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Abstract 

Background The histopathological analysis of minor salivary gland biopsies, particularly through the quantification 
of the Focus Score (FS), is pivotal in the diagnostic workflow for Sjögren’s Syndrome (SS). AI‑based image recognition 
using deep learning models has demonstrated potential in enhancing diagnostic accuracy and efficiency in preclini‑
cal research.

Objectives The primary aim of this investigation was to utilize an auto‑machine learning (autoML) platform 
for the automated segmentation and quantification of FS on histopathological slides, aiming to augment diagnostic 
precision and speed in SS.

Methods A cohort comprising 86 patients with sicca syndrome (37 diagnosed with SS based on the 2016 ACR/
EULAR Classification Criteria and 49 non‑SS) was selected for an in‑depth histological examination. A repository 
of 172 slides (two per patient) was assembled, encompassing 74 slides meeting the classificatory thresholds for SS 
(FS ≥ 1, indicative of lymphocytic infiltration) and 98 slides showcasing normal salivary gland histology. The autoML 
platform utilized (Giotto, L2F, Lausanne Switzerland) employed a Convolutional Neural Network (CNN) architecture 
(ResNet‑152) for the training and validation phases, using a dataset of 172 slides.

Results The developed model exhibited a reliability score of 0.88, proficiently distinguishing SS cases, with a sensitiv‑
ity of 89.47% (95% CI: 66.86% to 98.70%) and a specificity of 88.24% (95% CI: 63.56% to 98.54%). The model found his‑
tological slides of suboptimal quality (e.g., those compromised during fixation or staining processes) to be the most 
challenging for accurate classification.

Conclusion AutoML platforms offer a rapid and flexible approach to developing machine learning models, even 
with smaller datasets, as demonstrated in this study for SS. These platforms hold significant potential for enhanc‑
ing diagnostic precision and efficiency in both clinical and research settings. Multicentric studies with larger patient 
cohorts are essential for thorough evaluation and validation of this innovative diagnostic approach.
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Key messages 

‑ Histopathological analysis of minor salivary gland biopsies, especially the quantification of the Focus Score (FS), 
is crucial for the diagnostic workflow in Sjögren’s Syndrome (SS).

‑ AI‑based image recognition and deep learning models have shown promise in enhancing diagnostic workflows 
and have potential applications in preclinical research

‑ This study utilizes an auto‑machine learning (autoML) platform for automated delineation and quantification of FS 
on histopathological slides, aiming to improve diagnostic precision and speed in SS.

‑ Offers a potential solution to mitigate the challenge of interobserver variability in FS assessment, thus strengthening 
the diagnostic criteria and potentially improving diagnostic accuracy in SS.

‑ The flexibility and agility of autoML platforms like Giotto could expedite the diagnostic process, presenting a viable 
tool for clinicians and researchers, even with smaller datasets.
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Introduction
Sjögren’s Syndrome (SS) is a chronic autoimmune disor-
der primarily characterized by exocrine gland dysfunc-
tion, yielding xerostomia and keratoconjunctivitis sicca. 
The etiology encompasses genetic predispositions, envi-
ronmental, and hormonal factors, manifesting a global 
prevalence of 0.5–1%, with a female predilection [1].

Clinically, SS spans from isolated sicca symptoms to 
systemic involvement impacting the nervous system, kid-
neys, and lungs. A significant subset of patients exhibit 
extraglandular manifestations (EGMs), denoting sys-
temic disease extension. EGMs include renal, pulmonary, 
muscular, and neurologic involvements, associated with 
elevated risks of severe complications like cardiovascular 
disease, vasculitis, and lymphomas, with a 6% lymphoma 
occurrence in primary SS patients showcasing systemic 
disease [1, 2].

EGMs in SS display extensive heterogeneity, with any 
organ or system susceptible to involvement, escalat-
ing the disease’s complexity and potential severity [3]. 
Management of EGMs is organ-specific, tailored to the 
severity of manifestations, aimed at symptom alleviation, 
complication prevention or management, and quality of 
life enhancement [4].

Diagnostic endeavors in SS are challenged by diverse 
clinical presentations and the absence of a singular defin-
itive diagnostic test, notably in seronegative patients 
lacking typical autoantibodies like anti-SSA/Ro [2]. This 
accentuates the necessity for thorough clinical evalua-
tions and a multidisciplinary approach for efficacious 
management of both glandular and extraglandular mani-
festations, ameliorating the overall prognosis and qual-
ity of life for SS patients. The 2016 American College of 
Rheumatology/European League Against Rheumatism 
(ACR/EULAR) classification criteria have been instru-
mental in standardizing the diagnosis [5]. These crite-
ria include a combination of clinical, serological, and 

histopathological features, with a focus on salivary gland 
biopsy as a key diagnostic tool. Histologically, SS is char-
acterized by lymphocytic infiltration, acinar destruction, 
and fibrosis in the salivary glands. The focus score (FS), 
which quantifies the number of lymphocytic foci per 4 
mm2 of glandular tissue, is a critical parameter for diag-
nosis. A FS greater than 1 is highly specific for SS [5]. FS 
correlates with higher humoral inflammation, antibody 
positivity, and lymphoma risk in SS patients [6].

The integration of Artificial Intelligence (AI) in health-
care, especially in pathology, has ushered in a transform-
ative era, enhancing diagnostic accuracy and efficiency. 
With over 500 AI-based algorithms approved by the U.S. 
Food and Drug Administration, primarily for diagnostic 
support, AI’s role is becoming pivotal. In the context of 
AI applications in histopathology, delineation typically 
involves segmenting specific regions of interest within 
an image, requiring manual annotations, while quantifi-
cation involves measuring specific features, such as the 
number of lymphocytic foci, which can be achieved using 
threshold algorithms. Particularly in pathology, Convo-
lutional Neural Networks (CNN) have shown promise 
in automating complex histological image interpretation, 
catering to the demands of modern pathology. The ability 
of AI to process large datasets, identify intricate patterns, 
and provide high-speed, accurate predictions under-
scores its value [7, 8].

Salivary gland biopsy interpretation in SS stands to 
benefit significantly from AI integration. AI image rec-
ognition can enhance precision and efficiency by iden-
tifying specific histopathological features [9] crucial for 
SS diagnosis and classification, such as focal lympho-
cytic sialadenitis, acinar atrophy, and fibrotic changes. 
By quantifying the FS, AI algorithms provide an objec-
tive measure, mitigating the challenges of interobserver 
variability, a notable issue in SS diagnosis. A deep 
learning algorithm has been presented that predicts 
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the FS on histological slides of salivary gland biopsies 
obtained from 327 SS patients with an accuracy of 0.87 
[10].

As a more recent development, automated AI plat-
forms enable clinicians and scientists without coding 
experience to generate algorithms for image recogni-
tion purposes. Algorithms generated on autoML plat-
forms can provide similar results to those created by 
data scientists [11, 12]. In one study, automated deep 
learning models for medical image classification were 
created by healthcare professionals without coding 
experience using Google AutoML and showed good 
performances, at least on internal datasets [13].

In conclusion, the amalgamation of AI, particularly 
algorithms like the Giotto model, with pathology prac-
tices, presents a promising avenue to surmount the 
diagnostic challenges posed by SS. Through accurate 
and objective analysis of histopathological features, AI 
algorithms not only streamline the diagnostic process 
but also contribute to better understanding and man-
agement of SS, heralding a significant stride towards 
precision medicine in systemic autoimmune diseases.

Methods
Clinical dataset and labeling
In this study, a cohort of 307 patients with sicca syn-
drome was evaluated using a multiparametric protocol 
that included Schirmer’s test, Whole Unstimulated Sali-
vary Flow (WUSF), immunological study, and salivary 
gland biopsy. Of these, 43% (132) were diagnosed with 
SS based on 2016 ACR/EULAR Classification Criteria 
[5]. Histological work up was performed by an expert 
pathologist (Fig.  1). Slides were labeled based on histo-
pathological criteria. Each slide was labeled according 
to whether it represented SS (FS ≥ 1) or non-SS (normal 
histology). This labeling was based on expert pathologist 
evaluations to ensure accuracy. Exclusion criteria encom-
passed patients with coexisting conditions like sarcoido-
sis, IgG4-related disease, or lymphoma. Ethical approval 
was obtained from the Ethics Commission of Hospital 
Universitario La Paz (PI-5756), aligning with the stipula-
tions of the Declaration of Helsinki.

Hypothesis
The hypothesis posited that the CNN model would attain 
an Area Under the Curve (AUC) of 0.85 or higher in 

Fig. 1 Giotto AI‑platform training, validation and report
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discerning one or more lymphocyte foci consistent with 
an SS infiltrate.

Histology
Histological specimens from minor salivary glands of 86 
selected patients (37 with SS and 49 with non-SS sicca 
syndrome) underwent staining with Hematoxylin–Eosin 
(H&E) and CD3 + , and were captured in panoramic 
imagery under standardized settings of brightness, con-
trast, with a magnification of 2x (Fig.  2). H&E staining 
provides essential details of tissue architecture and cel-
lular morphology for diagnosing SS. CD3 staining labels 
T-lymphocytes, aiding in the precise quantification of 
lymphocytic infiltrates. Using different stainings helps 
train the model to recognize structures, not just colors 
and ensures comprehensive training data, enhancing the 
model’s ability to generalize. The 2X magnification bal-
ances detail capture and computational load, ensuring 
efficient processing by the Convolutional Neural Net-
work (CNN) architecture.

A compilation of 172 images (2 per patient) was cre-
ated, which included 74 images indicative of SS (FS ≥ 1 
indicating lymphocyte infiltrates) and 98 images rep-
resenting normal salivary glands. Two slide sets from 

each group were treated with both H&E and CD3 stain-
ing, serving as the training material for the software, and 
yielded comparable outcomes from both sets. The images 
were subsequently partitioned into training (138 images, 
80%) and validation datasets (34 images, 20%) for further 
analysis.

AutoMachine Learning (autoML) platform
The Giotto algorithm follows a three-phase process: 1) 
Data collection and labeling: Slides were labeled based 
on histopathological criteria for SS (FS ≥ 1 for SS, < 1 for 
non-SS). 2) Data preprocessing and augmentation: This 
included techniques such as rotation, contrast adjust-
ment, and zoom to enhance model training. 3) Model 
training utilizing CNNs: Specifically, a ResNet-152 archi-
tecture was employed.

Post-training, it quantitatively analyzes the FS and 
other histopathological features, enabling accurate and 
timely SS diagnosis, even in seronegative patients (Fig. 1).

Model performance was assessed using metrics such 
as accuracy, sensitivity, specificity, and the Area Under 
the Receiver Operating Characteristic Curve (AUROC). 
The dataset was divided into training and validation 
sets with an 80/20 split. The division ensured no overlap 

Fig. 2 Non‑Sjögren (A, B) and Sjögren (C, D) salivary gland histological samples stained with H&E (A, C) and CD3 (C, D)
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of patients between sets to avoid data leakage. Data 
augmentation was performed post-division to ensure 
robust training. Validation metrics were assessed at 
the end of each epoch to monitor model performance. 
A final independent test set is suggested for assessing 
generalization ability, though this was beyond the cur-
rent study’s scope.

Following an automated image preprocessing proce-
dure augmented with data, a CNN architecture based on 
the ResNet-152 model was employed. The model, with a 
size of 178.43 MB, was trained over a span of 10 epochs.

The Giotto platform provides various metrics, includ-
ing the loss evolution during model training for both 
training and validation datasets, information about the 
total number of samples, and the proportional division 
between training and validation sets. It also includes data 
on the dataset sizes in kilobytes (KB) and the class distri-
bution across different datasets. Furthermore, a detailed 
tabulation is available, specifying all applied transforma-
tions, such as rotation, contrast adjustment, vertical flip, 
horizontal flip, random zoom, brightness, symmetric 
warp, and random crop.

For predictive and classification accuracy assessment, 
a confusion matrix was generated to evaluate the mod-
el’s efficacy in accurately and inaccurately categorized 
images. With certain images, classification challenges 
were identified, with continuous monitoring of met-
rics on the validation dataset throughout the training 
regimen.

This study adheres to the TRIPOD (Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis) guidelines to ensure 
comprehensive reporting of the prediction model. Addi-
tionally, the CLAIM (Checklist for Artificial Intelligence 
in Medical Imaging) guidelines were followed to detail 
the development and validation of our AI-based image 
recognition model.

Statistical analysis
Descriptive and inferential statistics were employed for 
data summarization and analysis. Categorical variables 
were tabulated as frequencies and percentages, while 
continuous variables were articulated as means and 
standard deviations (SD) for normally-distributed data, 
or medians and interquartile ranges (IQR) for skewed 
data distributions. The threshold for statistical signifi-
cance was established at p-values less than 0.05. Ana-
lytical proceedings were conducted utilizing R-4.3.1 for 
Windows and Wizard Pro for Mac Version 2.0.12.

Results
Table  1 presents demographic, clinical, immunologi-
cal, and histological data between the SS and non-SS 
groups. Notable differences were observed in Anti-Ro 
positivity, Anti-La positivity, and Rheumatoid Factor 
positivity between the two groups (p < 0.001, p < 0.001, 
and p = 0.005, respectively). The Focus Score (FS) ≥ 1 was 
found to be significantly associated with SS (p < 0.001).

Table 1 Demographic, clinical, immunological and histological data of sicca syndrome patients

Sjögren (37) Non-Sjögren (49) p value

Female Gender 94.59% 87.76% 0.280

Age ≥ 50 years 67.57% 65.31% 0.826

Associated systemic autoimmune diseases 24.32% 24.49% 0.986

Thyroid involvement 43.24% 30.61% 0.227

Neurological involvement 13.51% 12.24% 0.862

Pulmonary involvement 5.41% 6.12% 0.888

Renal involvement 2.70% 0% 0.247

Antinuclear Antibody (ANA) positivity 70.27% 51.02% 0.072

Anti-Ro/SSA positivity 59.46% 2.04%  < 0.001

Anti-La/SSB positivity 29.73% 2.04%  < 0.001

Rheumatoid factor positivity 37.84% 12.24% 0.005

Glandular atrophy 75.00% 67.35% 0.444

Interstitial fibrosis 75.00% 73.47% 0.874

Ductal dilatation 66.67% 77.55% 0.264

Germinal centers 2.78% 0% 0.241

Lymphoepithelial lesion 13.89% 0% 0.007

FS ≥ 1 (Focus Score ≥ 1) 100% 0%  < 0.001

Pathological schirmer 75.68% 75.00% 0.943

Pathological WUSF 83.78% 68.09% 0.099
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The algorithm with information on training and vali-
dation of the datasets is shown in Fig.  1. The training 
dataset comprised 138 images (83 Non-SS, 55 SS) with 
a total data size of 40.07 MB, while the validation data-
set comprised 34 images (15 Non-SS, 19 SS) with a total 
data size of 10.02 MB (Table 2).

Through the evaluation utilizing a confusion matrix, 
the model manifested a reliability of 88% (score 0.88), 
accurately discerning 17 out of 19 SS cases and 15 out 
of 17 non-SS cases. Furthermore, the system exhib-
ited an adeptness at identifying more intricate images, 

subsequently ascertaining the likelihood of accurate 
classification as depicted in Fig. 3.

In the conducted evaluation, the diagnostic model 
demonstrated a sensitivity of 89.47% (95% Confidence 
Interval [CI]: 66.86% to 98.70%) and a specificity of 
88.24% (95% CI: 63.56% to 98.54%). The Positive Likeli-
hood Ratio was observed to be 7.61 (95% CI: 2.05 to 
28.21), while the Negative Likelihood Ratio was ascer-
tained at 0.12 (95% CI: 0.03 to 0.45). Within the studied 
population in Spain, the prevalence of the disease was 
documented at 0.50% [14]. The Positive Predictive Value 
was 3.68% (95% CI: 1.02% to 12.42%), whereas the Nega-
tive Predictive Value was notably high, at 99.94% (95% CI: 
99.78% to 99.98%). The overall accuracy of the model was 
delineated at 88.24% (95% CI: 73.13% to 96.54%), high-
lighting the model’s adept diagnostic proficiency in dis-
tinguishing between SS cases and non-SS cases.

Discussion
The integration of AI, particularly through CNN as 
manifested by this autoML platform, heralds a new 
advancement in the diagnostic realm of SS and poten-
tially streamlines the clinical or scientific workflow. The 
attained reliability score of 0.88 is emblematic of the pro-
found potential that AI-driven methodologies hold in 

Table 2 Training and validation dataset info

Dataset Total samples Split (%) Size

Training dataset 138
‑ 83 Non‑Sjögren
‑ 55 Sjögren

80% 40.07 MB

Validation dataset 34
‑ 15 Non‑Sjögren
‑ 19 Sjögren

20% 10.02 MB

Total 172
‑ 98 Non‑Sjögren
‑ 74 Sjögren

100% 50.09 MB

Fig. 3 Hardest images for the model to classify correctly
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diagnostic pathology, aligning with the burgeoning narra-
tive of AI’s instrumental role in modern healthcare [15].

Despite a smaller dataset, the results of this autoML 
study are comparable to recently presented data from a 
conventionally programmed deep learning algorithm to 
detect FS [10]. The advantage of autoML platforms, how-
ever, is a more agile and faster approach that can also 
be used by biological scientists and clinicians to address 
more individual questions than the detection of FS, 
including preclinical analyses.

Histopathological evaluation, especially the assess-
ment of FS, continues to be a linchpin in the diagnostic 
algorithm of SS. The objective quantification of FS via 
the autoML platform adeptly navigates the recognized 
challenge of interobserver variability, a notable impedi-
ment in SS diagnosis [16, 17]. This approach thereby 
fortifies the diagnostic criteria elucidated by the 2016 
ACR/EULAR, accentuating the indispensable role of 
salivary gland biopsy in SS diagnosis [18, 19]. An alter-
native approach that could enhance the objectivity of 
our AI model is the quantification of lymphocytes per 
4mm2, rather than relying solely on a binary classifica-
tion based on Focus Score (FS). This method could pro-
vide more detailed insights into lymphocytic infiltration 
and potentially improve the correlation with clinical out-
comes. Although this approach requires further develop-
ment and validation, it represents a promising direction 
for future research. By using autoML Platforms, such as 
here for SS, the diagnostic process can theoretically be 
completely automated. In combination with less invasive 
biopsy methods of the salivary glands [20], the diagnosis 
of SS can thus be scaled and accelerated. The combined 
use of generative AI can also directly report the results of 
these algorithms and, after clinical validation, add them 
to the electronic medical record or create further predic-
tive models in the context of clinical data.

The Giotto platform’s utility extends to providing a 
nuanced understanding of the disease by allowing for 
the integration of histological, demographic, clinical, and 
immunological data. This not only aids in the diagnosis 
and classification of SS but also offers a comprehensive 
platform for investigating the systemic involvements and 
EGMs in SS patients and its association with histology.

The integration of AI in diagnostic workflows, such 
as the use of AutoAI/no-code solutions, faces several 
regulatory hurdles. For laboratory-developed tests, espe-
cially those involving AI algorithms, regulatory approval 
requires rigorous validation across diverse clinical set-
tings. The democratization of AI tool development 
through no-code platforms can potentially accelerate 
this process by enabling pathologists and researchers 
to develop and test algorithms without extensive cod-
ing expertise. However, ensuring the robustness and 

generalizability of these algorithms across different popu-
lations and clinical conditions is crucial for gaining regu-
latory approval and widespread clinical adoption.

This study has several limitations. It emanates from the 
relatively modest cohort size and its single-center nature, 
which might potentially constrain the generalizability of 
the findings across diverse populations and clinical set-
tings. Furthermore, the algorithm presented here was 
not evaluated in an external dataset, and an independ-
ent hold-out test set was not included due to the limited 
sample size, which may impact the generalizability of the 
model’s performance. While the Giotto platform show-
cased notable accuracy in SS diagnosis, the transposition 
of AI algorithms to routine clinical practice necessitates a 
thorough understanding of the algorithm’s performance 
across varied clinical and demographic landscapes. How-
ever, we would like to point out that autoML platforms 
such as Giotto provide user interfaces in the form of web 
apps that can be integrated in other software systems 
such as the electronic medical record. We postulate that 
autoML platforms do not serve to develop algorithms 
to be put into production and approved by regulatory 
bodies. On the other hand, they are so flexible that they 
have found their role in diagnostics, or at least preclini-
cal research, in a different way. We do not show heatmaps 
in this study to demonstrate that the algorithm actually 
applied inflammatory foci to its decision. This could be 
added in future work as heatmaps have an educative 
value by drawing attention to diagnostically important 
structures by color [21].

Conclusions
In conclusion, the encouraging findings from this study 
underscore the substantive promise of AI in enhancing 
diagnostic accuracy and efficiency in SS diagnosis. The 
systematic identification of complex histopathological 
features and their correlation with clinical manifestations 
harbors a promising avenue for future research endeav-
ors [22]. AutoML platforms as presented here enable cli-
nicians and researchers to develop their own algorithms, 
which pinpoints their large potential in horizontal and 
vertical digitalisation. Clearly, larger datasets with exter-
nal evaluation are necessary to fully estimate the robust-
ness of such algorithms.
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