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Florence Mehl,1 Ana Rodrı́guez Sánchez-Archidona,1,2 Ida Meitil,1 Mathias Gerl,4 Céline Cruciani-Guglielmacci,3

Leonore Wigger,1 Hervé Le Stunff,3 Kelly Meneyrol,3 Justine Lallement,3 Jessica Denom,3 Christian Klose,4

Kai Simons,4 Marco Pagni,1 Christophe Magnan,3 Mark Ibberson,1 and Bernard Thorens1,2,5,*
SUMMARY

To identify the pathways that are coordinately regulated in pancreatic b cells, muscle, liver, and fat to con-
trol fasting glycemia we fed C57Bl/6, DBA/2, and Balb/c mice a regular chow or a high fat diet for 5, 13,
and 33 days. Physiological, transcriptomic and lipidomic data were used in a data fusion approach to iden-
tify organ-specific pathways linked to fasting glycemia across all conditions investigated. In pancreatic
islets, constant insulinemia despite higher glycemic levels was associated with reduced expression of hor-
mone and neurotransmitter receptors, OXPHOS, cadherins, integrins, and gap junction mRNAs. Higher
glycemia and insulin resistance were associated, in muscle, with decreased insulin signaling, glycolytic,
Krebs’ cycle, OXPHOS, and endo/exocytosis mRNAs; in hepatocytes, with reduced insulin signaling,
branched chain amino acid catabolism and OXPHOS mRNAs; in adipose tissue, with increased innate im-
munity and lipid catabolism mRNAs. These data provide a resource for further studies of interorgan
communication in glucose homeostasis.

INTRODUCTION

The balance between insulin secretion by pancreatic islet b cells and insulin action on muscle, liver, and fat is essential to control glycemic

levels. Studies over the past decades have led to the description of the main pathways that control glucose-stimulated insulin secretion

(GSIS) by b cells and insulin signaling in muscle, liver, and fat.

GSIS is triggered by the Glut2-glucokinase (Gck)-KATP channel pathway, which induces membrane depolarization leading to Ca2+ entry

and Ca2+-dependent insulin granule exocytosis. This pathway is amplified by glucosemetabolism-derived coupling factors and is modulated

by a plethora of signals reflecting the metabolic state of the organism. These signals are nutrients such as amino acids or free fatty acids1;

various hormones including the gut-derived glucoincretins GLP-1 and GIP2; neurotransmitters of the autonomous nervous system3; and che-

mokines and cytokines produced by immune cells and adipocytes.4–6 Secretion is also strongly influenced by interactions of b cells with the

extracellular matrix (ECM) and with neighboring cells through cell adhesion molecules7–12 and gap junctions.13,14

Insulin action is initiated by its binding to the insulin receptor (Insr) followed by the recruitment of insulin receptor substrates (Irs) and acti-

vation of the Pi3k/Akt or of the Ras/Raf/Map kinase pathways.15 In adipocytes and muscle, the Pi3k/Akt pathway increases Glut4 cell surface

expression and, consequently, glucose uptake and metabolism.16 In muscle glucose can be stored as glycogen or triglycerides (TGs) or used

through the glycolytic pathway, the Kreb’s cycle, and the OXPHOS chain to form ATP to fuel muscle contraction. In white adipocytes, glucose

is mostly converted to glycerol 3-phosphate to esterify free fatty acids for storage as TGs. In liver, glucose is taken up by Glut2 and is phos-

phorylated into glucose-6-phosphate (G6P) by glucokinase, whose expression is controlled by insulin. G6P is then directed toward glycogen

synthesis, or to the pentose phosphate shunt and glycolytic pathway to generate NADPH, acetyl-CoA and ATP to fuel lipogenesis.

Insulin signaling efficacy can be reduced bymultiplemechanisms which, when over activated cause the insulin resistance that characterizes

obesity and type 2 diabetes (T2D).17 Thesemechanisms include a downregulation of INSR cell surface expression and the phosphorylation of

the INSR and IRSs by Ser/Thr kinases activated by metabolic or inflammatory signals.15 Insulin resistance is also associated with reduced

OXPHOS activity,18 decreased branched chain amino acid (BCAA) degradation19 and increased oxidative stress.20,21 Tissue inflammation,

characterized by the presence of cells of the innate immunity and the production of chemokines, cytokines or interleukins, is also causally

linked to the development of insulin resistance.20,22
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Figure 1. Experimental design, mouse physiology and multi-omics analysis

(A) Scheme of the experimental design.

(B) Five-hour fasted glycemia in Balb/c, C57Bl/6 and DBA/2 mice fed an RC or HFD. Each data point represents the meanG SEM (n = 10–12 mice) glycemic level

of the mice at 3, 10, and 30 days of diet feeding. Circles: RC fed mice; triangles: HFD fed mice.

(C) Correlation between 5-h fasted glycemia and the area under baseline of an insulin tolerance test. Each data point represents the mean G SEM (n = 10–12

mice) for each time point, strain and feeding condition.

(D) Correlation between basal insulinemia and basal glycemia indicating no significant correlation. Each data point represents the meanG SEM (n = 10–12 mice)

for each time point, strain and feeding condition.

(E) Summary table of the number of mice, mouse groups, variables, and WGCNA modules for each each omics platform used and tissue analyzed.
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Dysregulations of the pathways that control insulin secretion or insulin action frequently leads to development of hyperglycemia. This has

been demonstrated in innumerable gene knockout mouse studies. For instance, knocking out Gck in pancreatic b cells,23 Glut4 in muscle,24

glucose-responsive transcription factor Chrebp in adipose tissue,25 or the Insr in hepatocytes26 all lead to hyperglycemia. Additionally, the

diabetic phenotype of wild type or gene knockout mice is often exacerbated by the metabolic challenge of a high fat diet (HFD). Although

such studies have been used to highlight the role of selected genes and pathways on whole body glycemic control, they did not describe how

the activity of these pathways is coordinately regulated among various tissues to control glycemia.

Here, we wished to identify the pathways that are regulated in a tissue-specific manner to control fasting glycemia, a parameter that is

diagnostic of normal glucose homeostasis or of the appearance of pre-diabetes or overt diabetes.27,28 To this end we investigated selected

key organs that control glucose usage and production (pancreatic islets, soleus muscle, liver, and visceral white adipose). We used mice with

different genetic backgrounds and sensitivity to aHFD-inducedmetabolic stress and analyzed themwhen their glycemic levels were still in the

physiological range. We reasoned that the integrated transcriptomic analysis of these tissues across all experimental conditions could allow

the identification of the signaling or metabolic pathways that aremost tightly regulated with, andmay control glycemic levels. Such approach

requires that a relatively large number of mice, displaying a range of glycemic levels, are studied so that association between tissue-specific

gene pathways and phenotype (glycemia) can be meaningfully identified.

We fed C57Bl/6, DBA/2, and Balb/c mice for 5, 13, and 33 days with a regular chow (RC) or a HFD, which triggers a strong transcriptomic

adaptation in many organs but had limited effects on glycemia over the experimental periods used.We performed RNA-seq analysis of islets,

soleus muscle, liver and visceral fat and lipidomic analysis of soleus muscle, liver, visceral fat, and plasma. We then used a data fusion

approach to identify organ-specific co-expression modules that could explain the variation in glycemic levels across all mouse strains and

feeding conditions. This led to the identification of pathways that may be coordinately recruited in each of the investigated organs for the

physiological control of fasting glycemia.
RESULTS AND DISCUSSION
Mice and omics analysis

To investigate the interorgan interactions that control basal glycemia, we used C57Bl/6J, DBA/2, and Balb/c mice, which are characterized by

markedly different metabolic adaptations to an HFD feeding with distinct effects on insulin secretion and action.29,30 Eight-weeks-old mice

were fed with an RC or an HFD and body weight, basal glycemia and insulinemia were measured at 2, 10, and 30 days (Figure 1A, Table S1).

Five-hour fasted (basal) glycemia were lower in RC fed Balb/cmice than in the C57Bl/6 and DBAmice and, upon HFD feeding, basal glycemia

increased in Balb/c mice but not in the two other strains (Figure 1B). These differences in glycemic levels were exploited to identify molecular

pathways associated with the regulation of fasting glycemia in all conditions studied, regardless of inter-strain variations (see further text).

Basal glycemic levels were negatively correlated with insulin sensitivity assessed in i.p. insulin tolerance tests (ITT) (Figure 1C) but were not

correlated with 5-h fasted insulinemia (Figure 1D). These data suggest that insulin sensitivity can explain the basal glycemic levels. In contrast,

basal insulin plasma levels remained constant with increasing glycemia, suggesting a relative defect in insulin secretion, although differences

in insulin clearance could also contribute to this observation.
A global statistical model integrating -omics data predicts basal glycemia

The mice were euthanatized at 5, 13, and 33 days for RNA-seq analysis of liver, visceral white adipose tissue, soleus muscle, and pancreatic

islets and for lipidomic analysis of liver, visceral adipose tissue, soleusmuscle, and plasma (Figures 1A and 1E). One RNA-seq dataset for each

organwas generated from72mice (liver, adipose,muscle) or 69mice (islets) belonging to 18mouse groups (3mouse strains x 2 diets3 3 three

time points; for each group data are the mean of 2–4 mice); one lipidomics dataset was generated for the liver, the muscle, adipose, and

plasma from 71 to 72 mice (partially overlapping with the 72 previous mice) (Figure 1E).

The -omics data were integrated into a global model to predict basal glycemia using a data fusion approach (see STAR Methods for de-

tails). This approach enabled us to first assess whether the combined -omics data could be used to predict basal glycemia, and second, if so,

to measure the contributions of each dataset to the prediction. The starting point for the analysis was a set of data tables (or blocks) repre-

senting either gene expression or lipid concentrations across samples in the different tissues. Since each of the data blocks have different

dimensions that could lead to biases in the modeling, it was necessary to first reduce the number of dimensions for each block. For this

we usedWGCNA31 on both the transcriptomics and lipidomics data, reducing their dimensions to a smaller number of gene or lipid modules

(Figure 1E). Each of these modules represents sets of mRNAs or lipids that show similar coexpression patterns within a tissue and can be
iScience 27, 111134, November 15, 2024 3
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summarized using an eigengene.31 Initially, we integrated themRNAs and lipid eigengenes for each tissue into an unsupervisedmodel using

common dimensions.32 This method is similar to principal-component analysis (PCA), except that the samples are projected into common

dimensions derived from integrated mRNAs and lipid data. This model enabled us to assess the main sources of variation in the data inde-

pendently of any particular outcome variable. The results of this analysis (Figure S1) show good separation of strains and to a lesser extent

diets in the first two dimensions, indicating that mouse strains and diets explain most of the overall variation in the integrated dataset.

We then built a multiblock prediction model by integrating the gene and lipid eigengenes with basal glycemia as the outcome using a

regression-based multivariate modeling method, Consensus OPLS (consensus orthogonal projection to latent structures33). This supervised

data fusion approach attempts to segregate samples according to an outcome (in this case basal glycemia) along the first dimension (x axis in

Figure S2A), with variation not related to the outcome in the y axis. Using this model, we identified the gene and lipid tissuemodules that best

explain basal glycemia across all strains and feeding conditions. The results show separation of mouse samples according to basal glycemia

along the x axis of the score plot (Figure S2A). The model showed good prediction compared to random data based on a permutation test

(Figure S2B). The gene and lipid modules were then ranked according to a score (VIP; variable importance in projection) that captures how

much each module contributes to basal glycemia. These ranked modules were then further investigated to identify biological pathways in

each tissue that could be involved in the control of basal glycemia.
Pathway analysis of transcriptomic data

To search for pathways that are modulated with basal glycemia, a gene set enrichment analysis (GSEA) on Kyoto Encyclopedia of Genes and

Genomes (KEGG) database was run for each tissue with a gene list ranked on a Z score value (see STAR Methods for details). This score cap-

tures the relationship between a gene and the co-expression module as well as its relationship to the phenotypic trait. This Z score is

computed to maximize the signal/noise ratio. To compare how pathways are regulated across tissues, the list of all enriched terms across

all tissues was restricted to the terms enriched with an adjusted p value %0.01 in at least one tissue, leading in a list of 48 terms (Figure 2A).

This heatmap shows that the pathways that were significantly up or downregulated were often common to two or more tissues, and the di-

rection of regulation were either the same or opposite across tissues. One example is the ‘‘Oxidative phosphorylation’’ module, which is

downregulated in islets, liver, and muscle; it is, however, not significantly regulated in adipose tissue. This module is enriched in OXPHOS

mRNAs, which also comprisemost of mRNAs of the ‘‘Thermogenesis’’, ‘‘Huntington disease’’, ‘‘Parkinson disease’’, and ‘‘Prion disease’’ mod-

ules. The tissue-specific expression of the OXPHOSmRNAs is illustrated in the heatmap of Figure 2B. Further, we will discuss how the tissue-

specific regulation of the identified pathways and of their mRNAs are related to the control of fasting glycemia.
Tissue-specific pathways related to fasting glycemia

Pancreatic islets

The pathways that were up-or down-regulated with fasting glycemia in islets are shown in Figure 3A. Three terms related to cellular proteo-

stasis were downregulated: the ‘‘Ribosome’’, the ‘‘Protein processing in the endoplasmic reticulum’’ and the ‘‘Proteasome’’ terms (Table S2).

These included, respectively, 14 cytoplasmic and mitochondrial ribosomal genes, suggesting reduced translational activity; 47 mRNAs en-

coding proteins involved in endoplasmic reticulum (ER) protein processing, 16 of which are part of the ER-associated protein degradation

(ERAD) pathway; 17mRNAs encoding proteasome subunits. In contrast, the ‘‘Ubiquitinmediated proteolysis’’ term, which includes 31mRNAs

encoding components of the E1, E2, and E3 ubiquitin transfer system was upregulated (Figure 3B).

Cellular proteostasis in b cells plays a critical role in preserving insulin biosynthesis and secretory activity34 and decrease in proteasome

activity reduces GSIS by reducing the activity of the KATP channel and of the voltage-dependent Ca++ channel.35,36 Increased expression of

ubiquitinationmRNAs when the proteasomal ones are downregulated suggests increased non-degradative ubiquitination. This process con-

tributes to optimal beta-cell function through the control of mitophagy activity37 or the expression and activity of several transcription factors

that regulate beta-cell differentiation and function.38,39

Other downregulated pathways were the ‘‘Parkinson disease’’, ‘‘Huntington’’, and ‘‘Amyotrophic lateral sclerosis’’ terms, which are highly

enriched in OXPHOS genes (Figure 2B). Decreased OXPHOS activity and ATP production also reduce GSIS. Thus, the basal insulin plasma

levels that remained stable with increased basal glycemia (Figure 1D) were associated with reduced islet protein biosynthesis, ERAD, and

proteasome and OXPHOS activities. Interestingly, when the same data fusion analysis was performed separately with data from RC or

HFD fed mice, these same pathways were identified using only the RC fed mice dataset (Figure S3A); this suggests that the activity of these

pathways is predominantly determined by the mouse genetic background.

The other downregulated pathways (Figure 3A) not only appeared in the combined analysis of RC andHFDmice but also when the analysis

was performed only with the data from the HFD mice (Figure S3B), suggesting that they were regulated by the metabolic stress of the diet.

Strikingly, the downregulated ‘‘Neuroactive ligand receptor interaction’’ term included 32 hormone receptors, and receptors for GABA, ATP,

acetylcholine and adrenaline (Figure 3B). This indicates reduced sensitivity of the beta-cells to cues generated by multiple organs, which

inform the b cells on the organism’s metabolic state.40,41 The downregulation of the ‘‘cAMP signaling’’ term, which included mRNAs for ad-

enylate cyclases (Adcys), G protein subunits (Gnai3,Gnas), phosphodiesterases (Pdes), and the transcription factorCreb3l4 (Figure 3B) further

support a decreased activity of the aforementioned receptor intracellular signaling. Interestingly, the ‘‘Biosynthesis of unsaturated fatty acids’’

term consists of mRNAs for several desaturases and elongases (Scd1, Scd2, Fads1, Fads2, Elovl1, Elovl2, Elovl4, Elovl6), which generate

various lipids that control b cell mass and insulin secretion.29,42,43
4 iScience 27, 111134, November 15, 2024



Figure 2. Heatmap of KEGG terms regulated in each tissue

(A) Heatmap of normalized enrichment scores (NES) of 48 KEGG pathways across the four tissues. Pathways were selected if significantly enriched (adjusted p

value%0.01) in at least one tissue. * adjusted p value <0.05, ** adjusted p value <0.01, *** adjusted p value <0.001, � p value <0.05, �� p value <0.01, ��� p value

<0.001, no symbol p value >0.05.

(B) Heatmap of the expression (Z-scores) of the OXPHOS mRNAs comprising the Oxidative phosphorylation KEGG term across the four investigated tissues.
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There was also an important downregulation of the ‘‘Focal adhesion’’, ‘‘ECM receptor interaction’’, and ‘‘Cell adhesion molecules’’ terms

(Figure 3B), which includedmRNAs encoding extracellularmatrix proteins (including collagen subunits, laminins and neurexins), cell adhesion

molecules (cadherins), integrins, and the integrin signal transducers Pak1 and Pak3 (Figure 3B). Expression of the mRNAs encoding the gap

junction proteins Gja1 (connexin 43) and Gjd2 (connexin 36) was also downregulated (see ‘‘Gap junction’’ term Table S2). Interaction of the
iScience 27, 111134, November 15, 2024 5
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Figure 3. Pathways regulated with glycemia in pancreatic islets

(A) Plot showing themajor KEGGpathways regulated with glycemia in pancreatic islets. The negative and positive NES values indicate, respectively, down- or up-

expression of the indicated terms with glycemia. The colors indicate the p values of the enrichment score, and the size of the dots, the number of genes in each

term.

(B) Illustration of the mRNAs that comprise selected KEGG terms with the color indication of their Z score value.

(C) Scheme of the major pathways down- (green) and up- (red) regulated with glycemia and that are involved in the control of b cell function.
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b cells with their extracellular matrix and with other islet cells through cadherins and gap junctions preserve b cells’ architecture and electrical

coupling required for optimal insulin secretion capacity.12,14,44–46

Two interesting terms were upregulated, the ‘‘Phosphatidylinositol signaling system’’ and ‘‘Inositol phosphate metabolism’’ terms, which

comprise mostly the same mRNAs. Figure 3B shows the heatmap of the ‘‘Phosphatidylinositol signaling system’’ mRNAs. They included

increased expression of 4 diacylglycerol kinases (Dgks), which reduce the intracellular levels of diacylglycerol and, thus, PKC activity; higher

expression of inositol-phosphate phosphatases (five Inpp and four myotubularin:Mtm1,Mtmrs) suggesting increased degradation of inositol

phosphates. On the other hand, there was increased expression of two inositoltetrakisphosphate kinases (Itpks) and three subunits of the

inositol-phosphate receptor (Itprs), as well as increased expression of the phosphatidylinositol-kinases Pikfyve, and of several Pik3s, Pip4ks,

and Pip5ks. Together these observations suggest increased phosphatidylinositol turnover with increased glycemic levels. The effect on insulin

secretion is uncertain and would require measuring the concentrations of inositol phosphate species in islets to determine their contribution

to PKC activity or Ca2+ release from the ER, two important mechanisms regulating GSIS.47

Collectively, these observations suggest that OXPHOS activity and proteostasis fine-tune b cells secretory activity in RC fed mice (Fig-

ure 3C). When mice are fed an HFD a multitude of hormonal and neuronal signals were downregulated with increased glycemia, as were

mRNAs involved in free fatty acid elongation and desaturation and in the interaction of the b cells with the ECM and with neighboring cells.

These observations, thus, support the hypothesis that the constant insulinemic levels measured irrespective of blood glucose concentrations

indicate a relative decrease in insulin secretion capacity. It is striking, however, that major genes involved in GSIS, such asGlut2,Gck, the KATP

channel subunits Kir62 and Sur1, and the voltage-gated Ca++ channel, which are regulated in diabetic conditions48 and are diabetes suscep-

tibility genes,49 were not differentially expressed with changes in basal glycemia. There was also no association of glycemia with a differential

expression of b cell differentiation markers (Pdx1, NeuroD, Pax4, Slc16a1, Ldh, Aldh150,51 or lipid modifying enzymes that participate in the

control of GSIS (Abhd6, Cpt1).1 This highlights the importance of the interactions of b cells not only with the global internal milieu, but also

with the ECM and with adjacent b cells through gap junctions in the control of basal insulinemia.

Soleus muscle

In soleus muscle three terms were up regulated with glycemia (Figure 4A). The ‘‘Spliceosome’’ term contained 43 mRNAs, 39 of which are

involved in pre-mRNA splicing; the ‘‘Nucleocytoplasmic transport of mRNA’’ term contained 43 mRNAs, 14 of which code for nuclear pore

complex proteins and most of the other mRNAs encode proteins involved in nuclear protein import or export; the ‘‘Ribosomes biogenesis’’

term comprised 29mRNAs encoding proteins controlling ribosomal RNA production, and the assembly of the large and small ribosomal sub-

units (Table S3). These observations suggest higher rates of premRNAmaturation, mRNAexport to the cytoplasm, and ribosome production,

which together suggest that protein biosynthesis activity increases with higher blood glucose concentrations.

The downregulated terms included ‘‘Oxidative phosphorylation’’, ‘‘Thermogenesis’’, ‘‘Huntington disease’’, ‘‘Parkinson disease’’, ‘‘Prion

disease’’, and ‘‘Alzheimer’s disease’’, which mainly comprised mRNAs encoding subunits of Complex I, II, III and IV of the electron transport

chain and of the ATP synthase (Figure 2B). The ‘‘Diabetic cardiomyopathy’’, ‘‘Non-alcoholic fatty liver disease’’ and ‘‘Chemical carcinogen-

esis—reactive oxygen species’’ terms included, in addition to OXPHOS mRNAs, several mRNAs encoding key components of the insulin

signaling pathway: InsR, Pik3r1, Akt3, Pdpk1, Gys1, Foxo3, and Glut1 (Figures 4B and 4C). The downregulated ‘‘Carbon metabolism’’ term

comprised mRNAs encoding enzymes of the glycolytic pathway (Glut1, Hk1, Gck, Adpgk, Eno1b, Pfkl, Pfkp, Pgk1, Pgam1, Eno1, Eno2,

Pdha1, and Pdhb), the pentose phosphate pathway (Tkt, Taldo1, G6pdx), and the tricarboxylic acid (TCA) cycle (Aco1, Aco2, Idh3a, Idh3g,

Sucla2, Suclg1, Suclg2, Fh1, and Mdh2) as well as the glutamate dehydrogenase Glud1, and the malic enzymes Me1, Me2, and Me3

(Figures 4B and 4C). There was also a downregulation of the ‘‘Endocytosis’’ term, which comprised 54 mRNAs, almost all of them encoding

regulators of clathrin-coated pit-dependent and clathrin-independent endocytosis, and of endosome recycling (Figure 4B).

Collectively (Figure 4D), these observations show that, in soleus muscle, increased glycemic levels and lower whole body insulin sensitivity

were associated with reduced expression of mRNAs controlling insulin signaling, glycolysis, pentose phosphate pathway, TCA cycle, and

OXPHOS activities as well as lower expression of mRNAs encoding regulators of endocytosis/exocytosis, which may reduce insulin-depen-

dent trafficking of Glut4 to the plasma membrane and further decrease glucose metabolism.16,52 Notably, all these downregulated terms

were also found when the analysis was performed only with the RC fed mouse data, suggesting a primordial role of the genetic background

in determining the expression levels of these mRNAs and indicating that HFD feeding had relatively low influence on mRNA expression in

muscle as compared their expression in the other tissues studied (Figures S4A and S4B).

Liver

Figure 5A shows that seven terms were downregulated and nine upregulated with the glycemic levels. The downregulated terms were cate-

gorized in four groups. The ‘‘Chemical carcinogenesis-reactive oxygen species’’ term contained a unique set of mRNAs, including seven
iScience 27, 111134, November 15, 2024 7
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Figure 4. Pathways regulated with glycemia in soleus muscle

(A) Plot showing the major KEGG pathways regulated with glycemia in muscle.

(B) Illustration of the mRNAs that comprise selected KEGG terms with the color indication of their Z score value.

(C) Scheme of the insulin signaling pathway, and of the glycolytic, pentose phosphate, and Krebs’ cycle pathways with, in green, the mRNAs whose expression is

downregulated with glycemia.

(D) Scheme of the major down and upregulated pathways that are involved in the control of muscle function.
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glutathione-S-transferase genes (Table S4), suggesting decreased reactive oxygen species (ROS) scavenging capacity; as ROS reduce insulin

signaling in liver,53 this observation is compatible with the inverse correlation between glycemia andwhole body insulin sensitivity (Figure 1C).

This term also containedmRNAs for various signaling kinases and phosphatases, including activators of the NFkB pathway (Chuk, Prkd2, and

Map3k14). The ‘‘Valine, leucine, and isoleucine degradation’’ term included several mRNAs of the BCAA degradation pathway, in particular,

Bckdha and Bckdhb, which encode subunits of the first and rate-limiting enzyme in BCAA degradation (Figure 5B). It has previously been

documented that lower BCAA degradation increases circulating levels of BCAAs, which contribute to increased insulin resistance.54,55

The terms ‘‘Oxidative phosphorylation’’, ‘‘Non-alcoholic fatty liver disease’’ and ‘‘Diabetic cardiomyopathy’’ contained mRNAs that were

almost all represented in the ‘‘Thermogenesis’’ term. In this term, out of 48 mRNAs, 23 encode subunits of the OXPHOS chain or of proteins

required for OXPHOS chain assembly (Figure 2B). Reduced OXPHOS activity is linked to insulin resistance in the liver.18 The other downre-

gulatedmRNAs in these terms were associated with themTor pathway (mTor, Rptor), the cAMP pathway (Gnas,Creb3l3), AMP-activated pro-

tein kinase (Prkaa1, Prkaa2, Prkab2, and Prkag2), the insulin/tyrosine kinase signaling pathway (Insr, Grb2, Pten,Mapk14,Mp3k5, Gsk3a, and

Gsk3b), and withmRNAs involved in fatty acid catabolism (Ppara, Pparg, Rxra,Cpt2, Slc25a20, and Pnpla2) (Figure 5B). The fourth down-regu-

lated term, ‘‘Peroxisome’’, included several mRNAs involved in peroxisome biogenesis (Pexs), fatty acid transport (Slc27a2), fatty acid oxida-

tion (Pecr,Hsd17b4, Ech1, Eci2, andAcot8) and ROSdegradation (Cat, Sod1, and Sod2) (Figure 5B). This alignswith the reduced expression of

Ppara, Pparg, and Rxra, which are key transcription factors controlling peroxisome biogenesis.

The downregulation of these mRNAs identified insulin signaling, OXPHOS, BCAA degradation, fatty acid degradation, and ROS scav-

enging as the main pathways that could explain reduced hepatic and whole-body insulin sensitivity. Notably, these pathways were identified

when the analysis was conductedwith the combined RC andHFDdata or only with the RCdata indicating that their activity was predominantly

determined by the mouse genetic background (Figures S5A and S5B).

Nine terms were upregulated. The ‘‘Coronavirus disease-COVID-19" term contained 58 mRNAs, of which 35 encode ribosomal proteins,

which were also present in the ‘‘Ribosome’’ term (Table S4). The other mRNAs in this term encode several receptors for components of the

innate immunity system (Mbl2,Gcgr3, Tlr2, Tlr7, Cd74, Fcer1g, Fcgr1, Fcgr2b, Fcgr3, Fcgr4, Il10ra, Il10rb, Clec7a, andMrc1), related intracel-

lular signaling protein (Pik3c3, Plcg2, and Syk), and the complement pathway (C6, Cr1l1, C7, C8b, and C9); many of these genes were also

present in the ‘‘Tuberculosis’’ term (Table S3). As many of these genes are expressed by T lymphocytes or macrophages, they suggest

increased immune cells infiltration in the liver with higher glycemic levels.

The ‘‘Antigen processing and presentation’’, ‘‘Protein processing in endoplasmic reticulum’’, ‘‘Protein export’’ and ‘‘Ribosome’’ terms

included mRNAs encoding components of the protein biosynthesis pathways (the ‘‘Ribosome’’ genes) and of proteins required for the

translocation of nascent proteins into the ER, for protein folding and quality control, for ER to Golgi transport, and for ERAD

(Table S4). There was also higher expression of Xbp1 and Ern1, the enzyme that controls Xbp1 splicing and activation, indicating that

increased protein biosynthesis activity was associated with higher unfolded protein response and ERAD activity, which both preserve

ER homeostasis.56 These upregulated terms were found in the analysis of the combined RC and HFD mouse data but also when the anal-

ysis was carried out only with the HFD mouse data, suggesting that they are related to the metabolic stress induced by high calorie-con-

taining food (Figures S6A and S6B).

Collectively, the pathways that were down-regulatedwith higher glycemic levels (insulin signaling,OXPHOS, BCAAdegradation, fatty acid

degradation in mitochondria and peroxisomes) point to insulin resistance in hepatocytes and BCAA-mediated whole-body insulin resistance

(Figure 5C). The upregulated terms suggest increased liver infiltration by immune cells and a coordinated increase in the expression of

mRNAs regulating protein biosynthesis, protein translocation into the ER, protein folding, ERAD, and protein transport from the ER to the

Golgi. As in muscle, these observations suggest higher protein biosynthesis activity, although in muscle these processes were related to

pre-translational control mechanisms (mRNA splicing, nucleocytoplasmic transport, and ribosome biogenesis) (Figure 4).

Visceral adipose tissue

In this tissue, the identified terms were mostly upregulated with glycemic levels (Figure 6A). The terms ‘‘Cytokine-cytokine receptor interac-

tion’’, ‘‘Viral protein interaction with cytokine and cytokine receptor’’, ‘‘Chemokine signaling pathway’’, ‘‘Pathways in cancer’’, ‘‘Pi3k-Akt

signaling pathway’’, ‘‘Focal adhesion’’ showed striking, coordinated increased expression of a multitude of signaling pathways related to

innate immunity (Figure 6B and Table S5). The upregulated mRNAs encoded CC chemokines (Ccl, Ccl2, Ccl3, Ccl7, Ccl11, and Ccl25),

CXC chemokines (Cxcl, Cxcl1, Cxcl2, Cxcl4, Cxcl9, Cxcl10, Cxcl12, Cxcl14, and Cxcl16), and some of their receptors (Ccr1, Ccr2, Ccr5, Cxccr,

and Cx3cr1). In addition, these terms also included mRNAs for interleukins (Il-1, Il-17, Il-18, and Il-33) and interleukin receptors (Il10rb, Il6st,

Il2rb, and Il22Ra1) as well as the receptors for interferon and tumor necrosis factor (TNF) family receptors (Ifnar2, Ifngr2, Tnfr1, Tnfr2, Ltbr, Fas,

Dr4, and Dr5) (Figure 6B). The ‘‘Pathways in cancer’’ term (Figure 6B) also included several mRNAs for the Bmp, Dll, Fzd, and Vegf families

of ligands, for various receptors (Csfr2a, Csf3r, Ednra, Ifngr2, Notch, Ptch, Tgfbr2, and Lpar3), and for intracellular signaling molecules
iScience 27, 111134, November 15, 2024 9



Figure 5. Pathways regulated with glycemia in liver

(A) Plot showing the major KEGG pathways regulated with glycemia in liver.

(B) Illustration of the mRNAs that comprise selected KEGG terms with the color indication of their Z score value.

(C) Scheme of the major pathways down and upregulated with glycemia and that are involved in the control liver function.
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(Stat3, Stat6, Gnb2, Gng11, Gngt2, Camkd2, Pi3kcb, and Rela), which are all involved in cellular differentiation and function. It also included

mRNAs encoding ECM proteins (Lams, Col4as); interactions of pre-adipocytes and adipocytes with the extracellular matrix are also crucial to

support adipogenesis and to maintain the function of differentiated cells.57
10 iScience 27, 111134, November 15, 2024



Figure 6. Pathways regulated with glycemia in visceral adipose tissue

(A) Plot showing the major KEGG pathways regulated with glycemia in visceral adipose tissue.

(B) Illustration of the mRNAs that comprise selected KEGG terms with the color indication of their Z score value.

(C) Scheme of the major pathways down and upregulated with glycemia and that are involved in the control of adipose tissue function and inflammation.
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Interestingly, the upregulated ‘‘Complement and coagulation cascade’’ (Figure 6B) and ‘‘Staphyloccocus aureus infection’’ terms included

many mRNAs encoding components of the complement cascade (Figure 6B). Complement proteins are produced by adipocytes and their

secretion and activation of the complement cascade favor the development of insulin resistance and fibrosis.58,59 Finally, the upregulated

‘‘Ppar signaling pathway’’ (Figure 6B) included Pparb/d, Rxr, the fatty acid transporters (Slc27a5), the fatty acid binding proteins Fabp1,

Fabp3, Fabp7 and genes involved in fatty acidmetabolism (Cpt1,Acsl3,Hmgcs1,Acaa1a,Cyp4a1, and ThiolaseB), suggesting increased fatty

acid uptake and metabolism capacity.

Only two KEGG terms were down-regulated, the ‘‘Nucleocytoplasmic transport’’ and the ‘‘Aminoacyl-tRNA biosynthesis’’ terms (Table S5).

The first one included 15 mRNAs encoding nuclear pore complex subunits and proteins regulating protein nuclear import and export. A few

of these mRNAs (Dxd19b, Kpnb1, Xpo5, and Upf2) were also regulated in muscles, but in an opposite direction. The other terms included 12

mRNAs for cytosolic and mitochondrial aminoacyl tRNA synthases. The downregulation of these pathways suggests reduced protein trans-

lation activity.
iScience 27, 111134, November 15, 2024 11
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Figure 7. Lipidomic data and summary scheme

(A) Top: heatmap of the lipid species that are up or downregulated with glycemia in the indicated tissues. Bottom: heatmap displaying the structure of the

individual TAGs in each organ. Relative abundance is expressed as Z-scores.

(B) Summary of the tissue-specific changes in signaling and metabolic pathways that are coordinately regulated with fasting glycemia (for discussion see text).
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Collectively, the previous observations indicate that higher basal glycemic levels were associated with increased adipose tissue inflamma-

tion and increased activity of multiple innate immunity pathways. At least some of these inflammatory/innate immunity components can be

produced by adipocytes (complement proteins, Il-6, TNFa, Il-15, Il-33, Il34, andCCL2) whereas others (chemokines, interleukins) are produced

bymonocytes/macrophages, endothelial cells, fibroblasts and other recruited inflammatory cells. A consequence of this inflammatory state is

the development of insulin resistance in adipocytes.60 Although the insulin signaling components InsR, Irs1, Pi3K, and Akt were upregulated,

the massive upregulation of inflammatory mRNAs may induce insulin resistance by posttranslational Ser/Thr phosphorylation of the Insr and

Irs1. Notably, no genes involved in glucose uptake (Glut4), glycolysis, TCA cycle, or OXPHOS were found related to basal glycemia, further

supporting the role of inflammation and interaction with the extracellular matrix as physiological regulators of insulin sensitivity in adipocytes.

Finally, these pathways were identified when the analysis was restricted to the data from the RC mice, from the HFD mice, or from the com-

bined analysis of both, suggesting combined effect of the genetic background and the metabolic stress on mRNAs expression (Figures S6A

and S6B).
Lipids

Up to 338 lipids, belonging to several classes (diacylglycerols (DAGs), triacylglycerols (TAGs), phospholipids and lysophospholipids, sphin-

gomyelins, ceramides, and cholesterol) were measured in liver, adipose, muscle, and plasma (Figures 1E and 7A, and Table S6). Their molar

amounts related to the glycemic levels are presented for each tissue in the heatmap of Figure 7A. The largest number of lipids regulated with

glycemia were found in the liver with a downregulation of DAGs and TAGs with fatty acids of different lengths and desaturation levels (Fig-

ure 7A) and an upregulation of phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) (with the structure PE 18:0_22:4, 18:0_22:5;

18:0_22:6), and phosphatidylinositols (PIs) (Table S6 for all lipidomic data). In muscle, most phospholipids were upregulated, but only to a

very moderate level. In adipose tissue, low molecular weight TAGs (TAG 46:1; 0 to TAG 50:3; 0) were upregulated whereas larger TAGs

with higher levels of desaturation (TAG 56:3; 0 to TAG 56:8; 0) were downregulated (Figure 7A). In plasma there was a complex pattern of

lipids up and downregulated with glycemia, with a notable decreased concentration of several PCs and PIs and a marked increase in Cer

42:2; 2 and of some lysoPCs (Table S6). Thus, reduced levels of DAGs and TAGs in the liver and increased short chain fatty acid-containing

TAGs of the visceral fat were the most associated with basal glycemia.
Conclusion

The present transcriptomic and lipidomic data fusion approach allowed to identify pathways that are coordinately regulated in pancreatic

islets, soleus muscle, liver, and visceral adipose tissue with fasting glycemia. Although, we identified these pathways based on transcriptomic

data, extrapolation frommRNA expression to pathway activity is likely to bemostly correct. Indeed, studies have demonstrated that when the

expression of mRNAs pertaining to a given biological pathway are coordinately up or downregulated, this reflects a congruent change in the

activity of this pathway.61 Similarly, when anmRNAencoding an unknownprotein is coregulatedwithmRNAsbelonging to a definedpathway,

the unknown protein usually contributes to the activity of such pathway, as reported in previous studies.62–66 Thus, analysis of transcriptomic

datasets can be highly informative on tissue-specific physiological functions and their regulations.

Several striking features emerged from our study (Figure 7B). First, in islets, constant insulinemia despite higher glycemic levels was asso-

ciated with decreased expression of several pathways that normally potentiate GSIS. These include receptors that inform the b cells about the

metabolic status of peripheral organs and the central nervous system and about local ECM environment, and gap junction proteins that

support electrophysiological coupling of b cells. Importantly, the main components of the Glut2-Gck-KATP channel signaling pathway that

controls GSIS were not regulated with glycemic levels. This emphasizes the role of the b cell as an integrator of a multitude of metabolic,

hormonal, and immune cues that modulate insulin secretion in response to changes in peripheral organ metabolic status. Defects in any

axis of this intricate b cell interorgan communication systemmay, thus, deregulate insulin secretion and potentially lead to the hyperglycemia

that defines T2D. A more complete understanding of these regulatory axis in health and T2D is warranted.

Signs of insulin resistance were observed in muscle, liver, and adipose tissue, however, the pathways involved were distinct in each tissue.

In muscle, our analysis suggested reduced insulin signaling, lower glycolysis, TCA cycle, and OXPHOS activities, as well as reduced vesicular

trafficking, possibly decreasing insulin-stimulated, Glut4-dependent glucose uptake. In liver, there was a downregulation ofmRNAs encoding

components of the insulin signaling cascade, of the OXPHOS chain, of anti-oxidant proteins and of key BCAA degradation enzymes, all

potentially reducing insulin sensitivity. We also observed signs of increased activity of the immune system, which may also negatively impact

hepatic insulin sensitivity. At the same time, however, mRNAs controlling the cAMP pathway were decreased, suggesting that insulin resis-

tance was not associated with increased hepatic glucose production. In adipose tissue, decreased insulin sensitivity was associated with a

massive increase in mRNAs for inflammatory proteins and their receptors and for proteins of the complement system. We also observed

increased expression of integrins, which link adipocytes to the extracellularmatrix; these interactions not onlymaintain the differentiated func-

tions of adipocytes but also support adipogenesis. It is well known that inflammation can induce adipose tissue insulin resistance in obesity
iScience 27, 111134, November 15, 2024 13
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and diabetes.67–70 However, the mice we studied were neither obese nor diabetic, thus our observations suggest that adipose tissue inflam-

mation is a physiological mechanism that fine-tunes insulin sensitivity, and possibly adipogenesis in response to changes in glycemic levels.

In conclusion, our study shows how a multitude of pathways are coordinately regulated across tissues to control fasting glycemia. This

control is genetically determined and modulated by the diet and by the interaction between both factors. This study also indicates that

although glucose homeostasis can be described as the results of the equilibrium between GSIS and insulin action, a complete description

of the control of glucose homeostasis needs to integrate the interactions of a multitude of pathways that control the secretion of various hor-

mones, their action on several tissues, as well as local and systemicmetabolic, inflammatory, and neuronal processes. How this system is glob-

ally controlled is starting to be understood. However, because the overarching aim of the system is to control blood glucose concentrations,

glucose itself may play a cardinal regulatory role by controlling transcriptional activity in the tissues investigated here (for instance, through

Chrebp), by triggering hormone secretion, by controlling immune cell function, or the activity of the autonomous nervous system. In this

context, our study provides a resource to help guide future studies of interorgan communications in the control of glucose homeostasis.

Limitations of the study

A limitation of our conclusions on the pathways coordinately regulated with glycemia is that they are based on the analysis of the transcrip-

tome of the selected tissues. Changes in mRNA expression may not always be associated with a congruent change in protein expression.

Conversely, protein expression may also be regulated at the translational level without changes in the abundance if their cognate mRNAs;

such occurrence could not be detected by transcriptomic analysis. Also, inclusion of the transcriptome of other tissues involved in glucose

handling and sensing, such as intestine, kidney, or brain are not included in our analysis nor is the gut microbiota, which may all influence

basal glycemia. Finally, our study included only male mice and, thus, cannot identify potential sex-specific differences.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will be fulfilled by the lead contact, Bernard Thorens, Center for Integrative Genomics,
University of Lausanne and Swiss Institute for Bioinformatics, Lausanne, Switzerland; e-mail: bernard.thorens@unil.ch.

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Data availability

Transcriptomic data for muscle, liver and adipose tissue have been deposited in NCBI’s Gene Expression Omnibus with the accession number GSE164672
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164672).30 Pancreatic islets transcriptomic data are available with the accession number GSE140369
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc1/4GSE140369).30

Lipidomics data were deposited in Zenodo with the accession number https://doi.org/10.5281/zenodo.13827925.

Any additional information required to reanalyze the data reported in this work is available from the lead contact upon request.

� Code availability

This paper does not report original code.

� All other items

There are no other items.

ACKNOWLEDGMENTS

This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement no 115881 (RHAPSODY). This Joint Un-
dertaking receives support from the European Union’s Horizon 2020 research and innovation program and EFPIA. This work is also supported by the Swiss State
Secretariat for Education, Research and Innovation (SERI) under contract number 16.0097. The opinions expressed and arguments employed herein do not
necessarily reflect the official views of these funding bodies. B.T. also received support from a Swiss National Science Foundation grant (310030_1824969).

AUTHOR CONTRIBUTIONS

F.M. performed data curation, analysis, and figure preparation; A.R.S.A., M.P., and I.M. performed data analysis; M.G., C.K., and K.S. performed lipidomic anal-
ysis; C.C.G., H.L.S., K.M., J.L., and J.D.: performed mouse physiological experiments and data analysis; C.M., M.I., and B.T.: conceptualized the work, acquired
funding, interpreted the data and wrote the original draft; all authors revised and edited the manuscript.

DECLARATION OF INTERESTS

M.G., C.K., and K.S. are employees of Lipotype GmbH.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:
14 iScience 27, 111134, November 15, 2024

mailto:bernard.thorens@unil.ch
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164672
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc1/4GSE140369
https://doi.org/10.5281/zenodo.13827925


ll
OPEN ACCESS

iScience
Article
d KEY RESOURCES TABLE
d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
d METHOD DETAILS

B Physiological and biochemical analysis
B RNAseq analysis
B Weighted Gene Correlation Network Analysis (WGCNA)
B Lipidomics

d QUANTIFICATION AND STATISTICAL ANALYSIS
B Multivariate statistical modelling
B Pathway enrichment analysis

d ADDITIONAL RESOURCES

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.111134.

Received: April 1, 2024

Revised: August 7, 2024

Accepted: October 7, 2024

Published: October 11, 2024
REFERENCES

1. Merrins, M.J., Corkey, B.E., Kibbey, R.G., and

Prentki, M. (2022). Metabolic cycles and
signals for insulin secretion. Cell Metabol. 34,
947–968. https://doi.org/10.1016/j.cmet.
2022.06.003.

2. Mayendraraj, A., Rosenkilde, M.M., and
Gasbjerg, L.S. (2022). GLP-1 andGIP receptor
signaling in beta cells - A review of receptor
interactions and co-stimulation. Peptides
151, 170749. https://doi.org/10.1016/j.
peptides.2022.170749.

3. Ahrén, B. (2000). Autonomic regulation of
islet hormone secretion–implications for
health and disease. Diabetologia 43,
393–410. https://doi.org/10.1007/
s001250051322.

4. Langlois, A., Dumond, A., Vion, J., Pinget, M.,
and Bouzakri, K. (2022). Crosstalk
Communications Between Islets Cells and
Insulin Target Tissue: The Hidden Face of
Iceberg. Front. Endocrinol. 13, 836344.
https://doi.org/10.3389/fendo.2022.836344.

5. Gerst, F., Wagner, R., Oquendo, M.B., Siegel-
Axel, D., Fritsche, A., Heni, M., Staiger, H.,
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Gerl, M.J., Ahlqvist, E., Ali, A., Dragan, I., et al.
(2021). Distinct Molecular Signatures of
Clinical Clusters in People with Type 2
Diabetes: an IMIRHAPSODY Study. Diabetes
70, 2683–2693. https://doi.org/10.2337/
db20-1281.

55. Lee, J., Vijayakumar, A., White, P.J., Xu, Y.,
Ilkayeva, O., Lynch, C.J., Newgard, C.B., and
Kahn, B.B. (2021). BCAA Supplementation in
Mice with Diet-induced Obesity Alters the
Metabolome Without Impairing Glucose
Homeostasis. Endocrinology 162, bqab062.
https://doi.org/10.1210/endocr/bqab062.

56. Malhi, H., and Kaufman, R.J. (2011).
Endoplasmic reticulum stress in liver disease.
J. Hepatol. 54, 795–809. https://doi.org/10.
1016/j.jhep.2010.11.005.

57. Gliniak, C.M., Pedersen, L., and Scherer, P.E.
(2023). Adipose tissue fibrosis: the unwanted
houseguest invited by obesity. J. Endocrinol.
259, e230180. https://doi.org/10.1530/JOE-
23-0180.

58. Kruglikov, I.L., and Scherer, P.E. (2023).
Control of adipose tissue cellularity by the
terminal complement cascade. Nat. Rev.
Endocrinol. 19, 679–680. https://doi.org/10.
1038/s41574-023-00900-w.

59. Vlaicu, S.I., Tatomir, A., Boodhoo, D., Vesa, S.,
Mircea, P.A., and Rus, H. (2016). The role of
complement system in adipose tissue-related
inflammation. Immunol. Res. 64, 653–664.
https://doi.org/10.1007/s12026-015-8783-5.

60. Sethi, J.K., and Hotamisligil, G.S. (2021).
Metabolic Messengers: tumour necrosis
factor. Nat. Metab. 3, 1302–1312. https://doi.
org/10.1038/s42255-021-00470-z.

61. Subramanian, A., Tamayo, P., Mootha, V.K.,
Mukherjee, S., Ebert, B.L., Gillette, M.A.,
Paulovich, A., Pomeroy, S.L., Golub, T.R.,
Lander, E.S., and Mesirov, J.P. (2005). Gene
set enrichment analysis: a knowledge-based
approach for interpreting genome-wide
expression profiles. Proc. Natl. Acad. Sci. USA
102, 15545–15550. https://doi.org/10.1073/
pnas.0506580102.

62. Bellini, L., Campana, M., Rouch, C.,
Chacinska, M., Bugliani, M., Meneyrol, K.,
Hainault, I., Lenoir, V., Denom, J., Véret, J.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Insulin RIA/ELISA Crystal Chem Inc. Cat#90080

Glucose monitoring system A. Menarini

Diagnostics, France

Glucofix Tech

Deposited data

Transcriptomic data muscle, liver and adipose tissue Sánchez-Archidona et al.30 GEO: GSE164672

Pancreatic islets transcriptomic data Sánchez-Archidona et al.30 GEO: GSE140369

Lipidomics data This paper https://doi.org/10.5281/zenodo.13827925

Experimental models: Organisms/strains

Mice C57Bl/6, DAB2, Balb/c Janvier-Labs Cat#C57BL/6JRj, Cat#DBA/2JRj, Cat#BALB/cJRj

Software and algorithms

MATLAB 9 The MathWorks, Inc. https://ch.mathworks.com/fr/products/matlab.html

R R Foundation for Statistical

Computing, Vienna, Austria.71
https://www.r-project.org/

STAR-2.5.3a Dobin. et al.72 https://github.com/alexdobin/STAR

edgeR Robinson et al.73 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

Limma Ritchie et al.74 https://bioconductor.org/packages/

release/bioc/html/limma.html

missForest Stekhoven et al.75 https://cran.r-project.org/web/packages/

missForest/index.html

WGCNA Langfelder and Horvath31 https://cran.r-project.org/web/packages/

WGCNA/index.html

consensusOPLS Boccard et al.33 https://gitlab.unige.ch/Julien.

Boccard/consensusopls

KOPLS-DA Rantalainen et al.76

and Bylesjo et al.77
https://kopls.sourceforge.net/index.shtml

clusterProfiler Wu et al.78 and Yu et al.79 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

LipidXplorer Herzog et al.80,81 https://lifs-tools.org/lipidxplorer.html

Other

Regular chow SAFE (Route De

Saint Bris, 89290

AUGY, France)

Cat#SAFEA04

High fat, high sucrose diet SAFE (Route De

Saint Bris, 89290

AUGY, France)

Cat#SAFE235F
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Eight weeks old male C57Bl/6J, DBA/2J and BALB/cJ mice were used. They were maintained in a 12 hours/12 hours light /dark cycle and had

ad libitum access to either a high fat, high sucrose diet (SAFE 235F, with 46% fat expressed in Kcal/kg) or a regular diet (SAFE A04). Mice were

euthanized after a 5-hour fast. Institutional permission was obtained from Buffon Animal Facility agreement: N� B 75-13-17.

Ethical authorization number granted by French Ministry of Research : 201601261121896.
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METHOD DETAILS

Physiological and biochemical analysis

Insulin tolerance tests (ITT, Novorapid, 0.5UI/kg) were performed in five hours fasted mice on days 2, 10 and 30 (ref). Glycemia were

measured using a glucometer (A. Menarini Diagnostics, France), and insulin resistance was calculated as the area under the curve of glycemia

(AUC; mg/dL*t) measured at 0, 15, 30, 45, 60, 90 and 120 minutes after insulin administration. Basal (five hours fasted) insulinemia were

measured using an Ultra-Sensitive Mouse Insulin ELISA Kit (Crystal Chem Inc., #90080). The number of mice used in these phenotyping ex-

periments ranged between 185 and 195.

RNAseq analysis

cDNA libraries were prepared fromRNA isolated frommouse tissues using Illumina TruSeq protocol. RNA-Seqwas performedon the Illumina

HiSeq platform to generate�40Mio 125nt single-end reads per sample. Reads were mapped and quantified with STAR-2.5.3a software72 us-

ing M.musculus-mm10 as reference genome and GRCm38.83 from ENSEMBL as the reference annotation index. For each sample, quality

control included verification of the total number of reads, percent of uniquely mapped reads, number of detected expressed genes, gene

body coverage and cumulative gene diversity. The resulting counts per gene from different samples were integrated to construct a single

count matrix for each tissue that was filtered, excluding those genes with less than one count per million with ’edgeR’.73 We excluded three

clear outliers identified by principal component analysis (PCA) and hierarchical clustering in the islets data set. The count matrix was normal-

ized using trimmedmean (TMM) normalization method. Differentially expressed genes comparing HF and RC, and the different strains were

detected using the limma package in R.71,74 P-values were adjusted for multiple comparisons with the Benjamini Hochberg procedure,82 and

those genes whose adjusted pvalue%0.05 were considered as differentially expressed.

Weighted Gene Correlation Network Analysis (WGCNA)

WGCNA was performed on the RNA-Seq data from all time points, mouse strains and diets to generate modules of co-expressed genes.31

Co-expression networks for each tissue were constructed by calculating signed adjacencymatrices using a soft-thresholding power of 6 and a

pair-wise Pearson correlation between all genes. A signed topological overlapmatrix (TOM) was then calculated from each adjacencymatrix,

converted to distances, and clustered by hierarchical clustering using average linkage clustering. Modules were identified in the resulting

dendrogram by the Dynamic Hybrid tree cut with a cut height of 0.995 and a minimum module size of 20 genes. A PCA was calculated for

each module in each data set using only module constituent genes to obtain the summarized values of expression of each module (the first

principal component or eigenvalues). Because islets data and data from other tissues and plasma were acquired from different mice, 18 mice

groups were defined by the three strains, two diets and three time points of harvesting. Module eigenvalues were summarized per mouse

group using the mean.

Lipidomics

Visceral adipose tissue, liver, soleus muscle and plasma lipids were measured by mass spectrometry at the Lipotype shotgun lipidomics plat-

form. Samples processing, lipid extraction, spectra acquisition and data processing and normalization were as described in Surma et al.

2015.83 The internal standard mixture contained: cholesterol D6 (chol), cholesterol ester 20:0 (CE), ceramide 18:1;2/17:0 (Cer), diacylglycerol

17:0/17:0 (DAG), phosphatidylcholine 17:0/17:0 (PC), phosphatidylethanolamine 17:0/17:0 (PE), lysophosphatidylcholine 12:0, (LPC) lysophos-

phatidylethanolamine 17:1 (LPE), triacylglycerol 17:0/17:0/17:0 (TAG) and sphingomyelin 18:1;2/12:0 (SM). Samples were analyzed by direct

infusion in a QExactive mass spectrometer (Thermo Scientific) in a single acquisition. Tandem mass-spectrometry (MS/MS) was triggered by

an inclusion list encompassing corresponding MS mass ranges scanned in 1 Da increments. MS and MS/MS data were combined to monitor

CE, DAG and TAG ions as ammonium adducts; PC, PC O-, as acetate adducts; and PE, PE O- and PI as deprotonated anions. MS only was

used to monitor LPE as deprotonated anion; Cer, SM and LPC as acetate adducts and cholesterol as ammonium adduct.

Lipidomic data were analyzed using LipotypeXplorer, a proprietary software developed by Lipotype GmbH, which is based on Lip-

idXplorer.80,81 Only lipid identifications with a signal-to-noise ratio >5 and a signal intensity 5-fold higher than in corresponding blank samples

were considered for further analysis. The median coefficient of lipid subspecies variation (RSD), as accessed by the repeated analysis of refer-

ence samples, was 7.5%.

Lipid species withR25%missing values across all available plasma samples were removed from the data set. For the lipids that remained

in the data sets, missing values were imputed using a random forest approach, applying the functionmissForest from the R packagemissFor-

est,75 with default parameters. Data were then normalized to the total signal (data = data / rowsums(data) *100). Data were not log trans-

formed or further normalized. As for transcriptomics data, a WGCNA was run using signed network, Pearson correlation, soft thresholding

power of 20 was used for plasma, liver and muscle, soft power of 12 was used for adipose, minimum module size of 5 for all tissues.31 To

be consistent with transcriptomics data, 18mice groups were defined by the three strains, two diets and three time points of harvesting.Mod-

ule eigenvalues were summarized per mouse group using the mean.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pooled data of Figures 1B–1D are expressed as meanG SEM; n represents the number of mice for each point as mentioned in the legend to

the figure.
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Multivariate statistical modelling

Common components and specific weights analysis (CCSWA) was performed using the eight tables of module eigengenes obtained from

WGCNAon the lipidomics (Pearson correlation, soft thresholding power of 20 for plasma, liver andmuscle, soft power of 12 used for adipose,

minimum module size of 5 for all tissues) and transcriptomics (Pearson correlation, soft thresholding power of 6, minimum module size of 20

genes) datasets from different. Scatter plots visualizing sample distribution in the first few dimensions were produced using ggplot2 (version

3.5.0) in R.

Consensus Orthogonal Partial Least Squares (OPLS) analysis was performed using the MATLAB 9 environment. Consensus OPLS model-

ling was performed with the publicly available RVConsensusOPLS function (https://gitlab.unige.ch/Julien.Boccard/consensusopls, where

modified RV-coefficients were computed with the publicly available MATLAB m-file33 and KOPLS-DA was assessed with routines imple-

mented in the KOPLS open-source package76,77) on the same input data as CCSWA with 1 predictive latent variable and a maximum of 3

orthogonal variable, a 14 fold cross validation. Model significance was assessed by permutation (N=999) and the Q2 value used as a measure

of model significance.

Pathway enrichment analysis

A functional enrichment analysis by Gene Set Enrichment Analysis (GSEA) was performed by tissue on unfiltered ranked gene lists. These

ranked gene lists were obtained computing a Zscore for each gene as follows:

1. Compute Vi;k =
P

j

MMij$sVIPjk where

k is the tissue

MMij is themodulemembership of the gene i to themodule j obtained byMMij = corðxi ;EjÞwhere xi is the expression of the gene i and Ej

is the module eigengene of the module j.

sVIPjk is the signed Variable Importance in Projection of the module j of the tissue k ksVIPjk = VIPjk 3 signðloadingsjÞ.
2. Compute Vpermi;k =

P

j

MMij$sVIPpermjk where sVIPjk is obtained from permuted Consensus OPLS models.

3. The Z-score is computed as follows Zscorei;k =
Vi;k � sVIPpermjk

SDsVIPpermjk

Genes are ranked by decreasing Z-score and theGSEA analysis is performedwith the clusterProfiler gseKEGG function (R package version

4.6.278,79 using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway collections for Mus Musculus. The enrichment scores were

normalized by gene set size and their statistical significance was assessed by permutation tests (n=1,000). The list of all enriched terms across

all tissues was restricted to the terms enriched with an adjusted p-value % 0.01 in at least one tissue 48 terms.

ADDITIONAL RESOURCES

There are no additional resources.
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