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Abstract
Background The copy number status (CNS) of the survival motor neuron (SMN) gene may influence the risk and 
prognosis of amyotrophic lateral sclerosis (ALS) and lower motor neuron diseases (LMND) other than spinal muscular 
atrophy (SMA). However, previous studies of this association, mainly from Europe, have yielded controversial results, 
suggesting possible regional differences. Here, we investigated the effect of the SMN gene in Japanese patients with 
ALS and LMND.

Methods We examined the SMN copy numbers and clinical histories of 487 Japanese patients with sporadic ALS (281 
men; mean age at onset 61.5 years), 50 with adult LMND (50 men; mean age at onset 58.4 years) and 399 Japanese 
controls (171 men; mean age 62.2 years). Patients with pathogenic mutations in ALS-causing genes were excluded. 
SMN1 and SMN2 copy numbers were determined using the droplet digital polymerase chain reaction.

Results The frequency of a copy number of one for the SMN2 gene was higher in patients with ALS (38.0%) than 
in healthy controls (30.8%) (odds ratio (OR) = 1.37, 95% confidence interval (CI) = 1.04–1.82, p < 0.05). The SMN2 copy 
number affected the survival time of patients with ALS (median time: 0 copies, 34 months; 1 copy, 39 months; 2 
copies, 44 months; 3 copies, 54 months; log-rank test, p < 0.05). Cox regression analysis revealed that the SMN2 copy 
number was associated with increased mortality (hazard ratio = 0.84, 95% CI = 0.72–0.98, p < 0.05). Also, null SMN2 
cases were significantly more frequent in the LMND group (12.0%) than in the control group (4.8%) (OR = 2.73, 95% 
CI = 1.06–6.98, p < 0.05).

Conclusions Our findings suggest that SMN2 copy number reduction may adversely affect the onset and prognosis 
of MND, including ALS and LMND, in Japanese.
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Background
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset 
upper and lower motor neuron disease (MND) with 
a diverse genetic background; 5–10% of ALS case are 
familial, and more than 30 genes are involved, including 
TARDBP, FUS, TBK1, c9orf72, and SOD1 [1–3]. In addi-
tion, several related genes have been reported to influ-
ence disease development, one being SMN, whose copy 
number status (CNS) appears to be of importance in this 
context [3, 4].

SMN has two homologs, SMN1 and SMN2, which 
are the causative and disease-modifying genes of spinal 
muscular atrophy (SMA), a lower motor neuron disease 
that develops in early childhood [5, 6]. SMA is caused 
by a deficiency of SMN1, and the severity is reduced as 
the copy number of SMN2 increases [6]. Differences in 
SMN1 and SMN2 messenger RNA (mRNA) splicing are 
the major factor in the pathomechanism of SMA. SMN1 
mRNA produces normal SMN protein, whereas mRNA 
derived from SMN2 produces mostly unstable SMN pro-
tein, although a small amount undergoes normal splicing 
[7]. The amount of normal SMN protein produced plays a 
major role in determining the severity of SMA [6].

ALS and SMN are also associated with dysregulation 
of nuclear function. Nucleolar gemini bodies (GEM), 
in which the SMN protein is a major component, are 
involved in the maturation of functional small nuclear 
RNAs (snRNAs) and play an important role in mRNA 
splicing [8]. In SMA-affected tissues, the levels of SMN 
protein are markedly reduced, resulting in GEM deple-
tion and impairment of mRNA splicing function [9]. 
Interestingly, in ALS, GEM are decreased in affected tis-
sues, and snRNA expression is also altered [10, 11], sug-
gesting that SMN CNS could be a noteworthy factor in 
ALS.

A number of studies have examined the association 
between SMN CNS and ALS [12–18], and a recent large-
scale investigation found no link between SMN CNS and 
the development and prognosis of the disease [19]. That 
study, however, and most of the previous ones, were con-
ducted in Europe, suggesting the need for a wider survey 
of regional differences in genetic background [4].

The frequency of genetic mutations often varies widely 
by region and can influence the diagnosis of ALS and for-
mulation of treatment strategies. For example, the most 
frequent ALS-causing variant in Caucasians is the hexa-
nucleotide repeat expansion of C9orf72 [20, 21]; however, 
this mutation is very rare in Asians [22]. Furthermore, 
SMN CNS in controls varies widely in Europe [13, 14], 
Asia [23, 24], and Africa [25] (Table  1). Regarding the 
association between SMN CNS and MND in East Asia, 
two studies from Korea have reported that deletion of the 
SMN2 gene is involved in the development of ALS [16] 
and lower motor neuron disease (LMND) [26], although 
each of those studies involved only a small number of 
cases.

As the effects of SMN CNS on ALS and LMND may 
differ between Europe and Asia, a larger study is war-
ranted. Here, we examined the association between SMN 
CNS and the onset and outcome of ALS or LMND in Jap-
anese patients.

Methods
This study included 487 Japanese patients with spo-
radic ALS (SALS) (281 men, 206 women; mean age at 
onset 61.5 years; bulbar onset 121 patients), 50 Japanese 
patients with adult lower motor neuron disease (LMND) 
(50 men; mean age at onset 58.4 years) and 399 Japanese 
controls (171 men, 228 women; mean age at sampling 
62.2 years) (Table 2). Of the 487 ALS cases, 440 were reg-
istered in the Japanese Consortium for Amyotrophic Lat-
eral Sclerosis (JaCALS) data bank, and 47 were autopsy 
cases at Niigata University. The LMND patients were 50 
adults who were negative for spinal and bulbar muscu-
lar atrophy (SBMA) and SMA by genetic testing among 
100 consecutive patients who had requested genetic test-
ing for SBMA at Niigata University. For this reason, all 
of the LMND patients were male. As controls, we also 
included 299 spouses of patients with ALS registered in 
the JaCALS. Another 100 of the controls were patients 
with other diseases, including 41 with spinocerebellar 
ataxia(SCA) (SCA3: 3 cases, SCA6: 10 cases, SCA31: 7 
cases, DRPLA: 1 case, undetermined: 20 cases), 5 with 
early onset SCA (EAOH: 3 cases, undetermined: 2 cases), 
4 suspected of Huntington’s disease (HD: 1 case, undeter-
mined: 3 cases), 42 with leukoencephalopathy or cerebral 
small vessel disease (CADASIL: 2 cases, HDLS: 1 case, 
undetermined: 39 cases), 5 with parkinsonism (unde-
termined: 5 cases), 2 with dementia (undetermined: 2 

Table 1 Differences in SMN1 and SMN2 copy number in control 
cases by country/region
SMN1 CNS China 

[23]
Taiwan 
[24]

France 
[13]

Netherlands 
[14]

Mali 
[25]

0 (%) 0.0 0.0 0.0 0.0 0.0
1 (%) 2.4 2.1 2.1 2.3 0.5
2 (%) 89.7 90.3 95.5 94.1 47.0
3 (%) 7.0 7.5 2.4 3.6 39.6
4 (%) 1.0 0.2 0.0 0.0 12.9
Total n= 1712 107,611 621 984 628
SMN2CNS China 

[23]
Taiwan 
[24]

France 
[13]

Netherlands 
[14]

Mali 
[25]

0 (%) 5.2 4.6 8.4 7.9 23.9
1 (%) 29.0 31.9 38.5 37.8 43.9
2 (%) 61.1 60.5 51.7 49.4 27.4
3 (%) 3.9 2.8 1.4 4.7 1.8
4 (%) 0.9 0.2 0.0 0.2 0.6
Total n= 1712 107,611 621 984 613
Country names followed the notation in the referenced papers
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cases), and 1 normal control seen at Niigata University. 
The age at onset and the prognosis of the ALS cases were 
investigated on the basis of the JaCALS registry informa-
tion and autopsy summaries. The LMND patients were 
not followed up and only age at onset was investigated 
based on the order sheets for genetic testing. The date 
when individual patients had first noticed symptoms was 
denoted as the onset of ALS or LMND. The date of death 
from any cause, or the introduction of invasive tracheos-
tomy ventilation was set as the endpoint of ALS.

The JaCALS method for extraction of DNA has been 
reported previously [27]. DNA samples from autopsy 
cases were also collected from central nervous system 
(occipital lobe, motor cortex, and cerebellum) tissue 
using a DNA extraction kit (QIAamp® DNA Mini Kit Cat. 
No. 56304; Qiagen, Venlo, Netherlands). DNA of LMND 
patients was extracted from blood samples.

We examined the causative genes of ALS and excluded 
those with pathological mutations to assess the effects 
of SMN copy number more accurately. For 344 of the 
JaCALS-registered patients, a comprehensive analysis 
had been conducted previously [27], and the remain-
ing 96 had undergone analysis of repeat expansions in 
C9orf72 [28] and high-frequency causative gene muta-
tions (SOD1, TDP-43 and FUS) using high-resolution 
melting (HRM) [29]. For the 47 autopsy cases, we per-
formed comprehensive Illumina NovaSeq 6000 exome 
analysis by outsourcing (Takara Bio, Shiga. Japan) and 
excluded patients with non-synonymous or truncated 
variants of specific genes (TARDBP, OPTN, FUS, SOD1, 
TBK1, SQSTM1, MATR3, TUBA4A, NEK1, HNRN-
PA2B1, VCP, ELP3, SETX, HNRNPA1, CCNF, VAPB, 
C21orf2, CHCHD10, NEFH, ANG, DCTN1, CHMP2B, 
UBQLN2, Fig.  4, PFN1, ARHGEF28, EWSR1, TAF15, 
ANXA11, DAO, ERBB4, MAPT, TIA1, GLE1, PRPH, 
C9orf72, ALS2, SPG11, SIGMAR1 and DNAJC7) and 

C9orf72 repeat expansions. ALS causative gene muta-
tions were observed in five JaCALS cases and three 
Niigata University cases. These 8 cases are not included 
in the 487 cases analyzed in this paper. In the LMND 
group, the number of CAG repeats in the AR gene was 
determined in order to exclude SBMA, and cases with 
0 copies of the SMN1 gene, i.e., SMA cases, were also 
excluded.

SMN1 and SMN2 copy numbers were determined 
using TaqMan® droplet digital PCR (ddPCR) on a QX200 
system (Bio-Rad Laboratories, Hercules, CA, USA) 
and ddPCR™ Supermix for Probes (No dUTP) (Cat. No. 
1863024; Bio-Rad Laboratories). BCKDHA was used as a 
reference gene [30]. Primer and TaqMan probe sequences 
were designed for distinguishing between single base dif-
ferences in exon 7 of the SMN1 and SMN2 genes [30]. 
The thermal cycler settings were as follows: (1) 94ºC for 
10 min, (2) 94ºC for 30 s, (3) 50ºC for 2 min, (4) return to 
step 2) 49 times, (5) 90ºC for 10 min, and (6) maintain at 
4ºC. The copy number of the target gene was determined 
as the ratio of the number of droplets positive for the tar-
get genes to those positive for BCKDHA.

To test for differences in the frequency of each SMN 
CNS between ALS or LMND patients and controls, the 
Fisher exact test was applied. Kaplan-Meier survival 
curves for the SMN1 or SMN2 copy number groups in 
ALS were compared, and a log-rank test was performed. 
Cox regression analysis was used to determine indepen-
dent prognostic factors for survival, after adjusting for 
SMN1 or SMN2 copy number, sex, type of onset (bulbar 
or other), and age at onset. Each Cox regression analysis 
was performed independently, since the copy numbers of 
SMN1 and SMN2 are related. GraphPAD Prism 10 was 
used for all statistical analyses.

Table 2 Characteristics and SMN1 or SMN2 copy number groups in this study
Control
(n = 399)

ALS
(n = 487)

LMND
(n = 50)

Control vs. ALS
OR (95% CI)

Control vs. LMND
OR (95% CI)

Characteristics
Age (years)
Mean (SD)

62.2 (11.0) 61.5 (11.1) 58.4 (12.6) - -

 M/F 171/228 281/206 50/0 - -
SMN1 copies
 1 copy 5 (1.3%) 4 (0.8%) 0 (0%) 0.65 (0.20–2.17) -
 2 copies 364 (91.2%) 457 (93.4%) 47 (94.0%) 1.46 (0.88–2.42) 1.51 (0.46–4.82)
 3 copies 28 (7.0%) 23 (4.7%) 2 (4.0%) 0.66 (0.37–1.13) 0.55 (0.13–2.10)
 4 copies 2 (0.5%) 3 (0.6%) 1 (2.0%) 1.23 (0.25–6.96) 4.05 (0.27–35.2)
SMN2 copies
 0 copy 19 (4.8%) 35 (7.2%) 6 (12.0%) 1.55 (0.88–2.75) 2.73 (1.06–6.98)*

 1 copy 123 (30.8%) 185 (38.0%) 14 (28.0%) 1.38 (1.04–1.81)* 0.87 (0.46–1.68)
 2 copies 251 (62.9%) 260 (53.4%) 29 (58.0%) 0.68 (0.52–0.89)* 0.81 (0.45–1.47)
 3 copies 6 (1.5%) 7 (1.4%) 1 (2.0%) 0.96 (0.35–2.87) 1.34 (0.11–8.43)
* P< 0.05
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Results
The distribution of SMN1 and SMN2 copy numbers is 
summarized in Tables  2 and 3. Most control cases had 
two copies of SMN1: more than 90% of individuals had 
two copies, 7.0% had three copies, and only 1.3% had 
one copy of SMN1. The frequency of SMN1 copy num-
bers did not differ significantly between ALS patients and 
the control group. In contrast, genetic variations were 
observed in the copy numbers of SMN2 in both groups. 
In the control group, 4.8% had null alleles, 30.8% had one 
copy, 62.9% had two copies, and 1.5% had three copies. 
The presence of one SMN2 copy was more common in 
patients with ALS (38.0%) than in the controls (OR = 1.38, 
95% CI = 1.04–1.81, p < 0.05).

We classified ALS patients based on their SMN1 and 
SMN2 copy number and investigated their survival 
time (Fig.  1a, b). This revealed no significant differ-
ences among the groups classified according to SMN1 
copy number (Fig. 1a). However, classification by SMN2 
copy number revealed significant differences in sur-
vival time. Patients with the SMN2 null allele showed 
shorter survival than the other patients [median/mean 
survival: null SMN2 (n = 35) = 34/38.6 months; one copy 
(n = 185) = 39/62.0 months; two copies (n = 260) = 44/61.0 
months; three copies (n = 7) = 54/66.6 months; log-rank 
test, p < 0.05] (Fig.  1b). Cox regression analysis revealed 
that age at onset (p < 0.001) and SMN2 copy number 
(hazard ratio = 0.84, 95% CI = 0.72–0.98, p < 0.05) were 
independently associated with the mortality rate.

SMN2 copy number had no effect on the age at onset 
of ALS (mean 62.9 years for null cases, 61.7 years for 
one copy, 61.2 years for two copies, and 63.9 years for 
three copies; one-way ANOVA, p = 0.77). There was no 
significant difference in SMN2 copy number between 
patients with bulbar onset and those with non-bulbar 
onset (43.0% and 36.3%, respectively, for one SMN2 copy; 
chi-squared test, p = 0.19). There was also no significant 

difference in SMN2 copy number between JaCALS-reg-
istered control patients and the control patients from 
Niigata University (30.4% versus 32.0%, respectively, for 
one SMN2 copy).

In addition, null SMN2 cases were significantly 
more frequent in the LMND group than in the control 
group (12.0% versus 4.8%, respectively; OR = 2.73, 95% 
CI = 1.06–6.98, p < 0.05) (Table  2). There were no statis-
tically significant differences in SMN1 copy number. As 
no prognostic data were available for the LMND group, 
prognostic evaluation was not performed.

Discussion
Our present study of 487 Japanese ALS patients revealed 
that the CNS of SMN2 differed significantly from that 
in the controls: ALS patients with one SMN2 copy were 
significantly more frequent, and SMN2-null ALS patients 
had a significantly worse outcome. Furthermore, in the 
LMND group (excluding SBMA), SMN2-null patients 
were significantly more frequent than in the control 
group. These findings suggest that, at least in Japanese 
patients with adult-onset MND, including ALS and 
LMND, SMN2 copy number reduction adversely affects 
the onset and prognosis of MND.

However, a recent large European study showed that 
SMN copy number did not affect the risk for develop-
ment of ALS or its prognosis [19]. This discrepancy may 
be attributable to differences in genetic background. 
SMN CNS in healthy subjects varies by region (Table 1). 
For example, normal individuals with only one copy 
of SMN2 are reportedly more frequent among Cauca-
sians (37.9 − 42.2% ) [13–15] than among Asians (29.0 
− 31.9%) [16, 23, 24]. A study from South Korea, located 
in the East Asian region as Japan, yielded results similar 
to those of the present study, in which SMN2 gene defi-
ciency was associated with the development of ALS [16] 
and LMND [26], although the results were based on only 

Table 3 Details of SMN1 or SMN2 copy number groups
SMN1:SMN2
copies

Control
(n = 399)

ALS
(n = 487)

LMND
(n = 50)

Control vs. ALS
OR (95% CI)

Control vs. LMND
OR (95% CI)

1:1 3 (0.8%) 1 (0.2%) 0 0.27 (0.02–1.83) -
1:2 1 (0.3%) 3 (0.6%) 0 2.46 (0.37-32.0) -
1:3 1 (0.3%) 0 0 - -
2:0 14 (3.5%) 29 (6.0%) 4 (8.0%) 1.74 (0.90–3.28) 2.39 (0.83–7.33)
2:1 103 (25.8%) 168 (34.5%) 13 (26.0%) 1.51 (1.13–2.03)* 1.01 (0.51-2.00)
2:2 242 (60.7%) 254 (52.2%) 29 (58.0%) 0.70 (0.54–0.93)* 0.90 (0.50–1.62)
2:3 5 (1.3%) 7 (1.4%) 1 (2.0%) 1.15 (0.40–3.22) 1.61 (0.13–12.1)
3:0 4 (1.0%) 3 (0.6%) 1 (2.0%) 0.61 (0.15–2.29) 2.02 (0.16–12.5)
3:1 17 (4.3%) 16 (3.3%) 1 (2.0%) 0.76 (0.40–1.57) 0.46 (0.04–2.76)
3:2 7 (1.8%) 3 (0.6%) 0 0.35 (0.10–1.24) -
4:0 1 (0.3%) 3 (0.6%) 1 (2.0%) 2.47 (0.37–32.1) 8.12 (0.42–154.5)
4:2 1 (0.3%) 0 0 - -
* P<0.05
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a small number of cases. These results suggest that SMN2 
copy number reduction may adversely affect the inci-
dence and prognosis of adult-onset MND in East Asia, 
including Japan and South Korea.

The main issue raised by this study is why the copy 
number of SMN2, and not that of SMN1, affects the 
development and prognosis of ALS and LMND, even 
though most of the SMN protein is expressed from the 
SMN1 gene. A simple decrease in the SMN protein level 
due to SMN2 gene reduction cannot explain the develop-
ment of MND and its prognostic impact.

There are several hypotheses that could explain this sit-
uation: the first is that the SMN2-derived defective SMN 
protein has physiological importance. There are several 

rare isoforms of SMN in addition to the normal type, and 
axonal SMN with intron 3 retention plays an important 
role in mammalian brain [31]. However, the Δ7 SMN 
protein, which is produced mainly from SMN2, is less 
stable because it lacks the exon 7-derived amino acid 
[31] and no important physiological function has been 
reported for it to date.

A second possibility is that SMN2 may have tissue-
specific importance, as the splicing patterns of SMN2 
mRNA vary from tissue to tissue. In the testes of mice 
experimentally expressing SMN2, the splicing pattern 
of SMN2-derived mRNA is greatly altered and full-
length SMN protein is produced in large amounts [32, 
33]. SMN2 CNS changes would be important if SMN2 
mRNA splicing is altered and involved in normal SMN 
protein expression in the human nervous system, muscle, 
and cardiopulmonary tissues, and would influence ALS 
pathogenesis or prognosis, as in the mouse testis model. 
Currently, however, there is no such evidence, and there-
fore this possibility remains merely speculative.

A third possibility is simultaneous loss of genes near 
SMN2. NAIP, located close to SMN1, is reportedly asso-
ciated with ALS [34], whereas SERF1B, located close 
to SMN2, has not yet been linked to any neurologi-
cal disease. Thus, the mechanism by which the CNS of 
SMN2 influences the onset and prognosis of adult MND 
remains unclear and requires further investigation.

One of the limitations of this study was the small num-
ber of cases examined in comparison to recent large-scale 
studies. The proportion of SMA carriers in our reported 
control cohort does not differ significantly from previ-
ously reported data in Japan [35], suggesting that the 
analysis group in this study reflects the SMN CNS status 
in Japan to a certain extent. However, there are limita-
tions to what can be concluded from an analysis based on 
several hundred cases. Additional studies of East Asian 
populations are therefore warranted. In addition, as the 
LMND group comprised only male patients, and prog-
nosis evaluation has not been conducted. Future studies 
should also include female patients and investigate the 
relationship between the prognosis of LMND cases and 
SMN CNS. Additionally, several mutations in the SMN1 
and SMN2 genes are known, and these may also impact 
the disease prognosis of SMA [36]. The influence of these 
genetic mutations on ALS and LMND is an important 
subject for future investigation.

This study has shown that the CNS of SMN2 affects 
the incidence and prognosis of ALS and LMND in Jap-
anese patients, contrary to the results of previous stud-
ies in Europe, suggesting regional differences in genetic 
background.

Abbreviations
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SMN  Survival motor neuron

Fig. 1 Kaplan-Meier analysis of survival time in the (a) SMN1 and (b) SMN2 
copy number groups. Survival time differed between the SMN2 copy num-
ber groups (Cochran Mentel Haenszel test; p = 0.02)
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