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P L A N E TA R Y  S C I E N C E

Ocean weather systems on icy moons, with application 
to Enceladus
Yixiao Zhang*, Wanying Kang, John Marshall

We explore ocean circulation on a rotating icy moon driven by temperature gradients imposed at its upper surface 
due to the suppression of the freezing point of water with pressure, as might be induced by ice thickness varia-
tions on Enceladus. Using high-resolution simulations, we find that eddies dominate the circulation and arise from 
baroclinic instability, analogous to Earth’s weather systems. Multiple alternating jets, resembling those of Jupiter’s 
atmosphere, are sustained by these baroclinic eddies. We establish a theoretical model of the stratification and 
circulation and present scaling laws for the magnitude of the meridional heat transport. These are tested against 
numerical simulations. Through identification of key nondimensional numbers, our simplified model is applied to 
other icy moons. We conclude that baroclinic instability is central to the general circulation of icy moons.

INTRODUCTION
Enceladus has a global subsurface ocean (1, 2) with active physical 
and chemical processes occurring within it. Observations of water 
jets emanating from the south pole of Enceladus reveal the presence 
of several chemical compounds that come from its ocean interior, 
including liquid water, sodium salts, carbon dioxide, methane, and 
macromolecular organic compounds (3–6). Evidence of ongoing 
hydrothermal activity on Enceladus is also emerging, indicative of 
habitability (7, 8). It is therefore important to understand the ocean 
circulation on Enceladus and its role in physical transport of prop-
erties such as heat and chemical tracers.

Ocean circulation on icy moons is often envisioned as a rotating 
body of water heated from the bottom (9–11). However, heat and 
salinity fluxes from the ice at its upper boundary can also drive 
ocean circulation (12–16), if ice thickness variations are substantial, 
which has been confirmed by shape and gravity measurements col-
lected by Cassini (17). Enceladus, for example, is known to have an 
ice shell whose thickness varies by as much as its mean depth on 
moving from the equator where the ice is thick to the pole where it 
is thin (18–20). The resulting temperature variations beneath the 
Enceladean ice shell, due to the dependence of freezing point on 
pressure stemming from the Clausius-Clapeyron relation, are likely 
to be at least an order of magnitude greater than the temperature 
contrast induced by bottom heating (15, 21). As a result, the ocean 
just beneath the ice is warm at the poles and cold at the equator, as 
sketched in Fig. 1.

Salinity strongly affects the thermal expansion coefficient of wa-
ter and the salt flux associated with freezing and melting. Both influ-
ence the strength and direction of ocean circulation (15). Depending 
on whether the ocean salinity is greater or smaller than 20  g  kg−1 
(10, 15, 22, 23), the ocean of Enceladus can be categorized as in ei-
ther “high-salinity” or “low-salinity” regimes. In the former, water 
expands upon warming, so that both the temperature and salinity 
forcing from ice creates high-density water at the equator, which 
then sinks. In contrast, in the low-salinity scenario, water contracts 
upon warming. Temperature-induced density anomalies dominate 
those due to salinity, making polar waters denser. As a result, the 

overturning circulation reverses. In the absence of direct observa-
tional constraints, the salinity of the ocean on Enceladus can be any-
where between 2 and 40 g  kg−1 (23), and thus it remains unclear if 
the high-salinity or low-salinity regime is the most relevant. In this 
study, we focus on the high-salinity regime. Moreover, for simplici-
ty, we also ignore spatial variations of salinity.

In Earth’s ocean, the action of the wind leads to Ekman pumping, 
which perturbs the density field in the interior (24). On an icy 
moon, in contrast, there are no winds acting and so the upper 
boundary condition must be drawn down into the interior through 
a different mechanism. Vertical mixing due to ocean tides and 
small-scale processes (25–27) likely diffuses the upper boundary 
condition into the interior. In addition, spatial variations of ice-
ocean stresses due to tides, eddies, and mean flows can also induce 
Ekman pumping even in the absence of surface wind stress.

Once a meridional density gradient is established in the interior 
of the ocean, baroclinic eddies—a hydrodynamical instability of 
ocean currents in thermal wind balance—may grow. Because the 
ocean of Enceladus has a small Rossby number (between ∼10−6 and 
∼10−4) (11, 28), gravity acting on sloping buoyancy surfaces is bal-
anced by the tilting over of planetary vorticity by the vertical shear 
of zonal currents, as expressed in the thermal wind relationship. Ex-
pectedly, as to be demonstrated by numerical simulations here, such 
zonal flows are baroclinically unstable (16), creating a vigorous eddy 
field that is dynamically similar to baroclinic weather systems ob-
served in Earth’s atmosphere and ocean. These eddies turn out to be 
the primary agent of meridional heat transport from the (warm) 
polar regions to the (cold) equatorial regions and thus play a central 
role in the energy budget of Enceladus (Fig. 1). The main focus of 
our study is to highlight the role of ocean weather systems on Ence-
ladus and their contribution to setting up the stratification, depth of 
penetration, and pattern of ocean currents in the equilibrium state. 
The framework that we will use has much in common with those 
developed to describe the Antarctic Circumpolar Current of Earth’s 
ocean (29, 30).

We use eddy-resolving simulations of an ocean circulation con-
figured in an idealized setting appropriate to Enceladus. The circula-
tion is energized by diffusing down into its interior meridional 
temperature gradients prescribed at its upper surface. The meridi-
onal temperature gradients result in baroclinic instability. As a re-
sult, baroclinic eddies, which are dynamically exactly analogous to 
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weather systems in Earth’s atmosphere, are generated and become 
the dominant agency of energy transfer. These eddies induce down-
gradient heat flux in the ocean, which transport heat from high lati-
tudes (warm) to low latitudes (cold). The physical transport by these 
eddies can be represented with an eddy-driven meridional over-
turning circulation, and this overturning circulation, together with 
vertical diffusion, becomes the main mechanism of tracer transport. 
The strength of such transport is controlled by the balance between 
vertical heat diffusion, which energizes eddies by diffusing the me-
ridional temperature gradient from the top boundary into the ocean 
interior, and downward-gradient eddy heat flux, smoothing out the 
meridional temperature gradients. On the basis of this idea, a theo-
retical model and scaling laws are used to interpret our simulations 
expanding on the prior Lobo2021 model (14). Our simulations 
show that Lobo2021’s choice of eddy diffusivity coefficient, which 
was motivated by Earth’s ocean dynamics, is not appropriate to 
Enceladus resulting in them overestimating the strength of over-
turning circulation and underestimating the penetration depth of 
the thermocline by several orders of magnitude. Implications of our 
study for the oceans on other icy moons are also discussed.

RESULTS
Modeling framework
We consider flow in a Cartesian box configured to represent flow in 
a spherical shell, as set out in Fig. 2. Flow is energized through a 
lateral temperature gradient chosen to have a cosine meridional 
profile with amplitude ΔT (see Fig. 2B) imposed at its upper bound-
ary. This is diffused down into the interior as a rate determined by κ. 
The two key external parameters of our study are ΔT and κ. The 

bottom is insulating. Here, no attempt is made to represent the dy-
namical effect of possible fluid-depth variations associated with the 
nonconstant ice shell thickness.

The extent of the box in the eastward x, northward y, and vertical 
z directions is [0, Lx], [−πR, πR], and [−H,0] respectively. Here, Lx = 
102  km; R, the radius of the moon, is 252  km; and H, the depth of 
the ocean, is 30  km. The western (x = 0) and eastern (x = Lx) 
boundaries are periodic. We set rotation rate Ω = 5.3 × 10−5  s−1 and 
gravity g to 0.1  m2  s−1. All the above parameters are appropriate to 
Enceladus (17, 19, 31, 32).

We use a model known as Oceananigans (33), coded in Julia 
and running on graphics processing units (GPUs), which solves 
the rotating, nonhydrostatic equations for a Boussinesq fluid in a 
cube at a very high resolution. Despite using a Cartesian frame-
work, as described in (11), we can nevertheless represent the 
dynamics of a deep, rotating fluid in spherical geometry using 
equations that capture the change with latitude of the angle between 
the rotation vector and gravity. Derivations of such equations was 
pioneered by Grimshaw (34), who wrote down a nontraditional β 
plane set for a fluid on a rotating planet in which the vertical com-
ponent of the Coriolis parameter was allowed to vary in the horizon-
tal, while the horizontal component (set to zero on the traditional β 
plane) was kept constant. Dellar (35) advanced Grimshaw’s work 
by using Hamilton’s principle to derive a nontraditional set in 
which both components of Coriolis are allowed to vary in lati-
tude, without sacrificing conservation properties. In the Supple-
mentary Materials, we write out the equations inspired by Dellar’s 
work used here.

The Coriolis parameter is chosen to mimic that in a spherical 
shell (green arrows in Fig. 2) and is given by

Fig. 1. Schema of the energy budget of the ice shell and ocean circulation on an icy moon driven from the upper boundary. In the absence of abyssal heat sources, 
the following processes contribute: (1) tidal heating in the ice shell, (2) heat diffusion within the ice, (3) heat loss to space, (4) ocean heat transport, and (5) water-ice heat 
exchange. In (A), the temperature difference between the water-ice interface and the very top of the ice induces outward diffusion of heat, which is ultimately lost to 
space. Ocean circulation is induced by freezing point temperature variations at the ice-ocean interface, which make the poles warm because the ice is thin there, relative 
to the equator where it is thick. The ocean therefore carries heat from the poles to the equator. The resulting heat exchange between the ice and the ocean tends to 
smooth out ice shell geometry variations. In (B), the ocean circulation is driven by a prescribed top temperature variation. Black lines represent temperature surfaces, here 
synonymous with isotherms because salinity plays no role. The top temperature is higher over the poles and lower at the equator. This pole-to-equator temperature 
gradient is diffused down vertically into the ocean [process (6)], supporting zonal currents that spawn baroclinic eddies. The eddies flux heat down the temperature gradi-
ent [process (7), eddy heat transport]. This eddy transport can be equivalently viewed as an overturning circulation sinking at the equator and rising near the poles 
[marked as (8), eddy-driven overturning circulation, shown only in the Northern Hemisphere]. There is a balance between eddy transport of heat (7) [or equivalently, the 
overturning circulation (8)] and vertical diffusion of heat (6). Note that here we have assumed that the buoyancy of seawater depends only on temperature and that the 
thermal expansion coefficient is positive. The temperature and circulation patterns in (B) are inspired by previous works (14, 15).



Zhang et al., Sci. Adv. 10, eadn6857 (2024)     6 November 2024

S c i e n c e  A d v an  c e s  |  R e s e ar  c h  A r t i c l e

3 of 15

This form guarantees that the angle between g and f is as it is on 
a rotating sphere and that f is nondivergent, ensuring conservation 
of potential vorticity (PV) in adiabatic, inviscid flow.

The tangent cylinder—a cylinder whose axis is parallel to the moon’s 
rotation vector with sides tangent to the inner core—separates the 
ocean into two dynamically distinct regions (10, 11, 13, 16). In our 
Cartesian framework, the tangent cylinder is a curved surface (Fig. 
2C), which is tangent to the ocean bottom at the equator, normal to 
the bottom at the poles, and parallel to f everywhere in between.

We adopt a highly idealized equation of state in which the buoy-
ancy depends only on temperature through a thermal expansion 
coefficient, α, which is assumed to be constant and positive, appro-
priate if the ocean has a salinity greater than 20  g  kg−1 (10, 15, 22). 
The buoyancy, b = −g  δρ/ρref, where δρ is the density anomaly re-
lated to temperature, T, by a linear equation of state

and Tref is a reference temperature. We use a constant thermal ex-
pansion coefficient, α, of 1.67 × 10−4  K−1 in all simulations.

The appropriate value of the thermal diffusivity κ is highly uncer-
tain but will likely be much larger than the molecular value of water 
because here it represents mixing by turbulent processes. We adopt 
a range of values. The minimum κ used is 1 × 10−3  m2  s−1. This has 
been used in previous studies (16, 36) and inferred from a scaling 
for vertical diffusivity appropriate to Earth’s ocean (37) assuming a 
dissipation rate in the ocean of Enceladus (26). The maximum dif-
fusivity used here is 0.1  m2  s−1. Although larger values could be 
considered, they are inconsistent with energy constraints on Encela-
dus, as described later in Implications for Enceladus.

We run two groups of experiments. One uses a constant ΔT = 
0.1  K and various κ’s of 1 × 10−3, 3 × 10−3, 1 × 10−2, 3 × 10−2, and 
1 × 10−1  m2  s−1. The other group uses a constant κ = 1 × 10−3  m2  s−1 
and various ΔT’s of 0.025, 0.05, 0.1, and 0.4 K. All simulations are 

run out until equilibrium is established and the last 10,000 rotation 
periods are used for diagnostic purposes.

Phenomenology of the reference solution
Turbulence, eddies, and zonal flows dominate the ocean circulation 
in all our experiments. The instantaneous velocity field of the refer-
ence solution, with ΔT = 0.1 K and a vertical diffusivity of κ = 1 × 
10−3  m2  s−1, is shown in Fig. 3 and is typical of the kind of solu-
tions we obtain. The zonal flow U comprises very many alternating 
jets at all latitudes, which are mostly aligned with the rotation axis 
(Fig. 3, B1 and C1), indicating the dominance of the barotropic 
component. We decompose the U field into the barotopic compo-
nent, which is invariant along the rotation axis, and the remaining 
baroclinic component (fig. S1). The baroclinic component is one 
order of magnitude weaker than the barotropic component as the 
weak damping in our model allows energy to accumulate in the sys-
tem as barotropic jets. Thermal wind balance is manifested by the 
correspondence between the baroclinic U field and the T field. A 
similar flow field has been found in previous studies with three-
dimensional (3D) configurations (11, 16, 38). It is markedly differ-
ent from the patterns of flow seen in 2D systems, in which 
geostrophic turbulence induced by baroclinic instability or convec-
tion cannot exist and lateral heat transport primarily occurs along 
the boundaries (15,  36). When the zonal dimension is resolved, 
baroclinic turbulence plays the dominant role in transporting heat 
and angular momentum, the latter giving rise to jets as is evident in 
Fig. 3B1. This is in accord with 3D simulations forced through inter-
action with the ice (16) and/or bottom heating (9, 11, 13, 38).

The zonal jets are almost aligned with the planetary rotation axis 
instead of the direction of gravity, as expected by the Taylor-
Proudman theorem, which pertains in the limit that the buoyancy 
frequency (N) is much smaller than the rotation frequency (mea-
sured by the Coriolis parameter, f). When N/f << 1, vortex tubes 
tend to align with the direction of the rotation axis. This is the case 
in our simulations and will also likely be true on Enceladus provided 
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Fig. 2. An idealized model for the ocean of an icy moon. (A) Diagram of an icy moon, the ice shell of which is thin at the poles and thick at the equator. The nonuniform 
ice shell induces a temperature gradient at the top of the ocean. We use a cosine temperature profile, as shown in (B), to represent this top temperature forcing in our 
numerical simulations. Here, ΔT is the pole-to-equator temperature difference, and Ts is the top temperature. (C) Setup of our numerical simulations. We use a cuboid to 
represent the ocean; in Cartesian coordinates, the x, y, and z directions point eastward, northward, and upward, respectively. The green arrows in (A) and (C) show the 
Coriolis parameters at different locations.
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that the buoyancy gradient induced by the salinity gradient is not so 
strong that the buoyancy forcing at the top creates a strong stratifi-
cation near the poles, making N larger than f. However, this seems 
unlikely to happen because the buoyancy gradient due to salinity is 
estimated to be of the same order as that due to temperature (15). In 
our reference simulation, N/f is of order 10−1, a consequence of the 
large depth of the ocean and the smallness of the imposed tempera-
ture gradient.

Baroclinic eddies are most clearly evident in the latitude-longitude 
plot of the temperature anomaly (Fig. 3, A2 and D2). The character-
istic length of these eddies is several kilometers and, as discussed 
below, well matched with the Rossby deformation radius. Baroclinic 
eddies predominate at mid-to-high latitudes (inside the tangent cyl-
inder), whereas roll-like structures dominate in equatorial regions 
(outside the tangent cylinder), as can be seen in Fig. 3 (D1 and D2). 
These rolls are a prominent feature of the solutions presented in a 
previous study that simulates ocean convection driven by bottom 
heating on Enceladus (11). Because the temperature is almost uniform 

outside the tangent cylinder, the heat transport due to rolls is rather 
weak and is not our focus here.

Scale of jets and eddies
The lateral scale of the jets might be expected to depend on the 
Rhines scale because the inverse cascade of 2D eddy energy will be 
arrested by the β effect (39). This theory has been used to success-
fully explain jet widths in previous studies (11, 40). Following their 
method, the Rhines scale is defined as

where U is the peak zonal velocity of the jet, θ is the latitude of the 
jet, and β is the topographic β parameters

Lβ =

√

2U

β
∣ sinθ ∣−1 (3)

β = −2Ω
1

h

dh

ds
(4)

Fig. 3. Zonal jets and baroclinic eddies in the reference simulation. The column on the left shows the instantaneous (A1) temperature anomaly, (B1) zonal velocity, 
(C1) meridional velocity, and (D1) vertical velocity along a zonal cross section. Here, the anomaly is defined as the instantaneous departure from the zonal mean. The 
column on the right (A2 to D2) shows the same fields on a horizontal cross section, which is at the depth of 15 km, halfway down the water column. The black dotted lines 
represent the tangent cylinders.
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where h is the length of the Taylor column measured parallel to the 
rotation axis and s is the axial distance between the Taylor column 
and the rotational axis.

In fig. S2A, we show the instantaneous zonal-mean zonal veloc-
ity at mid-depth in the ocean as a function of latitude. Every local 
maximum of u2 represents the center of the corresponding jet 
(marked by orange circles), flanked by minima (marked by red 
dashed lines); the width of the jet is defined as the latitudinal dis-
tance between neighboring local minima of u2 (marked by red 
dashed lines) divided by π (11, 40). We find that jet widths match 
well with the Rhines scales in middle and high latitudes in all our 
experiments: Figure 4A shows that median values of the Rhines 
scales and jet widths in each simulation lie on a straight line. We use 
the median values because the jet width can vary by a factor of 5 or 
more across latitudes in a particular simulation (fig. S2), and thus 
the median better captures the whole sample than the arithme-
tic mean.

The size of the eddies might be expected to scale with the Rossby 
deformation radii, LR, or perhaps Lβ if there is a strong inverse cas-
cade. Linear theory would suggest that the eddies are energized by 
baroclinic instability at the LR scale with a wavelength of order of 
2πLR. To investigate, the Rossby deformation radius is calculated us-
ing the mean vertical temperature profile, T(z), between the lati-
tudes of 90°S and 72.5°S. We find the gravity wave speed, ci, for the 
ith baroclinic mode, ϕi, by solving the eigenvalue problem

where N(z) =
√

αg
[

dT∕(dz)
]

 is the buoyancy frequency. The Ross-
by deformation radius is

where c1 the gravity speed of the first baroclinic mode. We compute 
the decorrelation scale of relative vorticity to quantify the size of the 

eddies. We first calculate the autocorrelation of relative vorticity, ζ = 
∂xv−∂yu, in the zonal direction and then average it in space from 
90°S to 72°S. The decorrelation scale is defined as the distance at 
which the autocorrelation drops to one-half. Figure 4B shows a sat-
isfying relationship between the Rossby deformation radii and the 
decorrelation scale.

Last, it should be noted that the Rhines scale and the deforma-
tion radius are also linearly related to one another. As can be seen 
from inspection of Fig. 3, the eddy scale and the jet scale are close to 
one another with a typical eddy roughly filling the space between 
the jets.

The central role of baroclinic eddies
In the reference simulation, the zonal-mean temperature pattern 
features (i) uniform temperature in equatorial regions, (ii) stable 
stratification over the pole, and (iii) a pole-to-equator temperature 
gradient in the interior ocean, which decays with depth (see Fig. 
5A). The minimum temperature is found at the equator, where sur-
face cold water sinks into the abyss. As a result, the temperature is 
almost vertically uniform at the equator, and the stratification is 
close to neutral. Over the poles, in contrast, the seawater tempera-
ture is higher than elsewhere, so the stratification is stable and verti-
cal diffusive heat transport is found. Because the interior of the 
ocean has a lower temperature compared to the surface at the poles, 
the diffusive heat flux is directed downward, as shown by the purple 
arrows in Fig. 5A. A pole-to-equator temperature gradient in the 
interior ocean forms due to the imposed temperature gradient at the 
top boundary being diffused downward into the interior.

The meridional temperature gradient in the ocean is in thermal 
wind balance and is baroclinically unstable, resulting in eddying 
motions. The Charney-Stern theorem (41) states that a change in the 
sign of the Ertel PV gradient is required for instability to occur. This 
criterion is satisfied, as can be seen by inspection of the PV field in 
our reference simulation. In Fig. 5B, the Ertel PV gradients in the 
interior and close to the top boundary are of opposite sign. The Ertel 
PV gradient is positive in the interior of the ocean, largely due to the 
gradient of planetary vorticity. In the generalized PV definition (42), 

d

dz

[

1

N2(z)

d

dz
ϕi

]

= −
ϕi

c2
i

(5)

LR =
c1

2Ω∣ sinθ ∣ (6)

Fig. 4. Observed eddy scale, jet scales, and eddy velocities measured against the Rossby deformation, Rhines scales, and thermal wind. (A) Relation between the 
eddy scale and the Rossby deformation. (B) Relation between the median values of the jet widths and the Rhines scales among all simulations. (C) u′ and v′ represent 
velocity anomalies from the time-mean zonal-mean u and v velocities, respectively, and thermal wind is αgDΔT/(2RΩ), where D is the vertical penetration depth (see the 
section An idealized model for the temperature distribution for definitions). We use different colors to represent different simulations [see the subpanel in (A)]. The dashed 
line, whose slope is shown in the upper right corner, represents the best linear fit in each panel.
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a top PV sheet is introduced from a temperature gradient at the top 
boundary, and the direction of the Bretherton PV gradient within it 
is opposite to (the same as) the gradient of temperature at the top in 
the Northern (Southern) Hemisphere, thus satisfying the Charney-
Stern criterion.

One important effect of baroclinic eddies is that they flux heat 
down-gradient from higher latitudes to lower latitudes. Because the 
weak mean overturning flow is not effective in heat transfer, eddy 
heat transport dominates. Vertical integration of the meridional 
component of eddy heat flux is shown in Fig. 5C and peaks at 4 kW 
m−1. At equilibrium, the convergence of this heat transport must be 
equal to the vertical heat flux at the water-ice interface, as shown in 
Fig. 5C. Thus, over the poles, heat is transferred from the ice shell to 
the ocean; in mid-latitudes, it is transferred from the ocean to the 
ice shell. Because cooling (heating) results in thickening (thinning) 
of the ice shell, ocean heat transport tends to homogenize ice shell 
thickness variations, as first proposed in a terrestrial setting (43). 
At low latitudes, the strength of the heat flux at the water-ice in-
terface is relatively weak, possibly due to the weak temperature 
gradient there.

Importance of vertical diffusion of heat
Vertical mixing is essential to energize oceans forced by a surface 
temperature gradient (44, 45) because it enables that gradient to be 
diffused down into the ocean interior. This downward diffusive heat 
flux (purple arrows in Fig. 5A) balances the upward heat trans-
port due to baroclinic eddies (green arrows in Fig. 5A), as shown 
by the subpanel in Fig. 5A. While baroclinic eddies arise due to the 

horizontal temperature gradient in the ocean interior, it is vertical 
diffusion that maintains that interior gradient sustaining baroclinic 
activity. From an energetic point of view, it can also be shown that it 
is vertical diffusion rather than the heat flux from the ice that ener-
gizes ocean circulation (28, 44).

In our simulations, the diffusion coefficient is larger than its mo-
lecular value by several orders of magnitude. Diffusion of heat can 
be a result of both molecular and turbulent/eddy diffusion. Diffu-
sion by turbulent scales in Earth’s atmosphere and ocean is the rate-
limiting mixing process. Turbulence is generated by many processes, 
including tidal processes exciting inertia-gravity waves, convective 
instability caused by heating and cooling and/or freezing/melting, 
flow over topography, and baroclinic instability of the large-scale 
flow and its turbulent cascade. All these processes can be expected 
to be at work on icy moons. Here, in our numerical simulations, we 
attempt to resolve the baroclinic eddy scales but perhaps not its tur-
bulent cascade. We therefore interpret κ to represent the net effect of 
mixing by all smaller scales.

The linkage between diffusion and meridional heat transport can 
be clearly seen by considering the budget of temperature variance, 
T2. If we multiply Eq. 34, the governing equation for T in our simu-
lations, by T, take the time average and integrate over the domain, at 
equilibrium, we obtain

− ∫
Ly∕2

−Ly∕2

dy

(

dTtop

dy
⋅F

merid.

T

)

= κ ∫
Ly∕2

−Ly∕2

dy ∫
0

−H

dz (∇T)2 (7)

Fig. 5. Plots of temperature, streamfunction, Ertel’s PV, and heat transport in the reference simulation. (A) Zonal, time-averaged temperature (contours), eddy-
driven overturning circulation (shading, defined in eq. S1), diffusive heat flux (purple arrows), and eddy heat transport (green arrows). The purple dotted line marks the 
tangent cylinder. The subpanel shows the horizontally averaged vertical heat flux. (B) Instantaneous Ertel PV defined by (∇ T) ⋅ (f + ∇ × u) along a zonal section. The 
contours show the instantaneous temperature at an interval at 0.01 K. (C) Vertical heat flux at the top of the ocean (blue) and the meridional heat transport (red). (D) 
Streamfunction (contours) and diabatic heating rate (shading) in temperature/latitude coordinates. The meridional heat flux is scaled to the circumference of the moon 
by multiplying by a factor of πR/Lx, where R is the radius of the icy moon and Lx is the domain size in the x direction.
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where Ttop is the prescribed top temperature and Fmerid.

T
 is the time-

mean vertically integrated meridional temperature flux due to dif-
fusive and advective processes

The left-hand side of Eq. 7 is the flux of heat directed down the 
large-scale gradient, which is balanced by explicit diffusive process-
es acting on temperature gradients represented by κ on the right-
hand side. This clearly demonstrates that the large-scale eddy heat 
flux is directed down-gradient and tends to zero when κ tends to 
zero. It shows the important role of vertical diffusion in the tem-
perature variance budget and therefore large-scale meridional 
heat transport.

At low latitudes, convection dominates vertical transport, as is to 
be expected when the ocean is forced by a lateral temperature gradi-
ent from above (44, 45). Between 30°S and 30°N, the stratification is 
unstable under the top boundary (see fig. S3 in the Supplementary 
Materials), resulting in convection and near-vertical isotherms 
there. Convection transports heat upward, which is balanced by 
downward heat diffusion at higher latitudes. Thus, vertical diffusion 
remains essential for energizing ocean circulation (44, 45).

Overturning circulation
Eddies drive a pole-to-equator overturning circulation in each 
hemisphere (Fig. 5A and the schematic in Fig. 1B). Sinking occurs at 
low latitudes where water is cold, while upwelling happens at high 
latitudes where it is warm. We discuss how we diagnose the stream-
function in the Supplementary Materials.

The cross-isotherm component of the overturning balances dia-
batic heating, which includes a contribution from diffusion (κ∇2T) 
and the parameterized heat exchange with the ice shell, as well as 
the convergence of the residual fluxes. Diffusive heating is the 
dominant term in the ocean interior and leads to a circulation 
that crosses isotherms. This can be seen most clearly by plotting 
Ψ⋆ in temperature-latitude coordinates (Fig. 5D). At low latitudes, 
where diffusive heating is weak, Ψ⋆ contours mostly follow T  sur-
faces. Near the upper boundary, strong diabatic cooling associ-
ated with heat exchange with the ice causes Ψ⋆ contours to cross 
temperature surfaces.

When the skew heat flux (which is the component of eddy heat 
transport that are parallel to the isotherms; see the Supplementary 
Materials for definition) becomes the dominant mechanism of me-
ridional heat transport, the total heat transport is proportional to 
the product of the maximum streamfunction and the meridional 
temperature gradient

where Ψ⋆ is the maximum of the Ψ⋆ pattern. The predicted heat 
transport agrees well with numerical simulations (Fig. 6).

An idealized model for the temperature distribution
As can be seen from Fig. 5A, the direction of vector eddy heat trans-
port in the meridional plane by baroclinic eddies in the interior of 
our solution is directed along temperature surfaces, as described, for 
example, in the Antarctic Circumpolar Current of Earth’s ocean 
(29). This motivates a separation between skew fluxes and residual 

fluxes (discussed in the Supplementary Materials). In our control 
simulation, the residual fluxes turn out to be small compared to the 
skew fluxes in most of the ocean, as we expected (fig. S4). The verti-
cal integral of 

(

v′T ′
)

skew
 is several times larger than that of 

(

v′T ′
)

residual
 as can be seen in fig. S4. Residual fluxes are small in the 

ocean interior because diabatic processes are weak there on the tim-
escale/length scale of eddies. Thus, fluid parcels are constrained to 
move along isotherms (here T surface). This does not contradict 
our statement that diffusion is a central part of the large-scale 
ocean heat balance because eddy processes have a much shorter 
timescale (tens of days) than that of the large-scale thermal struc-
ture (hundreds of years). It should be noted that residual fluxes 
become more important as diffusivity is increased. In simulations 
using κ = 0.1  m2  s−1, the strength of residual flux fluxes is compa-
rable to that of skew fluxes.

When the T surfaces tilt, the meridional heat transport will natu-
rally be associated with a vertical component. At equilibrium, this 
vertical, upward eddy heat transport must balance the downward 
diffusive heat flux (16, 36). This allows us to construct a simple model 
(which we call the K-κ model) to predict the interior temperature 
distribution, in which K represents the eddy heat transport and κ is 
the explicit vertical diffusion. The resulting framework has much in 
common with idealized models of the stratification and overturning 
circulation in the Southern Ocean (29, 30), which were applied to 
Enceladus in Lobo2021.

At equilibrium, the Reynolds-averaged temperature equation is, 
neglecting advection by the mean

where κ is the vertical heat diffusivity. The horizontal component of 
the eddy heat flux is directed down-gradient (equatorward) (Fig. 
5C), and so, as is commonly assumed in dynamical meteorology 
and oceanography, we liken the eddy heat flux to a mixing process 
and express it thus

where K is a lateral mixing coefficient of temperature associated 
with baroclinic eddies. Although our simulations and previous 
studies show that K will varies spatially (13, 16), for simplicity, 
here we use a single value for K although we will allow it to vary 
between simulations.

We can connect the vertical component of eddy heat flux to its 
horizontal component by assuming it to be a skew flux, thus

where s is the slope of the mean temperature surfaces

The residual fluxes are small in the ocean interior (fig. S4) and are 
therefore not considered in this simple model.

Combining Eqs. 11, 12, and 13 enables us to write Eq. 10 as

F
merid.

T
= ∫

0

−H

dz
(

−κ �yT+vT
)

(8)

F
(overturning)
heat

=
1

4
cwρwΔT

(

πRΨ⋆
)

(9)

�yv
�T � + �zw

�T � = κ �
2
z
T (10)

v�T � = −K �yT (11)

w�T � = sv�T � (12)

s = −
�yT

�zT
(13)

J
(

Ψ⋆,T
)

= κ 𝜕
2
z
T (14)
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where J(A, B) = (∂yA)(∂zB)−(∂zA)(∂yB), where the streamfunction 
for the residual overturning circulation Ψ⋆ is given by

Such an expression for Ψ⋆ has been widely used in studies of ter-
restrial (46,  47) and Enceladean (14,  16) ocean circulation. This 
eddy-driven circulation, depicted in Fig. 1B, draws cold water up-
ward, balancing heat being diffused down from the surface.

Equation 14 was the model used in Lobo2021 to study the circu-
lation of Enceladus for prescribed values of K and κ. It was solved 
using a method of characteristics that has been used for modeling 
the Southern Ocean (29). Here, we take a different approach and 
rewrite Eq. 14 using temperature as a vertical coordinate by noting 
that (i) the slope of isotherms, s, can be expressed as ∂yz in tempera-
ture coordinates and (ii) J

(

Ψ⋆
,T

)

 can be interpreted as the gradient 
of Ψ⋆ in the direction along the local isotherms and so also ex-
pressed in temperature coordinates. As derived in the Supplemen-
tary Materials, Eq. 14 can be written as

where z is a function of y and T. We see that the depth of isotherms 
are diffused horizontally by K and vertically by κ, having their origin 
at the top. This is simpler than Eq. 14 with a direct physical interpre-
tation. However, the boundary conditions are more complicated: 
The shape of the domain, the collection of all possible (y, T), is now 
nonrectangular because temperature varies at the upper boundary. 
Although this complicates the solution for the interior temperature 
distribution, it allows us to readily derive scaling laws for the pene-
tration depth of surface temperature anomalies. Moreover, one great 
advantage of Eq. 16 is that it can be readily solved numerically.

The depth of penetration, D, of ocean circulation is closely linked 
to the slope of temperature surfaces, thus

where we have assumed that the horizontal length scale is the radius 
of the moon R, as can be seen in Fig. 2; s, in Eq. 17, can be under-
stood as the average slope (dz/dy for constant T) for a given iso-
therm. Note the slope actually takes on a large range of values from 
almost infinite at low latitudes to close to zero near the poles.

Outside of the strong convective regions at the low latitudes, the 
vertical heat budget is a balance between diffusion and eddy heat flux

Ψ⋆ = Ks (15)

K �
2
y
z + κ

�
2
T
z

(

�Tz
)2

= 0

(16)

D ∼ sR (17)

Fig. 6. Measures of key flow parameters in two groups of simulations compared to predictions from scaling. The left column shows the (A1) eddy heat transport coef-
ficient K, (A2) meridional heat transport, and (A3) penetration depth in calculations in which the vertical diffusivity, κ, is varied; the right column (B1 to B3) shows the same 
but when the prescribed temperature difference is varied. Theoretical predictions are made from Eqs. 23, 24, and 25. The overturning [green lines in (A2) and (B2)] represents 
the meridional heat transport calculated from streamfunction (Eq. 9). The index for the best power fit for each curve is shown in every panel with the corresponding color.
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This can be combined with Eq. 13 to yield

Substituting back into Eq. 17 gives a scaling for the depth of pen-
etration D

Equations 19 and 20 indicate that the isotherm slope and the 
depth to which surface warm water penetrates are determined by 
the ratio of κ to K. This can be understood as follows: Vertical diffu-
sion at higher latitudes brings heat into the ocean, making isotherms 
steeper (increasing s), while baroclinic eddies try to flatten tempera-
ture surfaces (decreasing s). The ratio of κ to K controls the relative 
efficiency of these two processes, and thereby the equilibrium slopes. 
This is directly analogous to the models of the Antarctic Circumpo-
lar Current (29): There, the wind curl pumped the surface boundary 
conditions into the interior, rather than mixing processes, but a bal-
ance with lateral eddy mixing, as here, determined the equilibri-
um slope.

Note that Eq. 19 is only applicable when D given by Eq. 17 is 
smaller than the ocean depth H. When D > H, a different scaling 
pertains (16). Later, we will see that this scenario is very unlikely 
for Enceladus.

In the K-κ model, the strength of the ocean circulation, obtained 
by combining Eq. 19 with Eq. 15 is given by

This is exactly the same relationship obtained for the strength of 
the lower cell driven by mixing and eddies around Antarctica in 
Earth’s ocean (30).

Scaling for the eddy diffusivity K and ocean heat transport
A scaling for K enables a prediction of ocean heat transport with the 
K-κ model for a given diapycnal mixing rate κ. This scaling (16), 
inspired by geostrophic turbulence theory (48,  49), uses mixing 
length theory (24) and assumes that K can be expressed as the prod-
uct of a characteristic eddy length le and eddy speed ve. We have 
noted that our eddy length covaries with the deformation radius LR 
(Eq. 6 and Fig. 4). When vertical diffusion does not dominate, ve will 
scale with the thermal wind speed UTW ≡ αgDΔT/(Rf), as shown in 
Fig. 4C. This suggests that

where N =
√

αgΔT ∕D is the buoyancy frequency. The penetration 
depth D is given by Eq. 20. On substituting into Eq. 22, we obtain the 
κv-limit scaling presented in (16)

where CK is a constant. Fitting to our numerical simulations, we find 
that the best fit is CK = 0.0692.

Equation 23 suggests that K increases with ΔT and κ. This is 
expected because the baroclinic eddies are energized from the 
horizontal temperature gradient. Also, the maintenance of the 
horizontal temperature gradient in the ocean interior requires 
vertical diffusion.

Last, combining our K-κ model (Eqs. 15 and 19) with the scaling 
for K (Eq. 23), we obtain the following expressions for penetration 
depth and the meridional energy flux

where CD and CF are constants. Again, fitting to our simulations, we 
find that CD = 1.39 and CF = 0.435 (Fig. 6). This formula is identical 
to the κv-limit scaling given by a previous study (16).

Test of theory against numerical solutions
To test the K-κ model against numerical solutions, we need to deter-
mine if (i) Eq. 16 (or equivalently, Eq. 14) correctly predicts the tem-
perature patterns in our numerical simulations; (ii) the interplay of 
K and κ determines the penetration depth of surface temperature 
anomaly D and the strength of the ocean circulation, Ψ⋆, following 
Eqs. 20 and 21; and (iii) the eddy diffusivity K and the meridional 
heat transport can be predicted using Kscaling from Eq. 23 and Fheat 
from Eq. 25, respectively.

First, as can be seen from Fig. 7, solutions of Eq. 16 well match 
the equilibrium state of our numerical model. To obtain these solu-
tions, boundary conditions are set as follows: Over northern and 
southern boundaries, �yT  is set to zero, consistent with the adia-
batic boundary condition prescribed in the high-resolution simula-
tions. At the bottom, the temperature is assumed to be the minimum 
temperature prescribed at the water-ice interface. This is reasonable 
because we observe that the coldest prescribed temperature occu-
pies the abyssal ocean (Fig. 5A). Also, to obtain a solution of Eq. 16, 
we linearized it by replacing ∂Tz with {H/[Ts(y)−Ts(0)]}, set by top-
to-bottom temperature difference at a given latitude. This approxi-
mation prevents us from capturing the top-amplified structure of 
stratification (∂Tz). However, despite these assumptions, the solu-
tion is still able to capture the broad temperature patterns found in 
the numerical simulations (see Fig. 7). We also notice that the tem-
perature patterns in the numerical simulations (Figs. 5A and 7) con-
tain perturbations due to the baroclinic component of the zonal 
velocity pattern, which is in thermal wind balance (fig. S1).

Second, we demonstrate that Eqs. 19 and 21 capture the isotherm 
slope s and the magnitude of the ocean circulation Ψ⋆ in our simu-
lations. To diagnose s, we replace it by D/R following Eq. 17 and 
define the penetration depth, D, based on the vertical profile of the 
vertical temperature gradient, �zT , at the poles. Starting from the 
surface, where �zT  is a maximum, the depth at which �zT  drops to 
1/e (e = 2.71828…) of its maximum value is taken as a measure of D.

Third, to see if the scaling laws for penetration depth (Eq. 24) and 
meridional heat transport (Eq. 25) capture the numerical results, we 
overlay the scaling predictions on Fig. 8 using green markers. The 
predictions given by scaling laws (green markers) are well aligned 
with numerical simulations (orange crosses).

κ �zT ∼ −sK �yT (18)

∣S ∣ ∼

√

κ

K
(19)

D ∼

√

κ

K
R (20)

Ψ⋆ ∼
√

κK (21)

K ∼ l
e
v
e
= U

TW
L
R
=

αgD2ΔTN

Rf 2
(22)

Kscaling = CKκ
3∕7

(

αΔTg
)6∕7

R2∕7Ω−8∕7 (23)

D = CDκ
2∕7

(

αΔTg
)−3∕7

R6∕7Ω4∕7 (24)

Fheat = CFcwρwκ
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Equation 24 slightly overestimates the penetration depth D when 
the prediction approaches the full ocean depth H. This is expected 
because, as D → H, the ocean enters the so-called D-limit scenario 
described in a previous study (16), in which vertical diffusion is 
strong enough to carry the top boundary condition all the way down 
to the ocean bottom. Figure 9 marks the D-limit with gray shading 
and shows that none of our simulations are in this regime (some 
simulations may be arguably in the transient zone between the 
two regimes).

We also present the isotherm slope and the volume transport 
from Lobo2021 (14) in the same plots (Fig. 8, A and B) using blue 
plus markers. Evidently, the K-κ model, specifically Eqs. 15 and 19, 
also matches the results by Lobo2021. This is not unexpected given 
the similarity between our model and theirs. However, as can be 
seen from Fig. 8C, the κ and K values chosen in the Lobo2021 mod-
el are in a very different parameter regime than suggested by our 
numerical solutions.

Implications for Enceladus
The pole-to-equator ice shell thickness variation (17–20) creates a 
meridional temperature difference at the top of Enceladus’ ocean, 
which will drive ocean circulation and meridional heat transport. 
The ocean circulation forced by a buoyancy gradient at the top in the 
oceans of icy moons was first studied using a box model (12) or in a 
zonally symmetric configuration (15,  36). A zonally symmetric 
model accounts for an overturning circulation and qualitatively cap-
ture associated features Ψ⋆. However, because of the lack of the 
zonal dimension, baroclinic eddies are not present. This, conse-
quently, leads to an underestimate of the meridional heat transport, 
especially when the ocean is strongly baroclinically unstable. More-
over, the dynamic features that appear in 3D configurations are 
drastically different from those in zonally symmetric configurations: 

Multiple jets and associated overturning circulation cells form rather 
than the single overturning circulation of the 2D model. Such differ-
ences have been noted in previous studies (13, 16).

The pole-to-equator temperature difference on Enceladus is per-
haps of order 0.1 to 0.2 K, which can induce a substantial meridional 
heat transport. Substituting such a temperature difference and Ence-
ladus parameters (g, R, and Ω) into Eq. 25 (16), the meridional heat 
transport on Enceladus is

The relation between κ and ΔT is plotted in Fig. 9, assuming α = 
1.67 × 10−4 K−1. The blue shaded area in Fig. 9 marks the possible 
parameters of Enceladus by requiring the meridional heat transport 
to be <3 GW, the amount of heat that can be lost through the equa-
torial (30°S to 30°N) ice shell (19, 50). If this is exceeded, then the 
equatorial ice shell would melt, which, together with likely pole-
ward ice flow (51, 50), would eventually smooth out ice thick-
ness variations (15, 16, 36). Such a heat budget constraint can 
also be used to place an upper limit on the vertical diffusivity of 
between ∼10−3  m2  s−1, depending on the assumed value of the 
thermal expansion coefficient α, which is a function of ocean salin-
ity (15) and the pole-to-equator temperature difference ΔT.

Furthermore, a pole-to-equator temperature difference can po-
tentially strongly modify convective upward heat transport powered 
by possible bottom heating. Given that the meridional temperature 
gradient (0.1 K) is likely much greater than the simulated vertical 
temperature gradient induced by a bottom heating of 40 mW/m2 
(11, 52), the heating pattern at the seafloor may be substantially 
altered by the time it is delivered to the ice. This mechanism is 

F
heat

=

1.8 GW

(

α

1.67×10
−4

K
−1

)3∕7
(

ΔT

0.1 K

)10∕7
(

κ

10
−3

m2 s−1

)5∕7

(26)

Fig. 7. Solutions of the K-κ model compared with that from our explicit, eddy-resolving model at equilibrium. (A and B) For each of our eddying simulations, we 
diagnose K and then solve for the temperature distribution for the appropriate κ/K value.
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different from the imprint of bottom heating patterns due to bottom 
convection (9–11, 38, 53). This may draw into question, for example, 
the scenario in which a poleward-amplified heating pattern emanat-
ing from the seafloor can sustain the poleward-thinning ice geom-
etry on Enceladus (54).

To put our work in context, in Fig. 8, we also present some results 
inferred from the Lobo2021 model (14). Our K-κ model shows that 
the ratio of κ to K controls the depth of the circulation (panel B), 
while the product of κ and K controls the strength of overturning 
circulation (panel A). The major difference between our work and 
that of Lobo2021 is that K is estimated using scaling laws (Eq. 23), 
which is then validated using high-resolution numerical experi-
ments, rather than, as in Lobo2021, being prescribed at terres-
trial values. Our calculations suggest that K should be of order 
∼0.1  m2  s−1, which is three to four orders of magnitude smaller 
than assumed in (14)—Fig. 8C. As a result, Lobo2021’s overturning 
circulation is two orders of magnitude too shallow (panel B) and 
two orders of magnitude too strong (panel A). Last, as noted earlier, 
the energy budget of the ice shell of Enceladus puts an upper bound 
on the strength of ocean heat transport and thereby the residual 

circulation. This limit is marked by the dotted line in Fig. 8C. The 
parameter space explored by Lobo2021 would result in a heat trans-
port orders of magnitude greater than the 3-GW limit due to the 
assumption of a very large K, even for the smallest κ assumed. If this 
were true, then ice shell thickness variations would be quickly 
smoothed out.

Application to other icy moons
The idea that ice thickness variation drives an ocean circulation can 
be applied to other icy moons, which may have a pole-to-equator 
temperature gradient beneath an ice shell of variable thickness. Al-
though a substantial ice shell thickness variation has been found 
on Enceladus, similar unevenness of the ice shell may not exist 
on Europa or Titan. The upper limit of the pole-to-equator ice 
thickness variation on Europa is perhaps of order 10 km (55). Be-
cause of Europa’s large size and hence strong gravity (36, 16), the 
meridional heat transport in the ocean could be as large as 2.4 GW 
even if the vertical diffusivity is as low as 1.6 × 10−7  m2  s−1, 
the molecular value (9). Here, we assume that cw = 4 × 103  J  kg−1  
K−1, ρw = 1 × 103  kg  m−3, α = 2 × 10−4  K−1, R = 1561  km, and 

Fig. 8. Ocean circulation characteristics as a function of our two key parameters, κ and K. Theory predicts the strength of the eddy-driven overturning circulation as 
2πR

√

κK  and that the isotherm slope is 
√

κ ∕K . (A) Volume transport versus these predictions in our simulations (points, similar to Fig. 4) and calculations in the Lobo2021 
model (14) (blue crosses). (B) Isopycnal slopes. In our simulations, isopycnals are identical to isotherms. (C) Comparison of the parameter space of (κ, K) in our simulations 
to those assumed in the Lobo2021 model (14). The four arrows indicate how changes in κ and K affect the strength and the depth of the eddy-driven overturning circula-
tion. Dashed lines indicate how K depends on κ and the prescribed temperature difference at the top, ΔT. The values of K used in the Lobo2021 model (14) are roughly 
three orders of magnitude larger than our simulations suggest, resulting in overturning circulations that are too strong and too shallow.
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Ω = 2.1 × 10−5  s−1 (9). The rate that the freezing point varies with 
pressure is set to −7.5 × 10−8 K  Pa−1. Furthermore, spatial varia-
tions in tidal heating on Titan can possibly induce ice shell thickness 
variations, which is an explanation to the surface topography (56). 
The resulting lateral ice thickness variation can be several kilome-
ters. Because Titan has an even larger size and an even slower rota-
tion rate than Europa (9), ocean heat transport may be even more 
efficient in removing thickness variations in the overlying ice shell. 
In the future, Europa Clipper (57) will be able to better constrain the 
ice thickness profile of Europa, and JUICE (JUpiter ICy moons Ex-
plorer) (58) may be able to reveal the ice geometry on Ganymede 
and Callisto. The sustainability of a specific ice thickness profile will 
lead to a constraint on ocean heat transport, which can then perhaps 
be used to infer subsurface ocean properties, such as vertical diffu-
sivity, using our scaling law.

The scaling laws (Eqs. 23, 24, and 25) and heat budget can also 
be written in a dimensionless form. This can simplify determin-
ing if the scaling law is applicable to the regime in question. Phys-
ical parameters involved are (i) the radius of the moon, R; (ii) the 
rotational rate, Ω; (iii) the depth of the ocean, H; (iv) the diffu-
sivity, κ; (v) the viscosity, ν; and (vi) the buoyancy forcing, Δb. 
Buckingham’s Π theorem tells us that four nondimensional num-
bers can be constructed

Here, χ is the nondimensional depth of the ocean; Ek is the Ek-
man number to represent the strength of diffusion relative to rota-
tion; Pr is the Prandtl number, and it is set to unity in this study; and 
R⋆

a
 is the slantwise Rayleigh number (59). Note that the slantwise 

Rayleigh number does not depend on a poorly constrained diffusiv-
ity or viscosity, in analogy with the natural Rossby number, Ro∗ (11). 
Figure 9 shows Ek and R⋆

a
 in the upper x axis and the right y axis, 

respectively. Although our scalings have been tested within the pa-
rameter space of our simulations, it is yet to be confirmed if they are 
applicable beyond this space. However, on the basis of the principles 
of geostrophic turbulence theory (48, 49), we expect our scalings to 
hold as long as R⋆

a
 and Ek are sufficiently small.

DISCUSSION
We have explored how ocean circulation can be induced on an icy 
moon when forced by a temperature variation at the top, which is 
diffused down into the interior. Our main findings are as follows:

1) Eddies play a dominant role in ocean dynamics and heat/trac-
er transport. The Eulerian-mean meridional overturning circulation 
is much weaker than that associated with eddies in terms of strength 
and associated heat transport.

χ =
H

R
(27)

Ek =
κ

ΩH2 (28)

Pr =
ν

κ (29)

R⋆

a
=

Δb

Ω2H
(30)

Fig. 9. Dynamical parameter space for Enceladus. The black points represent our simulations; the blue blocks represent the possible position of Enceladus in this space. 
The minimum value of κ on Enceladus is assumed to be 1.4 × 10−7m2  s−1. This is the estimated molecular diffusivity (9), but tidal mixing will likely produce much elevated 
values. The solid lines show the parameters for the corresponding meridional heat flux predicted by Eq. 26. Because the ocean heat transport is unlikely larger than 3 GW, 
the diffusivity must be smaller than ∼10−3m2  s−1. Ek and R⋆

a
 are defined in Eqs. 28 and 30, respectively.
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2) Eddies are generated by a baroclinic instability of the ther-
mal wind. The Charney-Stern theorem, a necessary condition for 
baroclinic instability, is satisfied, with the meridional gradient of 
PV having different signs above and below the thermocline.

3) Heat is diffused downward over the poles and then fluxed 
equatorward and upward along the isotherms by baroclinic eddies. 
It is eventually deposited underneath the equatorial ice shell. The 
balance between diffusion and eddies allows us to construct a K-κ 
model, from which temperature patterns can be computed given the 
vertical diffusivity, κ, and the horizontal eddy heat transport coeffi-
cient, K. The temperature patterns match well with our numerical 
simulations. The equilibrium isotherm slope and the strength of the 
eddy-driven overturning circulation can also be written as a func-
tion of κ and K. A comparison with the Lobo2021 model (14) 
is made.

4) Scaling laws for K, the penetration depth, and the meridional 
heat transport (Eqs. 23, 24, and 25) given by a previous study (16) 
are tested against numerical simulations.

5) If a larger vertical diffusivity is assumed, we find (i) a larger 
horizontal eddy diffusivity, (ii) a stronger horizontal heat transport, 
and (iii) an increased penetration depth of the boundary conditions 
into the interior.

6) Increased top temperature difference results in (i) a larger 
horizontal eddy heat transfer coefficient, (ii) a stronger horizontal 
heat transport, (iii) a smaller penetration depth of the temperature 
variation, and (iv) a potentially flatter ice shell if the ice geometry is 
close to equilibrium, as in (16).

In our study, only temperature forcing from the ice shell is con-
sidered and the density variation contributed by salinity gradient 
induced by freezing/melting is neglected. In reality, the total buoy-
ancy gradient between the equator and the pole depends strongly on 
the mean salinity of the ocean S0 because it controls both thermal 
expansion coefficient and the salinity change due to melting or 
freezing (15). However, we can include the salinity factor by replac-
ing αΔT with (αΔT−βΔS), where β is the haline contraction coeffi-
cient and ΔS is the pole-to-equator salinity difference. The thermal 
expansion coefficient α can also be changed depending on the as-
sumed S0.

Barotropic flows are strong in our simulations. Therefore, baro-
tropic or mixed barotropic-baroclinic instability might also be pres-
ent and generate eddies along with baroclinic instability. Our focus 
is on baroclinic instability here because it ultimately energizes ocean 
circulation and is central to understanding the overturning cir-
culation.

Last, our simulations do not represent the topography of the 
water-ice interface. The absence of topography may also affect ocean 
circulation and its baroclinic instability, especially when κ is small 
and the penetration depth D is shallow. The effects of the top topog-
raphy on the ocean circulation should be investigated in future work.

MATERIALS AND METHODS
Governing equations and boundary conditions
The three-component velocity, u = (u, v, w), and the temperature, T, 
are the prognostic fields in simulations. Because we use the Boussin-
esq approximation, velocity is nondivergent everywhere

The momentum equation is

where f is the Coriolis parameter in vector form; P is the pressure 
divided by the reference density; b is the buoyancy, which is later 
given by Eq. 33; and k is the unit vector in the z direction; ν∇2u is 
the viscosity term, and ν is the viscosity. The value of ν is set to κ, the 
diffusion coefficient, in all simulations.

The inclusion of Coriolis effects is given careful consideration, as 
described in the main body of the text to take account of the deep 
ocean and nontraditional Coriolis terms.

We use a highly idealized equation of state. The buoyancy, b, is a 
linear function of temperature, T

where Tref, the reference temperature, is 0°C; α, the thermal expan-
sion coefficient, is 1.67 × 10−4 K−1; and g, the gravity in the ocean, is 
0.1  m  s−1. This idealized equation of state (Eq. 33) neglects the 
contribution of the variation of salinity to the density and also as-
sumes that the salinity is high enough to suppress the abnormal 
thermal expansion.

The equation for the evolution of temperature is

where κ is the diffusivity; δtop = exp (z/d0) and d0 = 50  m; τ is the 
relaxation time; and Ttop(y) is the prescribed top temperature pat-
tern as a function of y. In all simulations, τ is small enough to relax 
temperature near the top of the ocean to the prescribed value.

The bottom (z = −H), northern [y = (π/2)R], and southern [y = 
−(π/2)R] boundaries are adiabatic. Although the bottom heating 
can be an important driver of the ocean (9–11), it is not included 
because we focus on the ocean circulation forced by a top tempera-
ture gradient in the paper. We use the no-slip boundary condition 
for the bottom, top, northern, and southern boundaries.

Numerical techniques
We use Oceananigans.jl (33), a state-of-the-art ocean general cir-
culation model that runs fast on GPUs, for all numerical simula-
tions. Powered by advanced GPUs, our simulations use a high 
resolution of 300 m in all x, y, and z directions, which is smaller 
than the Rossby deformation radii in all simulations and enables 
resolving baroclinic eddies. The velocity and the temperature fields 
are discretized using a staggered Arakawa C-grid (60). The advec-
tion terms in Eqs. 32 and 34 are calculated with a fifth-order 
WENO (weighted essentially nonoscillatory advection) scheme 
(61). The integration over time is performed with a third-order 
Runge-Kutta method designed for 3D incompressible flows (62). A 
nonhydrostatic solver is used.

All of our simulations have reached the equilibrium following 
this criterion: The relative difference between the amplitudes of the 
horizontally averaged diffusive heat flux and eddy heat transport 
needs to be within 15% at every depth.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S4

�xu + �yv + �zw = 0 (31)

�tu + u ⋅ ∇u + f × u = −∇P + bk + ν∇2u (32)

b = αg
(

T−Tref

)

(33)

�tT + u ⋅ ∇T = κ∇2T − δtop
T − Ttop

(

y
)

τ
(34)
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