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1. Introduction
In the last few decades, heterogeneous catalysis has attracted the attention of chemists due to the benefits of convenient 
recovery of heterogeneous catalysts from reaction media and efficient recycling for relatively high numbers of cycles. 
Among the various heterogeneous supports for catalysts, polymeric carbon in different morphological forms has become 
popular due to special characteristics including a large surface area, chemical inertness, thermal and mechanical stability, 
and structural uniqueness. Carbon materials including charcoal, graphene, graphene oxide, reduced graphene oxide, and 
carbon nanomaterials of various nanosized forms were reported as catalysts as well as support for catalysts for many 
organic transformations [1]. Nanocarbon materials are used for a wide variety of nanoparticles that can be distinguished 
based on morphology, size, and nature, such as nanotubes (single and multiwall), nanofibers, fullerenes, nanospheres, 
hollow spheres [2], nanocoils, nanodiamonds, nanohorns, nanoonions, nanocages, nanoleaves, quantum dots, sheet-like 
carbon or graphene, nanohybrids, and nanoporous carbon [3,4]. 

Extensive reports about the application of palladium on charcoal in organic synthesis specifically for coupling 
reactions, oxidation, dehydrogenation, carbonylation, polymerization, cyclization, or hydrogenolysis are available 
in the literature [5]. Carbon nanoparticles have also been employed as photocatalysts, acid-base catalysts, and 
electrocatalysts [6]. Nanoparticles incorporating noble metals such as silver (Ag), gold (Au), ruthenium (Ru), and 
palladium (Pd) have been supported on nanocarbon materials such as carbon nanotubes, and graphene/graphene 
oxide has been widely employed in promoters and catalysts in many organic transformations [7]. Graphene oxide, 
reduced graphene oxide, functionalized graphene oxide, and heteroatom-doped graphene have also been employed 
as metal-free heterogeneous catalysts [8]. Applications of metal oxide nanoparticles supported on graphene/reduced 
graphene oxide, pyrene-tagged palladium and ruthenium complexes immobilized on reduced graphene oxide, 
sulfonated reduced graphene oxide, N-heterocyclic carbene metal complexes supported on graphene oxide, and ionic 
liquid supported on graphene oxide in nanocomposites were reported to yield efficient heterogeneous nanocatalysts 
for various organic transformations [9,10]. Graphene-based nanocomposites including polymeric carbon nitride 
nanocomposites (graphene sheet), palladium on graphene, palladium on partially reduced graphene nanosheets, 
graphene oxide on ferroferric oxide, sulfated graphene, thiolated graphene oxide, silver-decorated graphene oxide 
catalysts, and manganese oxide nanorods/graphene oxide composites have been employed as nanocatalysts for a 
variety of organic reactions [11]. In the present work, using a 1:1 (v/w) ratio of acetic acid and activated charcoal, an 
adsorption catalyst was prepared. The loading of acetic acid on charcoal was determined with random samples of 0.1 
g using a titration method against 0.01 N NaOH. 

Abstract: The adsorption of glacial acetic acid over a charcoal support was investigated. The amount of adsorption was analyzed using 
a traditional titration method and the prepared adsorbed system was employed as a heterogeneous catalyst for organic reactions as a 
viable application. Different 14-aryl-14H-dibenzo[a,j]xanthenes were synthesized using mild acidic charcoal as a catalyst and yields of 
88%–94% were obtained. The advantages of this method include the easy preparation of a cheaper and environmentally safe catalyst 
system, a simple work-up procedure, and excellent catalytic efficacy.
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2. An overview of charcoal-supported catalysis
A number of polymers have been found to be applicable for heterogeneous solid support, but charcoal has particularly 
caught the attention of researchers in the field of heterocyclic synthesis because charcoal is a good adsorbent with large 
surface area, thermochemically stable, greener, cheaper, readily available, and reusable. A variety of charcoal-supported 
heterogeneous catalysts have been used in different organic transformations, including MoO2-Bu3SnCl supported on 
charcoal [12], tungstic acid-tributyltin chloride immobilized on charcoal [13], sulfonated charcoal [14–16], nickel on 
charcoal [17], polymeric carbon in the form of expandable graphite,[18] palladium on charcoal [19–21], tungstophosphoric 
acid on activated carbon [22], sulfonated carbon materials [23], H2SO4-charcoal [24], ZnO- and Nb2O5 -activated charcoal 
[25], Pd-Cu on charcoal [26], CuNPs on activated carbon1 [27], and NaHSO4·H2O on activated charcoal [28].

Considering the advantages of charcoal support applications in organic synthesis [29] and transformations, the present 
study was undertaken to develop a charcoal-supported acid catalyst system for the synthesis of 14-aryl-14H-dibenzo[a,j]
xanthenes.

3. Experimental
All starting reagents were purchased from Loba Chemie Pvt. Ltd. (Mumbai, India) or Merck Specialities Pvt. Ltd. 
(Mumbai, India) and used without further purification unless noted. Melting points were determined using the 
conventional method and verified. Reactions were monitored by thin-layer chromatography on silica gel 60 F254 plates. 
Since all obtained products have been reported, they were characterized by melting points with comparisons to those 
reported in the literature. 
3.1. Preparation of mild acidic charcoal
In the literature, metal nanoparticles, metal oxide, sulfuric acid, and other materials were reported to be supported 
on charcoal. To ameliorate the strong and hazardous acid-catalyzed reaction conditions, we aimed to develop a mild 
acid catalyst system using acetic acid supported on charcoal. To ensure a simple work-up procedure, ease of catalyst 
handling, reduced catalyst amounts, and the recycling of the cheap, safe solid support, charcoal was chosen for the 
heterogeneous reaction environment. Different charcoal particle sizes were used, such as granular (1.5 mm) and fine 
(1 mm). The acetic acid and activated charcoal were combined at a ratio of 1:1 (v/w) (Figure). After the preparation of 
the acetic acid adsorbed on the charcoal system (using the solvent method described in Section 3.1.2), the loading of 
the acetic acid over granular and fine charcoal was estimated titrimetrically (using the method described in Section 
3.2). Three random acidic charcoal samples of 0.1 g for both fine (samples F1, F2, and F3) and granular (samples G1, 
G2, and G3) charcoal were used for the estimation of loading. Acidic charcoal samples F1, F2, and F3 achieved acetic 
acid loading of 14.2, 14.6, and 15 mmol/g (85%–91%), respectively, while samples G1, G2, and G3 respectively achieved 
loading of 10.9, 11.3, and 11.9 mmol/g (65.4%–71.4%). Thus, the fine charcoal samples had higher amounts of adsorbed 
acetic acid compared to the granular samples. This could be attributed to the small particle size of fine charcoal, which 
possesses a large surface area for adsorption. Therefore, fine charcoal was utilized as a support for the preparation of the 
mild acidic charcoal catalyst. 
1Reza K, Monireh N (2016). Synthesis of 1H-tetrazole derivatives from amine compounds in the presence of copper nanoparticles on charcoal (CU/C) 
as a heterogeneous catalyst – Presented at the Iranian Seminar of Organic Chemistry. Website https://sid.ir/paper/936306/en [accessed 25 January 2022].
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Figure 1. Easy preparation of mild acidic charcoal catalyst. 8 
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Figure. Easy preparation of mild acidic charcoal catalyst.
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3.1.1. Neat method
We first undertook the preparation of acidic charcoal under neat conditions [24]. Activated fine charcoal (1 g) was placed 
in a 50-mL beaker and 1 mL of glacial acetic acid was subsequently added. The mixture was stirred thoroughly with a 
glass rod, yielding the acidic charcoal catalyst. To estimate the loading of the adsorbed acetic acid catalyst, three random 
samples (0.1 g) of the previously prepared acidic charcoal were considered (using the method described in subsection 3.2). 
Surprisingly, the adsorption of the acetic acid on the charcoal was found to be quite uneven, varying from 63.5% to 88.7%. 
To overcome the uneven adsorption of the acetic acid under neat conditions, we used a solvent [30]. 
3.1.2. Solvent method
To achieve homogeneous and uniform adsorption of the catalyst over charcoal, ethanol was used as a solvent. Glacial acetic 
acid (1 mL) was added to a 50-mL round-bottom flask fitted on a magnetic stirrer and containing 10 mL of ethanol. The 
mixture was then stirred to obtain a homogeneous solution. To that homogenized solution of ethanolic acetic acid, 1 g of 
activated fine charcoal was added in portions and the mixture was stirred for 10 min for maximum uniform adsorption. 
The ethanol was then removed with a rotary evaporator to obtain dry acetic acid-adsorbed charcoal powder. Estimation 
of the adsorbed acetic acid of the three random samples of acidic charcoal prepared by solvent method was performed 
titrimetrically, as described in the next section. The loading of acetic acid on charcoal was found to be 85%–91%, revealing 
satisfactory adsorption higher than that obtained by the neat method (Table 1) [30]. 
3.2. Estimation of acetic acid loading on charcoal
The general procedure used for the titrimetric estimation of the amount of acetic acid adsorbed on charcoal involved 0.1 
g of acidic charcoal prepared with fine and granular charcoal by neat and solvent methods. Acidic charcoal (0.1 g) was 
mixed with 10 mL of distilled water in a 50-mL beaker and stirred. The solution was then filtered with a filtration funnel 
with washing by 5 mL of distilled water in portions. The washing of the charcoal residue with distilled water continued 
until the eluent did not show any traces of acid as confirmed with blue litmus paper. The collected filtrate was then diluted 
to 100 mL in a volumetric flask. The standardization of 0.01 N NaOH solution was performed using standard 0.01 N 
oxalic acid solution. The diluted acid solution (10 mL) was then titrated with the previously standardized 0.01 N NaOH 
using phenolphthalein as an indicator. The titration procedure was repeated two more times to obtain averaged burette 
readings. Using the average burette readings and the concentration and volume parameters of both types of solutions, the 
concentrations of the acid solutions were obtained. Using those calculated concentrations, the molecular weight of the 
acetic acid, and the volume of the diluted acid solution, the amount of acetic acid adsorbed per 0.1 g of acidic charcoal was 
determined using the following equation [30]:

W = EW ×  C(cal) ×  V 
Here, W = amount of acetic acid in g, EW = equivalent weight of acetic acid, C(cal) = calculated normality of acetic 

acid, and V = volume of the diluted acid solution in liters.
3.3. Synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes 
The optimization of the amount of mild acidic charcoal catalyst was performed using benzaldehyde and β-naphthol (1:2) 
in refluxing ethanol with different amounts of mild acidic charcoal catalyst (Scheme). The optimized catalytic conditions 
provided satisfactory results with respect to the reaction time and yield of the compounds at an amount of 0.1 g as described 
in Table 2. Further increases in the catalyst amount beyond 0.1 g did not cause significant changes in reaction time or yield. 
Therefore, 0.1 g of mild acidic charcoal was utilized as the catalyst for the validation of catalyst activity over a range of 
diverse substrates. 

A 50-mL round-bottom flask containing a mixture of aldehyde (10 mmol), β-naphthol (20 mmol), and 0.1 g of mild 
acidic charcoal catalyst was refluxed with 10 mL of ethanol for an appropriate time (Table 3). The progress of the reaction 

Table 1. Comparative characterization of adsorbed catalysts.

Adsorption method Solvent Used 0.1 g acidic charcoal Samples % adsorption

Neat method -
Sample 1 63.53
Sample 2 73.69
Sample 3 88.70

Solvent method Ethanol
Sample 1 85.31
Sample 2 91.00
Sample 3 87.50
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Table 2. Optimization of acidic charcoal catalyst amount under refluxing ethanol using benzaldehyde and β-naphthol (1:2). 
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Scheme.  Synthesis of 14-alkyl/aryl-14H-dibenzo[a,j]xanthenes.

Entry Catalyst (g) Time (h) Yield (%)b

1 0.025 4 80
2 0.050 4 84
3 0.075 3 88
4 0.100 2.5 94
5 0.125 2.5 92
6 0.150 2.5 90

Table 3. Synthesis of 14-alkyl/aryl-14H-dibenzo[a,j]xanthenes catalyzed using mild acidic charcoal.

Entry Product Time (h) Yieldb (%)
Melting point (°C)
Observed Reported

3-i

O

2.5 94 180–182 181–183 [33]

3-ii

O

Cl

2 90 214–216 214–216 [33]

3-iii

O

Cl

2 90 288–290 287–289 [33]

3-iv

O

NO2

2 89 214–216 214–217 [34]

3-e

O

OCH3

2.5 92 206–208 206–208 [35]

3-f

O

CH3

3 88 226–228 228–230 [35]

(b 
 refers isolated yields.)
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was monitored by TLC using an ethyl acetate and n-hexane solvent system. After completion of the reaction, the warm 
reaction mixture was filtered with a filtration funnel to separate the charcoal residue. The charcoal residue was washed 
with ethanol (3 × 3 mL). The products were obtained from the filtrate after removal of the ethanol by rotary evaporator. The 
recrystallization of crude products from the aqueous ethanol afforded high yields of the corresponding dibenzoxanthenes.

4. Results and discussion
Acetic acid was previously used as the medium for the synthesis of dibenzoxanthenes in the presence of phosphoric acid 
or perchloric acid as the catalyst [31]. One reported method applied acetic acid and sulfuric acid (4:1) for the preparation 
of xanthenes [32]. In light of the importance of polymer- or solid-supported catalysis to overcome the use of hazardous 
and concentrated acids as catalysts, we attempted the preparation and application of mild acidic charcoal as a catalyst. This 
catalyst system is environmentally friendly and safe to handle. The charcoal support is inert and provides a large surface 
area for the adsorption of acetic acid together with sufficient surface area for the reactants, which allows the production of 
high yields. The synthesis of 14-alkyl/aryl-14H-dibenzo[a,j]xanthenes was demonstrated using a heterogeneous mild acid 
charcoal catalyst. Acetic acid and activated charcoal were utilized at a 1:1 (v/w) ratio to prepare the adsorption catalyst, and 
the loading of acetic acid on charcoal was determined with random samples of 0.1 g using a titration method against 0.01 N 
NaOH. This revealed 80%–91% acetic acid per 0.1 g of acidic charcoal catalyst. Optimization of the amount of mild acidic 
charcoal catalyst was performed utilizing different amounts (Table 2) under refluxing ethanol, and 0.1 g of catalyst showed 
satisfactory results with respect to yield and reaction time. Further increases in the catalyst amount did not produce any 
remarkable changes in the results. Catalyst efficacy was validated using different substituted aromatic/aliphatic aldehydes 
and β-naphthol in refluxing ethanol (Table 3). Aldehydes bearing electron-releasing and electron-withdrawing groups 
reacted successfully; the influence of electron-releasing and electron-withdrawing groups was also observed according to 
the differences in reaction times and yields. These dibenzoxanthenes were already reported in the literature; the melting 
points of all products were uncorrected with comparisons to those given in the literature. 

The efficiency rates of a number of reported catalysts were compared with the proposed mild acidic charcoal catalyst, as 
seen in Table 4. Some of the catalysts given in Table 4 required long reaction times to achieve maximum catalytic activity 
compared to the mild acidic charcoal. The product yield provided by acidic charcoal catalysis was found to be comparable. 

We also evaluated the reusability of the recovered charcoal support for many cycles after activation and adsorption with 
acetic acid as per the procedure described for the preparation of the mild acidic charcoal catalyst. 

In conclusion, in this study, charcoal of fine and granular nature was utilized with different particle sizes for the 
preparation of mild acidic charcoal. Experiments showed that fine charcoal adsorbed the maximum amount of acetic 
acid per 0.1 g. Preparation of a heterogeneous catalyst system was performed using neat and solvent methods, and 
maximum and uniform adsorption was achieved with the solvent method. The loading of the acetic acid on adsorbed 
charcoal was determined titrimetrically. The observed results led us to choose fine charcoal and the solvent method for the 
preparation of mild acidic charcoal, which was then employed as an efficient heterogeneous catalyst for the synthesis of 
some dibenzoxanthenes. The obtained yields of the desired products were in the range of 88%–94%.

Table 4. Comparison of efficiency rates of the proposed mild acidic charcoal catalyst with some previously reported catalysts for the 
synthesis of dibenzoxanthenes.

Methods reported by Catalyst used Reaction conditions Time Yield (%)

Mirkhani et al. [36] Carbon-based solid acid DCM/reflux 9 h 94

Nagarapu et al. [37] NaHSO4. SiO2 Solvent free/125 °C 8 h 88

Das et al. [38] HClO4·SiO2 Solvent free/100 °C 3.5 h 92

Dabiri et al. [39] Montmorillonite K10 Solvent free/100 °C 3 h 75

Tayebee and Tizabi [40] H5PW10V2O40 Solvent free/100 °C 1 h 67

Sarma and Baruah [32] H2SO4 AcOH/80 °C 73 h 55

Shakibaei et al. [41] Dowex-50W Solvent free/100 °C 1.5 h 78

This work Mild acidic charcoal EtOH/reflux 2.5 h 94
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