

Cross-regional Yes 227(9.75%)
No 2101(9.02%)

MR-TB 858(6.35%)
Sensitive 7732(57.20%)
Other 862(6.38%)
MDR, multidrug resistance; MDR-TB, multidrug-resistant tuberculosis; MR, 
Mono-resistant tuberculosis
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G213A, parE1 C88T, parD1 C134T, maze G156A, vapB 
C54G, vapB23 T2C, and vapB46 G70A, and the trans-
mission clusters within MDR-TB.

Relationship between toxin-antitoxin system gene 
mutations and MDR-TB transmission clades
After excluding sites with fewer than 10 mutations, a 
total of 72 SNPs within genes related to the toxin-anti-
toxin system, the main objective was to investigate the 
association between these SNPs and transmission clades 
in MDR-TB. Our GLMM analysis found that five SNPs 
exhibited statistically significant associations with MDR-
TB transmission clades(P < 0.05), see Supplementary 
Table 1. These significant SNPs included Rv0298(G213A, 
n = 1422, 34.97%), Rv1959c (parE1, C88T, n = 191, 4.70%), 
Rv1960c (parD1, C134T, n = 47, 1.16%), Rv1991A (maze6, 
G156A, n = 13, 0.32%), and Rv2547(vapB19, C54G, 
n = 229, 5.63%). Specifically, Rv0298 G213A, maze6 
G156A, and vapB19 C54G were synonymous SNPs, 
while parE1 C88T represented a stop gain mutation and 
parD1 C134T was a nonsynonymous SNP. Additionally, 
prediction models were developed using random forest 

and gradient-boosting decision tree methods. Detailed 
information about these models can be found in the 
supplementary materials (Supplementary Table 5, Sup-
plementary Table 10, Supplementary Fig.  3). The mod-
eling results highlighted that the SNPs Rv0298 G213A, 
maze6 G156A, vapB19 C54G, parE1 C88T, and parD1 
C134T significantly contributed to the accuracy of both 
models in predicting transmission clades. To summarize, 
our findings suggested a positive correlation between 
the SNPs Rv0298 G213A, maze6 G156A, vapB19 C54G, 
parE1 C88T, parD1 C134T, and the transmission clades 
within MDR-TB.

Relationship between toxin-antitoxin system gene 
mutations and MDR-TB cross-regional transmission clades
Upon eliminating sites with fewer than 10 mutations, 
our analysis included 49 SNPs within genes linked to 
the toxin-antitoxin system. The study was designed to 
investigate the correlation between these SNPs and 
cross-regional transmission clades in MDR-TB. Apply-
ing the GLMM analysis, revealed that three SNPs were 
significantly associated with MDR-TB cross-regional 

Fig. 1  The distribution of M. tuberculosis strains in a specific region and the proportion of MDR strains
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Rv number Gene Position SNP Amino acid changes P value OR (95%CI)
Rv0239 vapB24 289,179 A76C Thr26Pro 0.994 -
Rv0239 vapB24 289,300 C197T Ser66Phe 9.999E-01 -
Rv0298 - 363,375 C124A Leu42Met 0.776 1.192(0.355–4.004)
Rv0298 - 363,464 G213A Arg71Arg 0.022 6.104(1.295–28.782)
Rv0300 vapB2 363,996 T171C Gly57Gly 0.177 2.174(0.704–6.716)
Rv0657c vapB6 753,562 T56C Ile19Thr 0.202 0.547(0.216–1.383)
Rv0657c vapB6 753,589 A29C Asp10Ala 0.420 0.604(0.177–2.057)
Rv0662c vapB7 755,873 C151T Arg51Cys 0.730 1.137(0.547–2.366)
Rv0662c vapB7 755,947 G77A Arg26His 0.530 1.473(0.439–4.946)
Rv0664 vapB8 758,548 G17T Cys6Phe 0.580 1.375(0.445–4.247)
Rv1241 vapB33 1,384,315 G38A Arg13Gln 0.169 3.575(0.582–21.976)
Rv1246c relE 1,388,827 A152T Asn51Ile 0.998 -
Rv1494 mazE4 1,686,299 T29G Ile10Ser 0.061 0.434(0.181–1.039)
Rv1740 vapB34 1,967,783 A79G Thr27Ala 0.997 -
Rv1740 vapB34 1,967,844 C140A Ala47Glu 0.466 1.235(0.7-2.181)
Rv1740 vapB34 1,967,897 G193C Glu65Gln 0.674 1.349(0.335–5.438)
Rv1943c mazE5 2,195,025 A323G Glu108Gly 0.839 0.92(0.411–2.058)
Rv1943c mazE5 2,195,321 G27A Thr9Thr 0.863 0.891(0.241–3.289)
Rv1955 higB 2,201,720 T2C Val1? 0.408 1.332(0.675–2.63)
Rv1955 higB 2,201,808 C90G Asp30Glu 0.853 0.936(0.465–1.883)
Rv1956 higA 2,202,491 A354G Ala118Ala 0.995 -
Rv1956 higA 2,202,500 C363T His121His 0.265 3.36(0.399–28.29)
Rv1956 higA 2,202,582 G445T Ala149Ser 0.990 -
Rv1959c parE1 2,203,869 G109A Glu37Lys 0.053 8.02(0.975–65.957)
Rv1959c parE1 2,203,890 C88T Gln30* 5.510E-09 33.215(10.233–107.81)
Rv1960c parD1 2,204,092 C134T Thr45Ile 0.002 4.464(1.693–11.768)
Rv1962A vapB35 2,205,283 G267A Arg89Arg 0.154 3.743(0.609–23.024)
Rv1962A vapB35 2,205,371 T179G Val60Gly 0.999 -
Rv1962A vapB35 2,205,451 G99A Lys33Lys 0.185 0.471(0.155–1.434)
Rv1962A vapB35 2,205,511 G39A Thr13Thr 0.359 0.716(0.35–1.463)
Rv1991A mazE6 2,234,736 G156A Arg52Arg 4.610E-04 38.321(4.981-294.819)
Rv2009 vapB15 2,258,096 C67T Arg23Trp 0.116 2.379(0.808–7.005)
Rv2142c parE2 2,402,439 C72T Asp24Asp 0.175 0.479(0.165–1.387)
Rv2274c mazF8 2,546,601 A205G Ile69Val 0.576 0.62(0.116–3.313)
Rv2274c mazF8 2,546,684 G122T Gly41Val 0.986 -
Rv2274c mazF8 2,546,803 G3A Met1? 0.204 0.479(0.154–1.493)
Rv2526 vapB17 2,851,303 G213C Glu71Asp 0.060 3.33(0.95-11.677)
Rv2545 vapB18 2,867,913 T131G Leu44Arg 0.075 2.357(0.918–6.055)
Rv2547 vapB19 2,868,659 C54G Ala18Ala 0.003 2.066(1.278–3.339)
Rv2547 vapB19 2,868,787 A182G Asp61Gly 0.083 3.022(0.865–10.554)
Rv2595 vapB40 2,925,594 G103A Asp35Asn 0.997 -
Rv2601A vapB41 2,930,254 G185A Gly62Asp 0.973 1.018(0.357–2.903)
Rv2653c - 2,976,616 C294G His98Gln 1.000E + 00 -
Rv2653c - 2,976,654 C256T Leu86Phe 0.983 -
Rv2653c - 2,976,830 A80C Gln27Pro 0.201 0.337(0.064–1.783)
Rv2654c - 2,977,157 T78G Ala26Ala 0.021 0.041(0.003–0.611)
Rv2830c vapB22 3,137,058 C167T Ala56Val 0.581 0.78(0.323–1.884)
Rv2862A vapB23 3,174,748 T2C Ile1? 0.047 2.735(1.012–7.388)
Rv2865 relF 3,177,660 G124A Ala42Thr 0.172 0.541(0.224–1.306)
Rv2866 relG 3,177,884 C63A Arg21Arg 0.986 -
Rv2871 vapB43 3,183,210 A73G Thr25Ala 0.991 -
Rv3181c - 3,550,092 G52T Val18Phe 0.915 1.069(0.313–3.656)
Rv3385c vapB46 3,799,821 C123T Asp41Asp 9.998E-01 -

Table 2  Generalized linear mixed model analysis was conducted on clustered and non-clustered MDR-TB isolates
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transmission clades (P < 0.05), see Table  3. These sig-
nificant SNPs were Rv1956(higA, G445T, n = 12, 0.52%), 
Rv1960c (parD1, C134T, n = 12, 0.52%), and Rv1962A 
(vapB35, G99A, n = 5, 0.21%). VapB35 G99A was iden-
tified as a synonymous SNP, while higA G445T and 
parD1 C134T were classified as nonsynonymous SNPs. 
Additionally, prediction models were developed using 

random forest and gradient- boosting decision tree tech-
niques. Further details of these models can be found in 
the supplementary materials (Supplementary Table 6, 
Supplementary Tables 11, and Supplementary Fig. 4). The 
results drawn from the models emphasized the impor-
tant contribution of the SNPs vapB35 G99A, higA G445T, 
and parD1C134T towards the predictive accuracy of 

Table 3  Generalized linear mixed model analysis was conducted on cross-regional and non-cross-regional MDR-TB isolates
Rv number Gene Position SNP Amino acid changes P value OR (95%CI)
Rv0239 vapB24 289,179 A76C Thr26Pro 1.000E + 00
Rv0298 - 363,464 G213A Arg71Arg 0.999
Rv0300 vapB2 363,996 T171C Gly57Gly 0.999
Rv0657c vapB6 753,562 T56C Ile19Thr 1.000E + 00
Rv0662c vapB7 755,873 C151T Arg51Cys 0.835 0.847(0.485–11.204)
Rv0664 vapB8 758,548 G17T Cys6Phe 9.996E-01
Rv1246c relE 1,388,827 A152T Asn51Ile 1.000E + 00
Rv1494 mazE4 1,686,299 T29G Ile10Ser 0.999
Rv1740 vapB34 1,967,844 C140A Ala47Glu 0.900 1.081(0.882–9.854)
Rv1943c mazE5 2,195,025 A323G Glu108Gly 0.999
Rv1955 higB 2,201,720 T2C Val1? 0.080 2.274(3.878–24.336)
Rv1955 higB 2,201,808 C90G Asp30Glu 9.997E-01
Rv1956 higA 2,202,491 A354G Ala118Ala 9.998E-01
Rv1956 higA 2,202,500 C363T His121His 0.999
Rv1956 higA 2,202,582 G445T Ala149Ser 1.280E-04 6.347(221.676-1469.987)
Rv1959c parE1 2,203,869 G109A Glu37Lys 9.997E-01
Rv1959c parE1 2,203,890 C88T Gln30* 9.999E-01
Rv1960c parD1 2,204,092 C134T Thr45Ile 0.003 3.777(17.989-106.139)
Rv1962A vapB35 2,205,451 G99A Lys33Lys 0.003 7.057(326.409-4128.076)
Rv1962A vapB35 2,205,511 G39A Thr13Thr 9.996E-01
Rv1991A mazE6 2,234,736 G156A Arg52Arg 0.999
Rv2142c parE2 2,402,439 C72T Asp24Asp 0.999
Rv2274c mazF8 2,546,684 G122T Gly41Val 0.999
Rv2274c mazF8 2,546,803 G3A Met1? 0.999
Rv2526 vapB17 2,851,303 G213C Glu71Asp 0.999
Rv2547 vapB19 2,868,659 C54G Ala18Ala 0.747 1.155(1.324–7.603)
Rv2601A vapB41 2,930,254 G185A Gly62Asp 0.999
Rv2653c - 2,976,616 C294G His98Gln 1.000E + 00
Rv2830c vapB22 3,137,058 C167T Ala56Val 0.998
Rv2862A vapB23 3,174,748 T2C Ile1? 0.978 0.97(0.298–23.36)
Rv2865 relF 3,177,660 G124A Ala42Thr 0.439 0.539(0.359–8.194)
Rv2871 vapB43 3,183,210 A73G Thr25Ala 1.000E + 00
Rv3385c vapB46 3,799,874 G70A Ala24Thr 9.996E-01
Rv3407 vapB47 3,826,316 G65T Arg22Leu 0.999
Rv3407 vapB47 3,826,501 C250T Arg84Cys 4.660E-06 0.34(0.886–2.229)
SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval

Rv number Gene Position SNP Amino acid changes P value OR (95%CI)
Rv3385c vapB46 3,799,874 G70A Ala24Thr 0.004 7.973(1.911–33.263)
Rv3407 vapB47 3,826,316 G65T Arg22Leu 0.994 -
Rv3407 vapB47 3,826,501 C250T Arg84Cys 0.203 0.809(0.584–1.121)
Rv3697A vapB48 4,140,319 C145T Arg49Cys 0.990 -
Rv3697A vapB48 4,140,384 G80A Gly27Glu 0.998 -
SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval

Table 2  (continued) 
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both models. In conclusion, our study suggested a posi-
tive association between the SNPs vapB35 G99A, higA 
G445T, parD1C134T, and the cross-regional transmis-
sion clades within MDR-TB.

Relationship between toxin-antitoxin system gene 
mutations and clade size
Upon exclusion of sites with fewer than 10 mutations, 
our analysis encompassed 49 SNPs within the toxin-
antitoxin system. The data revealed that 31 SNPs were 
significantly associated with clade size (P < 0.05). Among 
these influential SNPs were 21 nonsynonymous SNPs, 
one stop gained SNP, one start gained SNP, an initiator 
codon variant, and seven synonymous SNPs. These all 
demonstrated a positive correlation with clade size. Key 
SNPs among these include vapB35 G99A, higA G445T, 
parD1C134T, Rv0298 G213A, maze6 G156A, vapB19 
C54G, and parE1 C88T. For a more comprehensive 
understanding, please refer to Fig. 2.

MR isolates, MDR isolates and toxin-antitoxin system gene 
mutations
After filtering out SNPs with a mutation frequency below 
10, we identified and kept 82 SNPs for subsequent analy-
sis. We then analyzed the relationship between these 82 
SNPs and the development of MDR isolates, compar-
ing them to MR isolates. The GLMM showed that three 
SNPs were statistically significant for the development 
of MDR isolates(P < 0.05), among which two nonsynony-
mous SNPs and one stop gained SNP were positively cor-
related with the development of MDR isolates, including 

Rv1959c (parE1, C88T, n = 229, 5.63%), Rv1962A (vapB35, 
G39A, n = 88, 2.16%) and Rv3385c (vapB46, C123T, 
n = 17, 0.42%), see Supplementary Table 2. Two predic-
tion models were established using random forest and 
gradient boosting decision tree, see Supplementary Table 
7, Supplementary Tables 12 and Supplementary Fig. 5 for 
details. Based on the importance scores of the models, 
we found that parE1 C88T, vapB35 G39A and vapB46 
C123T contributed most to the random forest and gra-
dient-boosting decision tree. The results indicated that 
compared with MR isolates, parE1 C88T, vapB35 G39A 
and vapB46 C123T increased the risk of development of 
MDR isolates.

Sensitive isolates, MDR isolates and toxin-antitoxin system 
gene mutations
Following excluding SNPs with a mutation frequency 
below 10, 163 SNPs were identified and retained for fur-
ther analysis. We subsequently investigated the correla-
tion between these SNPs and the emergence of MDR 
isolates compared to sensitive isolates. The GLMM anal-
ysis revealed that 16 out of these 163 SNPs held statistical 
significance for the evolution of MDR isolates(P < 0.05), 
see Supplementary Table 3. Among these, nine were non-
synonymous SNPs and seven were synonymous SNPs 
that exhibited a positive correlation with the develop-
ment of MDR isolates, including: Rv0657c (vapB6, T56C), 
Rv0662c (vapB7, C151T), Rv0748 (vapB31, C234T), 
Rv1740 (vapB34, C140A, G193C), Rv1960c (parD1, 
C134T), Rv1962A (vapB35, G267A), Rv1991A (maze6, 
G156A), Rv2104c (vapB37, G205C), Rv2274c (mazF8, 
A108T), Rv2545(vapB18, T131G), Rv2547 (vapB19, 
C54G), Rv2550c (vapB20, A54C), Rv3385c (vapB46, 
C123T, G70A). We established two prediction models 
using the random forest and gradient-boosting decision 
tree algorithms (Supplementary Table 8, Supplementary 
Tables 13, and Supplementary Table 5). Supplemen-
tary Fig.  6. Our findings indicated that the SNPs vapB6 
T56C, vapB7 C151T, vapB34 C140A, vapB34 G193C, 
parD1 C134T, vapB35 G267A, maze6 G156A, mazF8 
A108T, vapB18 T131G, vapB19 C54G, vapB20 A54C and 
vapB46(C123T, G70A) significantly contributed to both 
models. However, the contributions of vapB31 C234T 
and vapB37 G205C were not observed in the gradient-
boosting decision tree model. Our results suggested an 
increased risk of developing MDR isolates when asso-
ciated with these specific SNPs, compared to sensitive 
isolates.

Discussion
The toxin-antitoxin system plays a crucial role in the pro-
liferation of MDR isolates [11]. Our aimed to investigate 
the association between MDR development, MDR trans-
mission, and mutations within the toxin-antitoxin system 

Fig. 2  Correlation analysis of toxin-antitoxin system gene mutations and 
clade size of MDR-TB
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genes. We analyzed 13,518 globally sourced M. tubercu-
losis isolates to achieve this, and examined 78 distinct 
toxin-antitoxin system genes. Our research outcomes 
reveal significant insights into the relationship between 
these genetic variations and MDR-related factors. For 
specific details regarding the observed mutations, please 
refer to Fig. 3.

Our study has identified a non-synonymous SNP, 
C134T, occurring at position 2,204,092 in parD1, which 
significantly escalates the risk of MDR strain transmis-
sion. This mutation has a substantial impact on various 
aspects related to MDR transmission, including the for-
mation of transmission clusters, transmission clades, 
clade size, and cross-regional transmission. The occur-
rence of the Thr45Ile mutation induced by this SNP is a 
key mechanism that leads to structural changes in parD1, 
disrupting the delicate balance between toxins and 

antitoxins [37]. This disruption ultimately increases the 
risk of MDR strain transmission.

Furthermore, we identified a stop-gained SNP, C88T, 
at position 2,203,890 of parE1, and a synonymous SNP, 
C54G, at position 2,868,659 of vapB19, both of which 
correlate positively with an increased risk of MDR strain 
transmission, particularly in terms of transmission clus-
ter, transmission clade, and clade size. The stop-gained 
SNP could result in a truncated ParE1 protein, altering 
its ability to neutralize the corresponding toxin effec-
tively and perturbing the balance within the toxin-anti-
toxin system [38]. Similarly, the synonymous SNP may 
impact the secondary structure or stability of the VapB19 
protein, influencing its interaction with other molecules 
or proteins involved in MDR strain transmission. These 
findings suggest the potential functional significance of 
synonymous mutations in drug resistance dissemination.

Fig. 3  SNPs in toxin-antitoxin system genes that confer to MDR isolates. Synonymous mutations were marked as dark blue stars, stop codons were rep-
resented by light blue stars, and missense mutations were indicated by red stars
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Our study has identified two synonymous SNPs, G39A 
(Thr13Thr) at position 2,205,511 in vapB35 and C123T 
(Asp41Asp) at position 3,799,821 in vapB46, as pertinent 
to MDR development. Although these mutations do not 
alter the amino acid sequence, they can still influence 
protein expression levels, folding, and function. We pro-
pose that these SNPs may affect the DNA-binding prop-
erties of the respective antitoxins, potentially disrupting 
the delicate balance within the toxin-antitoxin system, a 
disruption that promotes bacterial persistence and con-
tributes to the emergence of DR-TB.

Despite the encouraging findings from our study, cer-
tain limitations merit consideration. Firstly, our under-
standing of the toxin-antitoxin system genes in M. 
tuberculosis is still emerging. Therefore, our insights 
should be interpreted cautiously, and more research is 
needed to confirm these preliminary observations. Addi-
tionally, we focused specifically on SNPs; hence, our 
analysis did not include other genetic variations poten-
tially impacting drug resistance. Furthermore, our study 
used globally sourced M. tuberculosis isolates, which may 
introduce geographic and demographic biases affecting 
the observed associations. Finally, while our study reveals 
associations between specific SNPs and MDR factors, it 
does not elucidate the precise molecular mechanisms 
underlying these relationships. Future studies should 
thus focus on validating our results and exploring the 
exact molecular pathways involved, thereby providing 
deeper insight into the development and transmission of 
multi-drug resistance in M. tuberculosis.

Conclusion
Our study significantly contributes to understanding the 
factors underlying drug resistance in M. tuberculosis. 
Identifying SNPs within the toxin-antitoxin system genes 
highlights their substantial role in MDR development 
and transmission. Further validation and detailed investi-
gations into the precise molecular mechanisms underly-
ing the impact of these SNPs will advance our knowledge 
of genetic variation, bacterial persistence, and drug 
resistance. Ultimately, this research can pave the way for 
developing more effective strategies to combat TB.
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