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N E T W O R K  S C I E N C E

Luck, skill, and depth of competition in games and 
social hierarchies
Maximilian Jerdee1 and M. E. J. Newman1,2*

Patterns of wins and lo sses in pairwise contests, such as occur in sports and games, consumer research and paired 
comparison studies, and human and animal social hierarchies, are commonly analyzed using probabilistic models 
that allow one to quantify the strength of competitors or predict the outcome of future contests. Here, we general-
ize this approach to incorporate two additional features: an element of randomness or luck that leads to upset 
wins, and a “depth of competition” variable that measures the complexity of a game or hierarchy. Fitting the result-
ing model, we estimate depth and luck in a range of games, sports, and social situations. In general, we find that 
social competition tends to be “deep,” meaning it has a pronounced hierarchy with many distinct levels, but also 
that there is often a nonzero chance of an upset victory. Competition in sports and games, by contrast, tends to be 
shallow, and in most cases, there is little evidence of upset wins.

INTRODUCTION
One of the oldest and best-studied problems in data science is the 
ranking of a set of items, individuals, or teams based on the results 
of pairwise comparisons between them. Such problems arise in 
sports, games, and other competitive human interactions; in paired 
comparison surveys in market research and consumer choice; in 
revealed-preference studies of human behavior; and in studies of 
social hierarchies in both humans and animals. In each of these set-
tings, one has a set of comparisons between pairs of items or com-
petitors, with outcomes of the form “A beats B” or “A is preferred to 
B,” and the goal is to determine a ranking of competitors from best 
to worst, allowing for the fact that the data may be sparse (there may 
be no data for many pairs) or contradictory (e.g., A beats B beats C 
beats A). A group of chess players might play in a tournament, for 
example, and record wins and losses against each other. Consumers 
might express preferences between pairs of competing products, 
either directly in a survey or implicitly through their purchases or 
other actions. A flock of chickens might peck each other as a re-
searcher records who pecked whom to establish the classic “peck-
ing order.”

A large number of methods have been proposed for solving 
ranking problems of this kind—see (1–3) for reviews. Here, we con-
sider one of the most common, which uses a statistical model for 
wins and losses and then fits that model to observed win/loss data. 
In the most widely adopted version, one considers a population of 
n competitors labeled by i = 1…n and assigns to each a real score 
parameter si ∈ [−∞, ∞]. Then the probability that i beats j in a single 
pairwise match or contest is assumed to be some function of the 
difference of their scores: pij = f(si−sj). The score function f(s) satisfies 
the following axioms:

1) It is increasing in s, because, by definition, a better competitor 
has a higher probability of winning than a worse one.

2) It tends to 1 as s → ∞ and to 0 as s →−∞, meaning that an 
infinitely good player always wins and an infinitely poor one al-
ways loses.

3) It is antisymmetric about its midpoint at s = 0, with the form

because the probability of losing is one minus the probability of 
winning. As a corollary, this also implies that the probability f(0) of 
beating an evenly matched opponent is always 1

2
.

Subject to these constraints, the function can still take a wide 
variety of forms, but the most popular choice by far is the logistic 
function f(s) = 1/(1 + e−s)—shown as the bold curve in Fig. 1A—
which gives

The resulting model is known as the Bradley-Terry model, after 
R. Bradley and M. Terry who described it in 1952 (4), although it 
was (unknown to them) first introduced much earlier, by Zermelo 
in 1929 (5).

Given the model, one can estimate the values of the score pa-
rameters si by a number of standard methods, including maximum 
likelihood estimation (4–8), maximum a posteriori estimation (9), 
or Bayesian methods (10, 11), then rank competitors from best to 
worst in order of their scores. The fitted model can also be used to 
predict the outcome of future contests between any pair of com-
petitors, even if they have never directly competed in the past.

This approach is effective and widely used, but the standard 
Bradley-Terry model is a simplistic representation of the patterns of 
actual competition and omits many important elements found in 
real-world interactions. Generalizations of the model have been pro-
posed that incorporate some of these elements, such as the possibility 
of ties or draws between competitors (12, 13), multiway competition 
as in a horse race (14, 15), the “home-field advantage” of playing on 
your own turf (16), or multidimensional score parameters that allow 
for intransitive win probabilities between competitors (17, 18). Here, 
we consider a further extension of the model that incorporates two 
additional features of particular interest, which have received com-
paratively little previous attention: the element of luck inherent for 
instance in games of chance, and the notion of “depth of competition,” 
which captures the complexity of games or the number of distinct lev-
els in a social hierarchy. In the remainder of the paper, we define and 
motivate this model and then describe a Bayesian approach for fitting 

f (− s) = 1 − f (s) (1)

f
(

si− sj
)

=
esi

esi + esj
(2)
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it to data, which we use to infer the values of the luck and depth vari-
ables for a variety of real-world datasets drawn from different arenas 
of human and animal competition. Our results suggest that social hi-
erarchies are in general deeper and may have a larger element of luck 
to their dynamics than recreational games and sports, which tend to 
be shallower and show little evidence of a luck component.

Software implementations of the various methods described in 
this paper are available at https://github.com/maxjerdee/pairwise-
ranking and https://doi.org/10.5061/dryad.kh18932fc.

THE MODEL
Suppose we observe m matches between n players. The outcomes of 
the matches can be represented by an n × n matrix A with element 
Aij equal to the number of times player i beats player j. Within the 
standard Bradley-Terry model, the probability of a win is given by 
Eq. 2 and, assuming the matches to be statistically independent, the 
probability or likelihood of the complete set of observed outcomes is

where s is the vector with elements si and terms that only depend on 
the data A have been dropped. (We assume that the structure of the 
tournament—who plays whom—is determined separately, so that 
Eq. 3 is a distribution over the directions of the wins and losses only 
and not over which pairs of players competed.)

The scores are traditionally estimated by the method of maxi-
mum likelihood, maximizing Eq. 3 with respect to all si simultane-
ously to give estimates

These maximum likelihood estimates (MLEs) can then be sorted 
to give a ranking of the competitors, or simply reported as measures 
of strength in their own right. The widely used Elo ranking system 
for chess players, for example, is essentially a version of this ap-
proach, but extended to allow for dynamic updates as new matches 
are added to the dataset.

The maximum likelihood approach unfortunately has some draw-
backs. For one, the likelihood is invariant under a uniform additive 
shift of all scores si and hence the scores are not strictly identifiable, 
though this issue can easily be fixed by normalization. A more serious 
problem is that the likelihood maximum does not exist at all unless 
the network of interactions—the directed network with adjacency 
matrix A—is strongly connected (meaning there is a directed chain of 
victories from any player to any other), and the maximum likelihood 
estimation procedure fails, with the divergence of some or all of the 
scores, unless this relatively stringent condition is met.

This issue can be addressed by introducing a prior on the scores 
and adopting a Bayesian perspective. A variety of potential priors 
for this purpose have been systematically examined by Whelan (9), 
who, after careful consideration, recommends a Gaussian prior with 
mean zero. The variance is arbitrary—it merely sets the scale on 
which the score s is measured—but for subsequent convenience, we 
here choose a variance of 1

2
 so that the prior on s takes the form

An alternative prior, also recommended by Whelan, is the logis-
tic distribution

In practice, the Gaussian and logistic distributions are similar in 
shape and the choice of one or the other does not make a great deal 
of difference. The logistic distribution is perhaps the less natural of 
the two and we primarily use the Gaussian distribution here, but the 
logistic distribution does have the advantage of leading to faster nu-
merical algorithms and we have used it in previous work for this 
reason (8, 19). We also include it in the basket of models that we 
compare the section on predicting wins and losses.

Once we have defined a prior on the scores, we can calculate a 
maximum a posteriori (MAP) estimate of their values as

The MAP estimate always exists regardless of whether the inter-
action network is strongly connected, and using a prior also elimi-
nates the invariance of the probability under an additive shift and 
hence the need for normalization. As an alternative to computing a 
MAP estimate, we can also simply return the full posterior distribu-
tion P(s ∣ A), which gives us complete information on the expected 
values and uncertainty of the scores given the observed data.

EXTENSIONS OF THE MODEL
In this section, we define generalizations of the Bradley-Terry mod-
el that extend the score function f in two useful ways, while keeping 
other aspects of the model fixed, including the normal prior. The 
specific generalizations we consider involve dilation or contrac-
tion of the score function in the vertical and horizontal directions. 

P(A ∣ s) =
∏

ij
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s
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s
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B

Fig. 1. Score functions. (A) The bold curve represents the standard logistic func-
tion f(s) = 1/(1 + e−s) used in the Bradley-Terry model. The remaining curves show 
the function fα of Eq. 8 for increasing values of the luck parameter α. (B) The score 
function fβ of Eq. 9 for different values of the depth of competition β, both greater 
than 1 (steeper) and less than 1 (shallower).

https://github.com/maxjerdee/pairwise-ranking
https://github.com/maxjerdee/pairwise-ranking
https://doi.org/10.5061/dryad.kh18932fc
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Vertical variation controls the element of luck that allows a weak 
player to sometimes beat a strong one; horizontal variation controls 
the depth of competition, a measure of the complexity of a game 
or contest.

Upset wins and luck
The first generalization of the Bradley-Terry model that we consider 
is one where the function f is contracted in the vertical direction, as 
shown in Fig. 1A. We parameterize this function in the form

with α ∈ [0,1]. In the traditional Bradley-Terry model, f(s) tends to 
0 and 1 as s → ±∞, as discussed in Introduction, but in the modified 
model with α > 0, this is no longer the case. One can think of the 
parameter α as controlling the probability of an “upset win” in which 
an infinitely good player loses or an infinitely bad player wins. (The 
probabilities of these two events must be the same because of the 
antisymmetry condition, Eq. 1.)

For some games or competitions it is reasonable that f(s) tends to 
zero and one at the limits. In a game like chess that has no element 
of randomness, an infinitely good player may indeed win every 
time. In a game of pure luck like roulette, on the other hand, both 
players have equal probability 1

2
 of winning, regardless of skill. These 

two cases correspond to the extreme values α = 0 and α = 1, respec-
tively, in Eq. 8. Values in between represent games that combine 
both luck and skill, like poker or backgammon, with the precise 
value of α representing the proportion of luck. For this reason, we 
refer to α as the luck parameter, or simply the “luck.”

One could also consider the chance of the weaker player winning 
in the standard Bradley-Terry model to be an example of luck or an 
upset win, but that is not how we use these words here. In the pres-
ent context, the luck α describes the probability of winning the game 
even if one’s opponent is infinitely good, which is zero in the stan-
dard model but nonzero in the model of Eq. 8 with α > 0.

Another way to think about α is to imagine a game as a mixture 
of a luck portion and a skill portion. With probability α, the players 
play a game of pure chance in which the winner is chosen at ran-
dom, for instance, by the toss of a coin. Alternatively, with probabil-
ity 1−α, they play a game of skill, such as chess, and the winner is 
chosen with the standard Bradley-Terry probability. The overall 
probability of winning is then given by Eq. 8 and the parameter α 
represents the fraction of time the game is decided by pure luck. By 
fitting Eq. 8 to observed win-loss data, we can learn the luck inher-
ent in a competition or hierarchy. We do this for a variety of datasets 
in the Results section.

Depth of competition
The second generalization we consider is one where the function f is 
dilated or contracted in the horizontal direction, as shown in Fig. 1B, 
by a uniform factor β > 0; thus

The slope of this function at s = 0 is given by

so β is simply proportional to the slope. A more functional way of 
thinking about β is in terms of the probability that the stronger of a 
typical pair of competitors will win. With a normal prior on s of 
variance 1

2
 as in Eq. 5, the difference si − sj between the scores of a 

randomly chosen pair of competitors will be a priori normally dis-
tributed with variance 1, meaning the scores will be separated by an 
average (root mean square) distance of 1. Consider two players sep-
arated by this average distance. If β is small, making fβ a relatively flat 
function (the shallowest curve in Fig. 1B), the probability pij of the 
stronger player winning will be close to 1

2
 and there is a substantial 

chance that the weaker player will win. Conversely, if β is large, then 
pij will be close to 1 (the steepest curve in Fig. 1B) and the stronger 
player is very likely to prevail.

Thus, one way to understand the parameter β is as a measure of 
the imbalance in strength or skill between the average pair of play-
ers. When β is large, the contestants in the average game are very 
unevenly matched. As we will shortly see, this is a common situation 
in social hierarchies, but not in sports and games, perhaps because 
contests between unevenly matched opponents are less rewarding 
both for spectators and for the competitors themselves.

Another way to think about β is in terms of the number of levels 
of skill or strength in a competition. Suppose we define one “level” 
as the distance Δs = si − sj between scores such that i beats j with a 
certain probability q. For a win probability of the form of Eq. 9, we 
have q = 1/(1 + e−βΔs), and hence

Considering again the typical pair of players a distance 1 apart, 
the number of levels between them is

Thus, the number of levels is simply proportional to β. Let us 
choose the probability q such that the constant of proportionality is 
1, meaning log[q/(1 − q)] = 1 or

With this definition, a level is the skill difference Δs between two 
players such that the better one wins 73% of the time and our pa-
rameter β is simply equal to the number of such levels between the 
average pair of players.

In this interpretation, β can be thought of as a measure of the 
complexity or depth of a game or competition. A “deep” game, in 
this sense, is one that can be played at many levels, with players at 
each level markedly better than those at the level below. Chess, 
which is played at a wide range of skill levels from beginner to 
grandmaster, might be an example.

This concept of depth has a long history. For example, in an ar-
ticle in the trade publication Inside Backgammon in 1992 (20), world 
backgammon champion W. Robertie defined a “skill differential” as 
the strength difference between two players that results in the better 
one winning 70 to 75% of the time—precisely our definition of a 
level—and the “complexity number” of a sport or game as the num-
ber of such skill differentials that separate the best player from the 
worst. Cauwet et  al. (21) have defined a similar but more formal 

fα(s) =
1

2
α + (1−α)

1

1 + e−s
(8)

fβ(s) =
1
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measure of game depth that they call “playing-level complexity.” 
There has also been discussion in the animal behavior literature of 
the “steepness” of animal dominance hierarchies (22), which ap-
pears to correspond to roughly the same idea.

One should be careful about the details. Robertie and Cauwet 
et al. both define their measures in terms of the skill range between 
the best and worst players, but this could be problematic in that the 
range will depend on the particular sample of players one has and 
will tend to increase as the sample size gets larger, which seems un-
desirable. Our definition avoids this by considering not the best and 
worst players in a competition but the average pair of players, which 
gives a depth measure that is asymptotically independent of sam-
ple size.

Even when defined in this way, however, the number of levels is 
not solely about the intrinsic complexity of the game, but does also 
depend on who is competing. For example, if a certain competition 
is restricted to contestants who all fall in a narrow skill range, then β 
will be small even for a complex game. In a world-class chess tour-
nament, for instance, where every player is an international master 
or better, the number of levels of play will be relatively small al-
though chess as a whole has many levels. Thus, empirical values of β 
combine aspects of the complexity of the game with aspects of the 
competing population.

For this reason, we avoid terms such as complexity number and 
“depth of game” that imply a focus on the game alone and refer to β 
instead as the depth of competition, which we feel better reflects its 
meaning. (A variety of alternative notions of depth are discussed in 
section S5.)

Combined model
Combining both the luck and depth of competition variables into a 
single model gives us the score function

In the Results, we fit this form to observed data from a range of 
different areas of study to infer the values of α and β. In the process, 
one can also infer the scores si, which can be used to rank the par-
ticipants or predict the outcome of unobserved contests, and we ex-
plore this angle later in the paper. In this section, however, our 
primary focus is on α and β and on understanding the varying levels 
of luck and depth in different kinds of competition.

To perform the fit, we consider again a dataset represented by its 
adjacency matrix A and write the data likelihood in the form of Eq. 3

The scores s are assumed to have the Gaussian prior of Eq. 5, and 
we assume a uniform (least informative) prior on α, which means 
P(α) = 1. We cannot use a uniform prior on β, because it has infinite 
support, so instead we use a prior that is approximately uniform 
over “reasonable” values of β and decays in some slow but integrable 
manner outside this range. A suitable choice in the present case is 
(the positive half of) a Cauchy distribution centered at zero

where w controls the scale on which the function decays. Here we 
use w = 4, which roughly corresponds to the range of variation in β 

that we see in real-world datasets, and has the convenient property 
of giving a uniform prior on the angle of fβ(s) at the origin.

It is worth mentioning that the choice of prior on β does have an 
effect on the results in some cases. When datasets are large and 
dense, priors tend to have relatively little impact because the poste-
rior distribution is narrowly peaked around the same set of values 
no matter what choice we make. However, some of the datasets we 
study here are quite sparse, and for these, the results can vary with 
the choice of prior. Our qualitative conclusions remain the same in 
all cases, but it is worth bearing in mind that the quantitative details 
can change.

Combining the likelihood and priors, we now have

The prior on A is unknown but constant, so it can be ignored. We 
now draw from the distribution P(s, α, β ∣ A) to obtain a representa-
tive sample of values s, α, β. In our calculations, we generate the 
samples using the Hamiltonian Monte Carlo method (23) as imple-
mented in the probabilistic programming language Stan (24), which 
is ideal for sampling from continuous parameter spaces such as this. 
The running time to obtain the samples depends on the computa-
tional cost per iteration, which is proportional to the number of 
matches m, and on the Monte Carlo mixing time, which is roughly 
proportional to the number of competitors n. The total running 
time thus scales roughly as O(mn). In practice, a few thousand sam-
ples are sufficient to get a good picture of the distribution of α and β, 
which, in our implementation, takes anywhere from a few seconds 
to an hour or so for our largest datasets.

Minimum violations ranking
One special case of our model worth mentioning is the limit β → ∞ 
for fixed α > 0. In this limit, the function fαβ(s) becomes a step func-
tion with value

For this choice, the data likelihood becomes

where m is the total number of games/interactions/comparisons 
and v is the number of “violations,” meaning games where the weaker 
player won. Then, the log-likelihood is

where A and B are positive constants. This log-likelihood is maxi-
mized when the number of violations v is minimized, which leads to 
the so-called minimum violations ranking, the ranking such that 
the minimum number of games are won by the weaker player. Thus, 

fαβ(s) =
1

2
α + (1−α)

1

1 + e−βs
(14)
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the minimum violations ranking can be thought of as the limit of 
our model in the special case where β → ∞.

RESULTS
We have applied these methods to a range of datasets representing 
competition in sports and games as well as social hierarchies in both 
humans and animals. The datasets we study are listed in Table 1.

Figure 2A summarizes our results for the posterior probability 
density of the luck and depth parameters. The axes of the figure in-
dicate the values of α and β and each cloud is an estimate of P(α, β ∣ 
A), computed as a kernel density estimate from Monte Carlo sam-
pled values of α and β. The + signs in the figure represent the mean 
values of α and β for each dataset computed directly by averaging 
the samples.

The figure reveals some interesting trends. Note first that all of 
the sports and games—chess, basketball, video games, etc.—appear 
on the left-hand side of the plot in the region of low depth of com-
petition, while all the social hierarchies are on the right with higher 
depth. We conjecture that the low depth of the sports and games is a 
result of a preference for matches to be between roughly evenly 
matched opponents, as discussed in the “Depth of competition” sec-
tion. For a game to be entertaining to play or watch, the outcome of 
matches should not be too predictable, but in a sport or league with 
high depth, the average pairing is very uneven, with the stronger 
player very likely to win. Low depth of competition ensures that 
matches are unpredictable and hence entertaining. In games such as 
chess, which have high intrinsic depth, the depth can be reduced by 
restricting tournaments to players in a narrow skill range, such as 
world-class players, and this is commonly done in many sports and 
games. We explore this interpretation further in section S5.

There are no such considerations at play in social hierarchies. 
Such hierarchies are not, by and large, spectator sports, and there is 
nothing to stop them having high depth of competition. The results 
in Fig. 2A indicate that in general they do, though the animal hier-
archies are deeper than the human ones. A high depth in this con-
text indicates a hierarchy in which the order of dominance between 
the typical pair of competitors is clear. This accords with the conven-
tional wisdom concerning hierarchies of both humans and animals, 

where it appears that participants are in general clear about the 
rank ordering.

Another distinction that emerges from Fig. 2A is that the results 
for sports and games generally do not give strong support to a non-
zero luck parameter. The expected values, indicated by the + signs, 
are nonzero in most cases, but the clouds representing the posterior 
distributions give significant weight to points close to the α = 0 line, 
indicating that we cannot rule out the possibility that α = 0 in these 
competitions. For many of the social hierarchies, on the other hand, 
there is strong evidence for a nonzero amount of luck, with the pos-
terior distribution having most of its weight well away from α = 0, a 
finding that accords with our intuition about social hierarchies. 
There would be little point in having any competition at all within a 
social hierarchy if the outcomes of all contests were foregone. If par-
ticipants knew that every competitive interaction was going to end 
with the higher-ranked individual winning and the lower-ranked 
one backing down, then there would be no reason to compete. It is 
only because there is a significant chance of a win that competition 
occurs at all.

An interesting counter-example to this observation comes from 
the two faculty hierarchies, which represent hiring practices at US 
universities and colleges. The interactions in this dataset indicate 
when one university hires a faculty candidate who received their 
doctoral training at another university, which is considered a win for 
the university where the candidate trained. The high depth of com-
petition and low luck parameter for these datasets indicates that 
there is a pronounced hierarchy of hiring with a clear pecking order 
and that the pecking order is rarely violated. Lower-ranked uni-
versities hire the graduates of higher-ranked ones, but the reverse 
rarely happens.

Figure 2B shows a selection of the fitted functions fαβ(s) for five 
of the datasets. For each dataset, we show in bold the curve for the 
expected values α̂, β̂ along with 10 other curves for values of α, β 
sampled from the posterior distribution, to give an indication of the 
amount of variation around the average. We see, for example, that 
the curve for the soccer dataset has a shallow slope (low depth of 
competition) but is close to zero and one at the limits (low luck). The 
curve for the mice dataset, by contrast, is steep (high depth) but 
clearly has limits well away from zero and one (nonzero luck).

1-1-2

P

Tennis

Chess

Scrabble

Video games

Basketball

Friends

Soccer

Mice
Dogs

Vervet monkeys

CS depts.
Business depts.

Baboons Hyenas
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A B

Fig. 2. Posterior distributions of luck and depth, and fitted score functions. (A) Each cloud represents the posterior distribution P(α, β ∣ A) of the luck and depth pa-
rameters for a single dataset, calculated from the Monte Carlo sampled values of α and β using a Gaussian kernel density estimate. The + signs indicate the expected 
values α̂, β̂ of the parameters for each dataset. (B) The bold curve in each case corresponds to the expected values α̂, β̂, while the other surrounding curves are for a selec-
tion of values sampled from the posterior distribution, to give an idea of the variation around the average.
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Luck and parameter identifiability
Inherent in the view of competition that underlies our model are 
two different types of randomness. There is the randomness inher-
ent in the probabilistic nature of the model: Even when one player is 
better than the other, there is always a chance they may lose, so long 
as the players’ levels of skill are not too severely imbalanced. 

However, there is also the randomness introduced by the luck pa-
rameter, which applies no matter how imbalanced the players are, 
even if one is infinitely better than the other.

In a low-depth situation, it can be difficult to distinguish between 
these two types of randomness. When depth is low, there are few (or 
no) players who are very good or very bad, so there are few matches 

Table 1. Datasets in order of increasing depth of competition �̂. Here, n is the number of participants and m is the number of matches/interactions. Further 
information on the datasets is given in the section S1.

Dataset �̂ n m Description Ref. 

 Sports/games  Scrabble  0.68 587 23,477  Scrabble 
tournament 

matches 2004–2008 

(26)

 Basketball  1.01 240 10,002  National Basketball 
Association games 

2015–2022 

(27)

Chess  1.17 917 7,007  Online chess games 
on  lichess.com  in 

2016 

(28)

Tennis  1.44 1,272 29,397  Association of 
Tennis Professionals 

men’s matches 
2010–2019 

(29)

 Soccer  1.73 1,976 7,208  Men’s international 
association football 
matches 2010–2019 

(30)

Video games  1.77 125 1,951  Super Smash Bros 
Melee tournament 

matches in 2022 

(31)

Human  Friends  3.54 774 2,799 High- school friend 
nominations 

(32)

CS departments  4.25 205 4,388 Doctoral graduates 
of one department 
hired as faculty in 

another 

(33)

 Business schools  4.36 112 7,856 Doctoral graduates 
of one department 
hired as faculty in 

another 

(33)

 Animal Vervet monkeys  6.01 41 2,930 Dominance 
interactions among 

a group of wild 
vervet monkeys 

(34)

Dogs  8.74 27 1,143  Aggressive 
behaviors in a 

group of domestic 
dogs 

(35)

 Baboons  13.19 53 4,464 Dominance 
interactions among 
a group of captive 

baboons 

(36)

 Sparrows  22.92 26 1,238  Attacks and 
avoidances among 

sparrows in 
captivity 

(37)

 Mice  26.48 30 1,230 Dominance 
interactions among 

mice in captivity 

(38)

Hyenas  100.58 29 1,913 Dominance 
interactions among 
hyenas in captivity 

(39)

http://lichess.com
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where a good player is unequivocally observed to lose because of the 
element of luck. In mathematical terms, the score function f(s) in a 
low-depth competition is shallow in its central portion, close to the 
origin, and moreover, it is only this portion that gets probed by the 
matches, because there are few contests between badly mismatched 
players. However, a score function with a shallow center can be gen-
erated either by a large value of α or a small value of β—the func-
tional forms are very similar either way.

In practice, this means that the values of α and β suffer from poor 
identifiability in this low-depth regime. This is visible in Fig. 2A as 
the long, thin probability clouds of the sports and games on the left-
hand side of the plot. For these, there is a set of parameter value 
pairs α, β that fall roughly along a curve in the plot and that all have 
similar posterior probability, and hence, it becomes difficult to pin 
down the true parameter values. This phenomenon particularly af-
fects the luck parameter α, whose spread is so broad in this regime 
that we cannot reliably determine whether it is nonzero.

As depth increases, on the other hand, we expect that there will 
be a larger number of competitors who are either very strong or very 
weak, and from the outcomes of their matches, we can determine 
the level of luck with more certainty. This is reflected in the distribu-
tions on the right of Fig. 2A, for many of which it is possible to say 
clearly that α is nonzero.

An alternative view of the same behavior is that the long thin 
probability clouds in the figure imply the existence of a particular 
combination of luck and depth that is narrowly constrained for each 
dataset, and an orthogonal combination that is highly uncertain. In 
section S6, we define a measure of “predictability” of competition in 
terms of the amount of information needed to communicate the 
outcomes of all matches in a dataset and show that this predictabil-
ity corresponds precisely to the narrowly defined direction in the 
figure, so that predictability can be estimated accurately in all cases, 
even when there is considerable uncertainty about the raw parame-
ters α and β.

Predicting wins and  losses
In addition to allowing us to infer the luck and depth parameters 
and rank competitors, our model can also be used to predict the 
outcomes of unobserved matches. If we fit the model to data from a 
group of competitors, we can use the fitted model to predict the win-
ner of a new contest between two of those same competitors. The 
ability to accurately perform such predictions can form the basis for 
consumer product recommendations and marketing, algorithms for 
guiding competitive strategies in sports and games, and the setting 
of odds for betting, among other things.

We can test the performance of our model in this prediction 
task using a cross-validation approach. For any dataset A, we ran-
domly remove or “hold out” a small portion of the matches or 
interactions and then fit the model to the remaining “training” dataset. 
Then, we use the fitted model to predict the outcome of the held-
out matches and compare the results with the actual outcomes of 
those same matches.

The simplest version of this calculation involves fitting our model 
to the training data by making point estimates of the parameters 
and scores. We first estimate the expected posterior values ̂α, β̂ of the 
parameters given the training data. Then, given these parameter 
values, we maximize the posterior probability as a function of s 
to obtain MAP estimates ŝ  of the scores. Last, we use the com-
bined parameter values and scores to calculate the probability 

p̂ij = f
α̂β̂

(

ŝi− ŝj
)

 that a held-out match between i and j was won by i, 
with fαβ(s) as in Eq. 14. Further discussion of the procedure is given 
in section S3.

We can quantify the performance of our predictions by comput-
ing the log-likelihood of the actual outcomes of the held-out match-
es under the predicted probabilities p̂ij. If Wij is the number of times 
that i actually won against j, then the log-likelihood per game is

This measure naturally rewards cases where the model is confi-
dent in the correct answer (p̂ij close to 1) and heavily penalizes cases 
where the model is confident in the wrong answer (p̂ij close to 0). 
Note that the log-likelihood is equal to minus the description length 
of the data—the amount of information needed to describe the true 
sequence of wins and losses in the held-out data given the estimated 
probabilities p̂ij—so models with high log-likelihood are more par-
simonious in describing the true pattern of wins and losses. (An al-
ternative way to quantify performance would be simply to compute 
the fraction of correct predictions made by each model. Some re-
sults from this approach are given in section S2, and are largely in 
agreement with the results for log-likelihood.)

To place the performance of our proposed model in context, we 
compare it against a basket of other ranking models and methods, 
including widely used standards, some recently proposed approaches, 
and some variants of the approach proposed in this paper. As a 
baseline, we compare performance against the standard Bradley-
Terry model with a logistic prior, which is commonly used in many 
ranking tasks, particularly in sports, and which we have ourselves 
used and recommended in the past (8). We measure the perfor-
mance of all other models against this one by calculating the differ-
ence in the log-likelihood per match (Eq. 21). The other models we 
test are as follows:

1) The luck-plus-depth model of this paper.
2) A depth-only variant in which the parameter α is set to zero.
3) A luck-only variant in which the parameter β is set to ∞, which 

is equivalent to minimum violations ranking.
4) The Bradley-Terry model under maximum likelihood estima-

tion, which is equivalent to imposing an improper uniform prior. 
Note that maximum likelihood estimates diverge if a player wins (or 
loses) all of their matches, and to avoid this, in keeping with previous 
work (25), we impose a very weak L2 regularization of the scores, 
which is equivalent to a MAP estimate with Gaussian prior of width 
σ = 100.

5) The “SpringRank” model of De Bacco et al. (25), which ranks 
competitors using a physically motivated mass-and-spring model.

This is a representative selection of ranking models but not com-
prehensive, excluding for instance models that incorporate informa-
tion beyond wins and losses, and multidimensional models (17, 18). 
The proportion of data held out in the cross-validation was 20% in 
all cases, chosen uniformly at random, and at least 50 random rep-
etitions of the complete process were performed for each model for 
each of the datasets listed in Table 1.

The results are summarized in Fig. 3. The horizontal dashed line in 
the figure represents the baseline set by the Bradley-Terry model and 
the points with error bars represent the increase (or decrease) in log-
likelihood relative to this level for each model and dataset. The error 

Q =

∑

ijWij log p̂ij
∑

ijWij

(21)
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bars represent the upper and lower quartiles of variation of the results 
over the random repetitions. (We use quartiles rather than standard de-
viations because the distributions are highly nonnormal in some cases.)

We note a number of things about these results. First, the model 
of this paper performs best on our tests for every dataset without 
exception, within the statistical uncertainty, although the depth-only 
version of the model is also competitive in many cases, particularly 
for the sports and games. The latter observation is unsurprising, be-
cause, as we have said, there is little evidence for α > 0 in the games. 
For the particular case of the dominance hierarchy of hyenas, the 
minimum violations ranking is competitive, which is also unsurpris-
ing: As shown in Fig. 2, this hierarchy is very deep—the value of β is 
over 100—and hence there is little difference between our model and 
the minimum violations ranking. For all the other datasets, the min-
imum violations ranking performs worse—usually much worse—
than our model. (Arrows at the bottom of the figure indicate results 
so poor they fall off the bottom of the scale.) The maximum likeli-
hood fit to the Bradley-Terry model also performs quite poorly, a 
notable observation given that this is one of the most popular rank-
ing algorithms in many settings. It even performs markedly worse 
than the same Bradley-Terry model with a logistic prior. Last, we 
note that the SpringRank algorithm of (25) is relatively competitive 
in these tests, though it still falls short of the model of this paper and 
the standard Bradley-Terry model with logistic prior.

As mentioned above, our selection of models excludes multidi-
mensional models, which have substantially larger parameter spaces 
and allow for a wider range of behaviors, such as intransitive 
competition, and which could, in principle, provide better fits to the 
data. In other tests (not shown here), we found one such model, the 
blade-chest model of Chen and Joachims (17), that outperforms our 
model on four of the animal datasets (dogs, baboons, sparrows, and 

hyenas), although it performs poorly in most other cases. This could 
suggest the presence of intransitivity in these datasets.

DISCUSSION
Here, we have studied the ranking of competitors based on pairwise 
comparisons between them, as happens for instance in sports, 
games, and social hierarchies. Building on the standard Bradley-
Terry ranking model, we have extended the model to include two 
additional features: an element of luck that allows weak competitors 
to occasionally beat strong ones, and a depth of competition param-
eter that captures the number of distinguishable levels of play in a 
hierarchy. Deep hierarchies with many levels correspond to complex 
games or social structures. We have fitted the proposed model to 
datasets representing social hierarchies among both humans and 
animals and a range of sports and games, including chess, basket-
ball, soccer, and video games. The fits give us estimates of the luck 
and depth of competition in each of these examples and we find a 
clear pattern in the results: sports and games tend to have shallow 
depth and little evidence of a luck component, while social hierar-
chies are significantly deeper and more often have an element of 
luck, with the animal hierarchies being deeper than the human ones.

We also test our model’s ability to predict the outcome of con-
tests. Using a cross-validation approach, we find that the model per-
forms as well as or better than every other model tested in predictive 
tasks and very significantly better than the most common previous 
methods such as maximum likelihood fits to the Bradley-Terry 
model or minimum violations rankings.
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