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A primary aim of computational psychiatry is to establish predictive models linking individual differences in brain 
functioning with symptoms. In particular, cognitive impairments are transdiagnostic, treatment resistant, and as-
sociated with poor outcomes. Recent work suggests that thousands of participants may be necessary for the ac-
curate and reliable prediction of cognition, questioning the utility of most patient collection efforts. Here, using a 
transfer learning framework, we train a model on functional neuroimaging data from the UK Biobank to predict 
cognitive functioning in three transdiagnostic samples (ns = 101 to 224). We demonstrate prediction performance 
in all three samples comparable to that reported in larger prediction studies and a boost of up to 116% relative to 
classical models trained directly in the smaller samples. Critically, the model generalizes across datasets, main-
taining performance when trained and tested across independent samples. This work establishes that predictive 
models derived in large population-level datasets can boost the prediction of cognition across clinical studies.

INTRODUCTION
A key goal of computational psychiatry is the development of pre-
dictive models that provide personalized and robust estimates of 
clinically relevant phenotypes that can be used for prognostic and 
treatment decision-making. A primary barrier to progress in this 
area has been the historical use of small sample sizes, which has re-
sulted in inflated prediction accuracies that largely fail to generalize 
across samples, populations, or collection sites (1–3). Here, we dem-
onstrate a modeling strategy that uses measurements of brain func-
tion to robustly predict global cognitive function across multiple 
transdiagnostic samples, yielding models that generalize between 
independent cohorts despite modest sample sizes. The models also 
simultaneously provide interpretable insight into the neurobiology 
of global cognitive functioning in common psychiatric illness.

Impaired global cognitive functioning is a transdiagnostic char-
acteristic of psychiatric illness (4–6). It is difficult to treat (7, 8), 
predicts social, occupational, and functional impairment (9–11), 
and is widely regarded by patients as a key priority for treatment 
(12, 13). Global cognitive functioning indexes the overall mental 
capacity and performance of an individual across multiple cogni-
tive domains and is essential for everyday functioning and cogni-
tive well-being. Impairments in global cognitive functioning have 
been implicated across all psychiatric diagnoses with evidence show-
ing that it is a transdiagnostic phenomenon related to the presence 
of psychopathology and not to any specific disorder (4). The effect 
sizes related to underperformance range from small to medium 
in magnitude, with greater deficits found in mood and psychosis-
spectrum disorders (4, 5). The overall performance across a broad 
range of cognitive tasks has repeatedly been linked to the structural 
and functional integrity of regions within transmodal association 
cortices. These regions are responsible for the integration of multi-
ple sources of interoceptive and exteroceptive information and 
believed to underpin “higher-order” associative processes, which sup-
port cognition untethered from immediate sensory inputs (14–16), 
including adaptive goal-directed behavior (17), the application of 
complex rules (18), and the dynamic control of motor outputs (19). 
Across patient populations, converging evidence suggests the pres-
ence of altered functioning within the large-scale systems that com-
prise the association cortex (6, 20–24).

In particular, impaired connectivity within the default network, 
encompassing aspects of medial prefrontal, posterior/retrospleni-
al, and inferior parietal cortices, has been observed across diag-
nostic categories (14–18), while the level of dysconnectivity in the 
frontoparietal network, encompassing aspects of the dorsolateral 
prefrontal, dorsomedial prefrontal, lateral parietal, and posterior 
temporal cortices (19), often tracks the severity of diagnoses and 
observed cognitive deficits (20–22). However, despite the impor-
tance of establishing network-level predictors of symptom severity, 
the extent to which individual-specific profiles of brain functioning 
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associate with clinically relevant cognitive impairments remains to 
be determined.

Inter-regional functional coupling of hemodynamic signals 
measured with functional magnetic resonance imaging (fMRI), 
here termed functional connectivity, has recently emerged as a 
powerful and robust predictor of global cognitive functioning in 
healthy populations (23–27). However, population neuroscience 
studies suggest that sample sizes exceeding thousands of partici-
pants may be required to develop accurate and stable brain-based 
predictive models of behavior (2, 28–30). This requirement far ex-
ceeds the vast majority of samples available to psychiatric research 
groups, calling into question both the utility and feasibility of de-
veloping clinically focused predictive models. Moreover, even 
brain-cognition predictive models derived from consortium-level 
samples can fail to generalize or show substantially reduced per-
formance when applied to different datasets (2, 31–34), greatly 
diminishing the scope of their potential applications. This under-
scores a need for brain-based models that can reliably predict 
cognition using sample sizes that are feasible for psychiatric re-
search groups to collect and that can generalize between inde-
pendent datasets.

In large population-based cohorts, the functioning of specific 
brain systems can be leveraged to predict a broad variety of pheno-
types, ranging from demographic factors to physical health–related 
and mental health–related variables (35–38). The associated brain-
based models, which are derived from tens of thousands of healthy 
individuals, likely contain information that could be translated to 
smaller clinical cohorts, allowing for the prediction of illness-
relevant and treatment-relevant phenotypes. In this regard, a recently 
developed framework called “meta-matching” (38) capitalizes on the 
fact that a limited set of overlapping functional circuits is associated 
with a wide variety of phenotypes and uses high-throughput population-
based collection efforts to boost predictions of phenotypes in smaller 
cohorts. Using this framework, we have previously demonstrated a 
substantial increase in prediction accuracies for a broad range of 
variables in population-based healthy samples (38). However, the 
extent to which the meta-matching approach can improve the pre-
diction of clinically relevant behaviors in small independent patient 
samples, yield cross-dataset generalizable predictions, and generate 
neurobiological insight remains to be determined.

Here, we use the meta-matching framework to develop an ac-
curate, generalizable, and interpretable transdiagnostic model of 
global cognitive across a diverse set of datasets and psychiatric 
illnesses. We find that, across multiple distinct and reasonably 
sized datasets, the meta-matching model results in prediction 
accuracies that are statistically significant, superior to conven-
tional models, and comparable to those regularly observed in much 
larger population-level studies. Moreover, suggesting the presence 
of shared brain-based features underlying cognitive impairments 
across patient populations, the derived models are generalizable, 
meaning that they maintain performance when trained and tested 
in independent datasets with differing diagnostic, imaging, and 
phenotypic characteristics. The brain features that drive prediction 
across the datasets become more similar at coarser spatial scales, 
with increased connectivity within transmodal association net-
works and decreased connectivity between transmodal and uni-
modal cortices being the most common transdiagnostic predictor of 
better global cognition.

RESULTS
Accurate and generalizable prediction of global cognitive 
functioning across psychiatric populations
Our overall aim was to develop a reliable and generalizable brain-
based model that can predict global cognitive functioning across 
multiple samples of patients with psychiatric illness. To this end, we 
applied the recently developed meta-matching framework, which 
capitalizes on the fact that a limited set of overlapping functional 
circuits is associated with a wide variety of health, cognitive, and 
behavioral phenotypes (38). First, we used resting-state fMRI (rs-
fMRI) data from 36,848 participants from the UK Biobank to de-
rive functional connectivity estimates between 419 brain regions 
(39, 40). Next, we used these connectivity values to train a single 
fully connected feed-forward deep neural network (DNN) to pre-
dict 67 observed health, cognitive, and behavioral phenotypes in the 
UK Biobank.

Using the meta-matching approach (38), we then adapted this 
trained DNN (from the UK Biobank) to predict global cognitive 
function scores in three independent transdiagnostic clinical datas-
ets: (i) the Human Connectome Project for Early Psychosis (HCP-
EP; n = 145), which includes individuals diagnosed with affective 
and non-affective psychosis; (ii) the Transdiagnostic Connectome 
Project (TCP; n  =  101), which largely includes individuals diag-
nosed with mood and anxiety disorders; and (iii) the Consortium 
for Neuropsychiatric Phenomics (CNP; n  =  224), which is com-
posed of individuals diagnosed with schizophrenia, bipolar disor-
der, or attention-deficit/hyperactivity disorder. All three samples 
also included a subset of healthy participants without psychiatric 
diagnoses. For a full demographic and diagnostic breakdown of the 
samples, see table S1. Global cognitive function scores were derived 
for each clinical dataset using principal components analysis (PCA) 
on a range of neuropsychological tests (see table S2). Of note, the 
test batteries varied across datasets, allowing for the assessment of 
model robustness to study design and associated phenotype selec-
tion. For details about the meta-matching approach, please see Ma-
terials and Methods.

Our first aim was to determine if the meta-matching approach 
can make accurate and statistically significant predictions within 
clinical samples. For each dataset, we trained the meta-matching 
model using a nested cross-validation procedure, where each clini-
cal sample was split into 100 unique training (70%) and test (30%) 
sets and the full meta-matching model was implemented for each 
train/test split. Performance was assessed as the mean Pearson 
correlation between the observed and predicted global cognition 
scores across the 100 test sets, and statistical significance was as-
sessed using a permutation testing procedure (see Materials and 
Methods for details). As shown in Fig. 1B, the meta-matching 
approach yields statistically significant predictions (all ps < 0.05) 
across all three datasets, with mean prediction accuracies compa-
rable to those found using much larger healthy samples (41). We 
find the same pattern of results when using the coefficient of deter-
mination to evaluate model performance (fig. S1). Furthermore, 
we establish that the meta-matching models systematically per-
form better than a standard prediction method, where a baseline 
comparison model was trained to predict cognition directly from 
the clinical sample functional connectivity values, with the dif-
ference between comparison and meta-matching models reaching 
statistical significance (all ps < 0.05).
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Our second aim was to determine if the meta-matching model 
generalizes across independent clinical collection efforts. Generaliz-
ability was assessed as the Pearson correlation between the observed 
and predicted global cognition scores when a model was trained in 
one dataset and tested on another dataset. Here, we trained the meta-
matching model on the full sample of one dataset and evaluated 
prediction performance on the other, resulting in six train-test pre-
diction pairs between the three clinical datasets. Reflecting the pres-
ence of generalizable brain-behavior relationships across multiple 
independent clinical cohorts, we observed that the meta-matching 
model generalizes across datasets (Fig. 1C) and reached prediction 
accuracies both comparable to the mean in-sample accuracies shown 
in Fig. 1B and those reported in other studies that use in-sample 
validation and was statistically significant for all but one train/test 
pair (train/test: HCP-EP/TCP). In all cases except this same train/
test pair, higher generalizability was found when using the meta-
matching model, compared to a standard prediction model (fig. S2). 
Scatterplots of observed and predicted values are provided in fig. S3. 
We note that the meta-matching model generalized between datasets 
despite differences in diagnostic makeup, MRI scanners, acquisition 
parameters, and the fact that global cognition between each train-
test pair was derived using different neurocognitive assessments, 
ranging from at-home online tests to gold-standard clinician-
administered batteries.

Stable predictive network features across independent 
transdiagnostic datasets
We next determined the extent to which the neurobiological fea-
tures that drive the predictions are shared between datasets and if 
commonality is increased with coarser spatial scales. Predictive fea-
ture weights were derived using the Haufe transformation (31). This 
transformation considers the covariance between functional con-
nectivity and global cognition scores and, unlike regression coeffi-
cients, ensures that feature weights are not statistically independent 
of global cognition. It also increases both the interpretability and 
reliability of predictive features (31, 42, 43). For each of the three 
datasets, we examined associations between average weights across 

the 100 cross-validation folds, at spatial scales of edges, regions, and 
networks. The edge-level spatial scale refers to the original 87,571 
inter-regional pair-wise connections entered in the prediction mod-
els. By taking the mean of all edges attached to each of the 419 brain 
regions, edge-level connections can be aggregated into region-level 
predictive features. By taking the mean of all edges within and be-
tween 18 canonical functional networks including the subcortex 
[Fig. 1A; (39)], edge-level connections can also be aggregated into 
171 network-level predictive features. For both aggregated scales 
(region-level and network-level), positive and negative feature weights 
were considered separately by zeroing negative or positive values 
before averaging, respectively.

When assessing associations between brain maps, spatial auto-
correlation must be considered to ensure that any observed associa-
tions are not driven by low-level spatial properties of the brain (32). 
This same consideration extends to associations between edge-level 
network maps, where connectivity profiles of spatially adjacent re-
gions demonstrate autocorrelation. To account for this property in 
the data, we implemented a spin test, which is a standardized proce-
dure where the cortical regions of the atlas are rotated on an inflated 
sphere to generate configurations that preserve the spatial autocor-
relation pattern of the cortex. We used these null atlas configura-
tions to shuffle the rows and columns of the feature weight matrices 
to assess the statistical significance of feature weight correlations 
between datasets.

We find significant correlations across all three spatial scales 
(Fig. 2, A to C). At the edge level (Fig. 2A), we find low to moderate 
consistency between datasets, with the strongest correlation ob-
served between the TCP and HCP-EP datasets (r = 0.31, Pspin < 
0.001) and the TCP and CNP datasets (r = 0.29,   Pspin < 0.001), 
with the CNP and HCP-EP datasets showing the weakest associa-
tion (r = 0.14, Pspin < 0.001). At the region level (Fig. 2B), we again 
find low to moderate consistency between datasets, with the stron-
gest associations between datasets when examining negative feature 
weights (rs = 0.23 to 0.56; psspin < 0.001), indicating that regions 
where lower functional connectivity predicts better cognition are 
more highly related between datasets, relative to regions where 

Fig. 1. Accurate and generalizable prediction of global cognitive functioning across patient samples. (A) Network organization of the human cortex. Colors reflect 
regions estimated to be within the same functional network according to the 17-network solution from Yeo et al. (47) across the 400-parcel atlas from Schaefer et al. (39), 
along with 19 subcortical regions (40). Cortical parcels and subcortical regions are used to extract blood-oxygen-level dependent time series and compute pair-wise 
functional connectivity estimates used for prediction. (B) Prediction performance (Pearson’s correlation between observed and predicted values) using KRR (red) 
and meta-matching (blue) across three transdiagnostic datasets: HCP-EP, TCP, and UCLA CNP. Colored asterisks denote above-chance prediction ( *P < 0.05; **P < 0.001;  
***P < 0.0001; ns = P > 0.05), and black asterisks denotes the statistically significant difference between models. (C) Generalizability matrix for the meta-matching models, 
showing the prediction performance between the independent samples, where the meta-matching model is trained in one dataset and then used to make predictions 
in an independent dataset. The diagonal represents the mean prediction performance within each dataset, which is also represented by the black dots in (B).
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Fig. 2. Predictive features are correlated between independent transdiagnostic datasets across scales. (A) Association between HCP-EP, TCP, and UCLA CNP predic-
tion model feature weights at the edge level, which consist of 87,571 features per model. (B) Association between feature weights of the three datasets at the region 
level, where feature weights were averaged for all edges corresponding to a region, resulting in 419 regional features. Positive (red) and negative (blue) feature weights 
were considered separately by zeroing negative or positive values before averaging, respectively. All P values displayed account for spatial autocorrelation between 
edges, regions, and networks. (C) Association between feature weights of the three datasets at the network level, where feature weights were averaged within and be-
tween each network, resulting in 171 network features per dataset. Positive and negative feature weights were considered separately by zeroing negative or positive 
values before averaging, respectively.
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higher functional connectivity predicted better cognition (rs = 0.01 
to 0.24; psspin < 0.001 to 0.998). The comparison between negative 
regional predictive features showing greater consistency between 
datasets than positive features was statistically significant for all 
three pairs of datasets (Zs =−2.60 to 5.97, psspin < 0.009). At the 
network level (Fig. 2C), we find the strongest overall consistency 
between datasets with moderate to high effect sizes observed when 
examining positive feature weights (r = 0.54 to 0.70; psspin < 0.001), 
indicating that network-level connections where lower functional 
connectivity predicts better cognition are strongly related between 
datasets, relative to network-level connections where higher func-
tional connectivity predicted better cognition (r = 0.19 to 0.58; 
psspin = <0.001 to 0.250). The comparison between negative re-
gional predictive features showing greater consistency between da-
tasets than positive features was statistically significant for all three 
pairs of datasets (Zs = 2.88 to 5.75, ps < 0.004). Aggregating func-
tional connectivity values at the canonical network-level capitalizes 
on the intrinsic functional architecture of the brain, with network-
level brain function consistently being shown to have higher reli-
ability (33, 34) compared to edge-level and region-level measures. 
Therefore, aggregating features at the network level may provide a 
more coherent signal than individual edge-level features, which may 
obscure associations between both individuals and datasets.

Network-level predictors of better cognitive functioning
Given that predictive features were most stable between datasets at 
the network level, we examined the functional architecture of inter/
intranetwork connections driving prediction performance (Fig. 3, A 
to C). In all three datasets, we observed a consistent, widespread, 
and complex pattern of network-level feature weights (Fig. 3B; 
PFDR < 0.05). In line with prior work that reliably links functional 
coupling in transmodal association networks with cognition (44–46), 
we find that brain-cognition relations converge on connections 
where higher functional connectivity within transmodal (default, 
frontoparietal, and ventral attention) networks and lower functional 
connectivity between transmodal and unimodal (visual and so-
matomotor) networks predict better cognition (Fig. 3C). We also 
find that connectivity within the frontoparietal subnetwork A, en-
compassing aspects of dorsolateral prefrontal, lateral parietal, me-
dial cingulate, and posterior temporal cortices, was the strongest 
predictor of cognitive performance across datasets. More broadly, 
we find that, in each of the three datasets, increased connectivity 
within unimodal, transmodal, and all aggregated cortical networks 
was predictive of better cognition (Fig. 4).

To provide an increasing level of granularity, we also examined 
the network-level architecture of regional predictive features (Fig. 
5A). The strongest positive predictive regions for the HCP-EP data-
set were the left cerebellar, right dorsal prefrontal, and temporo-
parietal cortices, and the negative predictive regions were right 
post-central and visual extrastriate cortices. For the TCP dataset, 
the strongest positive predictive regions included the right parahip-
pocampal and left intraparietal cortices and negative predictive 
regions included the right intraparietal, anterior temporal, and precu-
neus regions. For the CNP dataset, positive predictive regions 
included the bilateral hippocampus, right temporoparietal, and 
dorsolateral prefrontal cortices and negative predictive regions 
were right post-central gyrus, somatomotor, and left visual ex-
trastriate cortex. While there was some heterogeneity in region-level 
predictive features, when these were aggregated into canonical networks 

(Fig. 5B), across all datasets, the strongest positive drivers of predic-
tion performance were regions in transmodal temporoparietal, de-
fault, and frontoparietal networks. The strongest negative drivers 
also included the frontoparietal, dorsal attention, limbic, and pri-
mary sensory regions, with the prominence of the frontoparietal 
network characterized by lower connectivity to sensory networks 
(Fig. 3C). We provide non-aggregated region-level distributions for 
each dataset individually, as well as distributions using a seven-
network solution (47) in the Supplementary Materials (fig. S5).

DISCUSSION
Constructing robust and generalizable models that reliably predict 
clinical symptoms from brain markers has previously required sam-
ple sizes exceeding most current collection efforts. Here, we provide 
a proof of concept and define an associated roadmap for the genera-
tion of brain-based predictions in clinical populations. Critically, 
the models reported here are generalizable across independent data-
sets, maintaining prediction performance when trained in one data-
set and tested on another, even when the datasets are independent 
and differ in their collection sites, demographic and diagnostic make-
up, measures of global cognition, imaging acquisition sequences, 
and data processing methods. The neurobiological features that 
drive prediction performance are most consistent between datasets 
at the scale of canonical functional networks rather than individual 
brain regions or edges. In line with previous hypotheses concerning 
the neurobiological substrates of cognition (48–50), our findings 
converge on a global cognition predictive network where increased 
coupling within transmodal and the decreased coupling between 
transmodal and unimodal networks are linked with better cognition 
across transdiagnostic samples.

Widespread cognitive impairments are a core feature of common 
psychiatric illness, often presenting prior to illness onset (51, 52), 
and contribute to impaired social and occupational functioning (9–
11). Here, we capture global cognitive impairments using PCA to 
extract the shared variance across multiple different submeasures of 
cognition such as processing speed, working memory, and executive 
function, which varied across the three cohorts used. Leveraging the 
meta-matching framework, we demonstrate that it is possible to 
achieve predictions of global cognitive functioning comparable to 
accuracies observed in the current state of the art for the field, using 
sample sizes that are much smaller than those that have recently been 
recommended for deriving stable and generalizable brain-based pre-
dictions (28, 30). A particular advantage of our approach is that it 
yields discoveries that generalize across both healthy controls and 
common psychiatric disorders. By combining multivariate predic-
tive models with transfer learning approaches like meta-matching, 
we provide a framework to leverage high-throughput population-
based cohorts to boost predictive power in smaller datasets.

Here, we demonstrate that the meta-matching model generalizes 
not only across diagnostic categories but also between independent 
datasets relying on different measures of cognition, neuroimaging 
protocols, and data processing strategies. Usually, models trained in 
one dataset lose much of their predictive capacity when applied to 
an independent dataset, even when the two datasets are diagnosti-
cally or demographically similar (2, 28, 53–55). The meta-matching 
approach likely achieves this high level of generalizability by 
exploiting correlations amongst phenotypes, relying on a common 
set of neurobiological features that predict a broad range of behaviors 
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Fig. 3. Increased within transmodal and reduced between network coupling is predictive of better cognitive functioning. (A) Predictive feature matrices for each 
of the three datasets: HCP-EP, TCP, and UCLA CNP, averaged within and between network blocks. Non-averaged data are provided in the Supplementary Materials (fig. S5). 
Red, positive predictive feature weight (stronger coupling predicts better cognition); blue, negative predictive feature weight (weaker coupling predicts better cognition). 
(B) Top 10% of FDR-corrected predictive network connections for each dataset are displayed in Circos plots. See fig. S11 for all FDR-corrected predictive network connec-
tions for each dataset, displayed using Circos plots. (C) (Left) Circos plot showing the connections which survive multiple-comparison correction in a conjunction analysis 
across the three datasets. (Top right) Heat map of conjunction analysis results aggregated into a seven-network and subcortex atlas solution. (Bottom right) Mean feature 
weights from the conjunction analysis categorized into within and between transmodal and unimodal networks. Sub, subcortex; TempPar, temporoparietal; DorsAttn, dor-
sal attention; VentAttn, ventral attention; SomMot, somatomotor.
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that underlie an individual’s global cognitive performance, indepen-
dent of diagnosis or measurement methods.

We have previously demonstrated that a larger-sized test sample 
(i.e., n > 100) assists in boosting performance, but meta-matching 
outperforms baseline models even in samples as small as n  =  10 
(38). A critical factor affecting model performance is the correla-
tions between the phenotypes being tested and those available in 
the larger dataset for initial model training. We previously showed 
that test phenotypes with stronger correlations with at least one 
training phenotype lead to greater prediction improvement with 
meta-matching (38).

While we find differences in the neurobiological features driving 
prediction performance between the independent datasets, we ob-
serve consistency across all spatial scales, with the strongest and 
consistently significant correspondence detected at the network 
level. Given the important methodological and phenotypic differ-
ences between datasets, feature weights from separate models are 
expected to show differences. Analogous to genetics, where broad-
ening the spatial scale from single-nucleotide polymorphisms to 
gene pathways results in more consistent associations with complex 
behavior, we find that broadening the spatial scale from inter-
regional edge-level connections to canonical networks results in 
more stable associations. The similarity of neurobiological features 
at the network level aligns with a large literature of explanatory stud-
ies implicating macroscale networks as the primary unit of analysis 
for complex behavioral traits (56, 57), as opposed to isolated regions 
or individual circuits, and evidences that the individual heterogene-
ity of patients assigned the same diagnosis is greatly attenuated 
when aggregating results across functional circuits and networks 
rather than brain regions (58). Moreover, the consistency we ob-
served between datasets suggests that the meta-matching model is 
likely making predictions by indexing a common neurobiology 
closely associated with cognitive function. In line with this hypoth-
esis, we find that the connectivity of transmodal association net-
works, including the default and frontoparietal networks, is the 
most prominent driver of prediction performance. Specifically, in-
creased connectivity within association networks and decreased 
connectivity between these networks and visual and somatomotor 
sensory networks were consistently associated with better cognition. 

This finding converges with decades of empirical work demonstrat-
ing that the activation and integrity of association networks is a 
critical driver of complex cognition (44, 49, 50) and suggests that 
the prediction model is not relying on highly idiosyncratic charac-
teristics or overfitting noise in the neuroimaging data to make pre-
dictions within each dataset. Suggesting the presence of shared 
neurobiological associates of impaired cognition across broad diag-
nostic categories, the observed set of brain-behavior relations was 
reliable and generalizable across a diverse set of patient populations.

While this pattern of connectivity represents the most consistent 
statistically significant network-level features, it is likely that a dis-
tributed range of shared and unique connections also contributes to 
the prediction of cognition within each dataset (36). Moreover, age-
related functional alterations include desegregation of large-scale 
networks (59), which are often associated with poorer cognitive per-
formance (60). Accordingly, we find that increased segregation of 
association networks from sensory networks is associated with 
better performance. Notably, our finding of increased connectivity 
within association networks predicting better cognitive function 
aligns with other large-scale investigations reporting a similar asso-
ciation with a general positive domain of behavior (35) but are like-
ly more specific to cognitive functions as they represent overlapping, 
rather than district, brain features across multiple samples (36). Our 
current analyses establish the presence of shared brain-based pre-
dictive features of cognitive functioning between patient cohorts. 
Future work should examine the unique neurobiological contribu-
tors of illness-relevant shifts in cognition across broader symptom 
profiles both within and across diagnostic groups.

There are some limitations in the current work. While being 
able to make accurate and generalizable predictions of an observed 
phenotype such as cognition suggests the potential for clinical ap-
plications, future work should seek to develop models that can pro-
vide guidance on longitudinal outcomes. Such outcomes would 
include change in cognition over time, such as illness-related de-
cline, response to medications, and transitions in illness severity. 
As large-scale population-based longitudinal data become avail-
able, the meta-matching framework can be adapted to predict 
symptom change and illness course. Moreover, in our analyses 
we focused on global cognition, which can be reliably measured 

Fig. 4. Increased within and decreased between system coupling predicts better cognition across datasets. Average predictive feature weights within (gray) and 
between (black) unimodal and transmodal cortical and subcortical regions across the three datasets: HCP-EP, TCP, and UCLA CNP. Error bars represent the SEM. Unimodal 
networks include all visual and somatomotor networks, and transmodal networks include default, control, ventral attention, dorsal attention, limbic, and temporoparietal 
networks.
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(61–63), is consistently impaired across common psychiatric diagnoses 
(4–6), and is identified by patients as a key target for assessment 
and treatment (9,  10). Specific subdomains of cognition may be 
more or less impaired across populations, and future work should 
attempt to predict the results of specialized neurocognitive assess-
ments targeting constructs like working memory, executive function, 
processing speed, or attention. This will likely require standardiza-
tion of neurocognitive assessments between independent data 
collection efforts. While the current and previous findings (38) 
demonstrate a boost in prediction performance and generalizabili-
ty even when there is a difference in age and imaging acquisition 
parameters between the UK Biobank and the clinical datasets, fu-
ture work may find further improvements by training and testing 
the prediction model on age-matched and acquisition parameter–
matched datasets.

The meta-matching framework leverages overlap in correlation 
structure between brain and behavioral phenotypes found in large 
population-level datasets and smaller clinical datasets. One nota-
ble advantage of this framework is that it allows the prediction of 
behavioral phenotypes that differ from those available in large 
population-level datasets, but it is likely that a closer match be-
tween the target and trained phenotypes will improve perfor-
mance. We trained our meta-matching model on 67 variables from 
the UK Biobank, including various cognitive measures. These cog-
nitive measures substantially contribute to the observed enhance-
ments in prediction performance and generalizability (see Control 
analyses). While previous research has demonstrated that meta-
matching results in an overall improvement in prediction perfor-
mance across multiple broad categories of behavior, prediction 
targets diverging significantly from those used to train the meta-
matching model may not benefit from this framework in terms 
of prediction performance or generalizability. Therefore, the effec-
tiveness of the meta-matching method may vary depending on the 
similarity between the prediction target and the phenotypes used 
in training the model.

We initially trained the meta-matching model on the large UK 
Biobank sample (n  =  36,848). Future work should examine if a 
similar boost in performance can be achieved with smaller sam-
ples. Future work should also examine if longer scan durations, 
which can improve both reliability and prediction performance 
(64, 65), can further enhance performance of meta-matching and 
other transfer learning models. Last, in determining the features 
that are most relevant for predicting cognition, we implemented 
the Haufe transformation, which enhances both reliability and in-
terpretability of feature weights (36, 66). The Haufe transformation 
remains the best linear approximation of feature weights for non-
linear models (31), and we have previously demonstrated that the 
results of the transformation when using deep learning models 
in the prediction process are highly comparable to results using 
only linear models (38). However, future studies should compare 
the transformation to alternative and validated approaches for in-
terpreting feature weights from nonlinear models, as they become 
available.

By translating predictive models derived in large community-
based datasets, we can make an accurate and generalizable predic-
tion of global cognition in transdiagnostic patient populations. The 
performance of these models is driven by increased coupling within 
transmodal networks and decreased coupling between transmodal 
and sensory networks.

MATERIALS AND METHODS
Overview
Our overall analysis strategy aimed to develop a robust and general-
izable model that can accurately predict global cognitive function in 
transdiagnostic patient samples. Briefly, we first used meta-matching 
(38), which capitalizes on the correlation structure between pheno-
types of clinical interest and those available in larger population-
level datasets by (1) training a single generic fully connected 
feed-forward DNN to predict a set of 67 health, behavioral, and cog-
nitive phenotypes using in vivo estimates of brain function from the 
UK Biobank dataset (67); (2) using this trained model to generate 
predictions of these phenotypes in smaller independent patient da-
tasets; (3) and as a final step, training and validating a kernel ridge 
regression (KRR) model to predict global cognitive function using 
the predicted phenotypes generated from the DNN model in step 2. 
Global cognitive function was derived using PCA on a range of neu-
ropsychological tests that varied between the patient datasets. The 
significance of prediction performance and the generalizability of 
models were assessed using permutation testing, and the feature 
weights from each model were correlated between datasets and 
mapped at differing spatial scales (edge, region, and network) to 
examine the consistency of neurobiological correlates. Please see 
Brain-based predictive modeling for a detailed overview of the 
modeling procedure.

Datasets
This study used data from four datasets: the UK Biobank (67), the 
HCP-EP (68), the TCP (69), and the CNP (70). Our analyses were 
approved by the Yale University Institutional Review Board, and the 
UK Biobank data were accessed under resource application 25163. 
The final number of included participants, demographic and diag-
nostic characteristics is described below with additional details pro-
vided in table S1.
UK Biobank
The UK Biobank (67) is a population epidemiology study of 500,000 
adults aged 40 to 69 years and recruited between 2006 and 2010. A 
subset of 100,000 participants is being recruited for multimodal im-
aging, including brain structural MRI and rs-fMRI. A wide range of 
health, behavioral, and cognitive phenotypes was collected for each 
participant. Here, we used the January 2020 release of 37,848 par-
ticipants with complete and usable structural MRI and rs-fMRI.
Human Connectome Project for Early Psychosis
The HCP-EP (68) study is acquiring high-quality brain MRI and 
behavioral and cognitive measures in a cohort of people aged 16 to 
35 years, with either affective or non-affective early phase psycho-
sis within the first 5 years of the onset of psychotic symptoms. The 
dataset also includes healthy control participants, and the data 
release used here (Release 1.1) comprises 140 patients and 63 
controls. Inclusion and exclusion criteria are described elsewhere 
(68). In the current study, we used a subset of 145 participants who 
passed quality control and had complete and usable cognitive 
and rs-fMRI data. The included sample had a mean age of 23.41 
(SD ± 3.68), was 38% female, and had a mean framewise dis-
placement (head motion during rs-fMRI acquisition) of 0.06 mm 
(SD ± 0.04).
Transdiagnostic Connectome Project
The TCP is a publicly available data collection effort between Yale Uni-
versity and McLean Hospital, United States, to acquire brain MRI and 
behavioral and cognitive measures in a transdiagnostic cohort, including 
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healthy controls and patients meeting the diagnostic criteria for an 
affective or psychotic illness. Recruitment details and inclusion and 
exclusion criteria can be found in the Supplementary Materials and 
elsewhere (69). The data included in the current study were composed 
of a subsample of 101 participants who passed quality control and had 
complete and usable cognitive and rs-fMRI data at the time of the 

study, including 60 patients and 41 healthy controls. The included 
sample had a mean age of 32.21 (SD ± 12.54), was 57% female, and 
had a mean framewise displacement of 0.09 mm (SD ± 0.05).
Consortium for Neuropsychiatric Phenomics
The CNP dataset is publicly available and composed of brain MRI 
and behavioral and cognitive measures from 272 participants, 

Fig. 5. Predictive features at the regional level. (A) Regional feature weights projected onto cortical and subcortical regions. Average positive (red) and negative (blue) 
feature weights are shown separately for each of the three datasets: HCP-EP, TCP, and UCLA CNP. (B) Positive (left) and negative (right) distributions of regional feature 
weights from all three datasets aggregated into 17 networks and subcortex and ordered by the strongest to weakest mean predictive feature weight.



Chopra et al., Sci. Adv. 10, eadn1862 (2024)     6 November 2024

S c i e nc  e  A d v anc   e s  |  R e s e arc   h  R e s o u rc  e

10 of 16

including 130 healthy individuals and 142 patients diagnosed with 
affective, neurodevelopmental, or psychotic illnesses. Details about 
participant recruitment can be found elsewhere (70). In the current 
study, we used a subset of 224 participants who passed quality 
control and had complete and usable cognitive and rs-fMRI data. 
The included sample had a mean age of 32.59 (SD ± 9.21), was 
42% female, and had a mean framewise displacement of 0.08 mm 
(SD ± 0.03).

Quantifying brain function
MRI acquisition parameters
For the UK Biobank, a total of 490 functional volumes were ac-
quired over 6 min at four imaging sites with harmonized Siemens 
3T Skyra MRI scanners using the following parameters: repetition 
time = 735 ms, echo time = 42 ms, flip angle = 51°, resolution of 
2.4 mm3, and a multiband acceleration factor of 8. For a T1-weighted 
image, an MPRAGE sequence with a total of 256 slices was acquired 
using the following parameters: repetition time (TR) = 2000 ms, in-
version time (TI) = 880 ms, resolution of 1 mm3, and parallel imag-
ing acceleration factor of 2.

For the HCP-EP, a total of four runs of 420 functional volumes 
were acquired over 5.6 min at three imaging sites with harmonized 
Siemens 3T Prisma MRI scanners using the following parameters: 
repetition time = 800 ms, echo time = 37 ms, flip angle = 52°, reso-
lution of 2 mm3, and a multiband acceleration factor of 8. Spin echo 
field maps in the opposing acquisition direction were acquired to 
correct for susceptibility distortions. For a T1-weighted image, an 
MPRAGE sequence with a total of 208 slices was acquired using the 
following parameters: TR = 2400 ms, TI = 1000 ms, and resolution 
of 0.8 mm3.

For the TCP data, four runs of a total of 488 functional volumes 
were acquired over 5 min at two imaging sites with harmonized 
Siemens Magnetom 3T Prisma MRI scanners using the follow-
ing parameters: repetition time = 800 ms, echo time = 37 ms, 
flip angle = 52°, resolution of 2 mm3, and a multiband acceleration 
factor of 8. Spin echo field maps in the opposing acquisition direc-
tion were acquired to correct for susceptibility distortions. For a T1-
weighted image, an MPRAGE sequence with a total of 208 slices was 
acquired using the following parameters: TR = 2400 ms and resolu-
tion of 0.8 mm3.

For the CNP data, a total of 152 functional volumes were ac-
quired over 5 min at 2 imaging sites with harmonized Siemens 
Trio 3T MRI scanners using the following parameters: repetition 
time = 2000 ms, echo time = 30 ms, flip angle = 90°, and a resolu-
tion of 4 mm3. For a T1-weighted image, an MPRAGE sequence 
with a total of 176 slices was acquired using the following parame-
ters: TR = 1900 ms and resolution of 1 mm3.
MRI quality control
For all the clinical datasets, extensive quality control procedures 
were implemented, and the details can be found in the Supplemen-
tary Materials. Briefly, all raw images were first put through an auto-
mated quality control procedure (MRIQC), which resulted in the 
exclusion of scans with large artifacts. Recent studies have shown 
that multiband datasets (i.e., HCP-EP and TCP) with high temporal 
resolution contain additional respiratory artifacts that manifest in 
the six realignment parameters typically used to calculate summary 
statistics of head motion (71, 72). To mitigate this effect, framewise 
displacement traces were downsampled and bandpass filtering was 
applied on the realignment parameter between 0.2 and 0.5 Hz (73). 

Following this step, uniform motion exclusion criteria were applied 
to all clinical datasets, and scans with an established cutoff of mean 
framewise displacement greater than 0.55 mm, which has previ-
ously been shown to result in good control of motion artifacts (74), 
were excluded. Last, for all participants, functional connectivity ma-
trices, carpet plots, and quality control–functional connectivity met-
rics were visualized and examined to ensure that the processing and 
denoising steps achieved the desired effects of reducing noise and 
associations between head motion and functional connectivity.
MRI processing
A detailed outline of the processing and denoising steps for each 
dataset is provided in the Supplementary Materials. Briefly, for each 
dataset, we used differing but widely accepted processing strate-
gies, which all included nonlinear spatial normalization to Montreal 
Neurological Institute space, brain tissue segmentation, and inde-
pendent component analysis (ICA)-based denoising. These strate-
gies were tailored to address differences in fMRI acquisition 
parameters (i.e., single-band versus multiband) and to ensure that 
our models were robust to differences in preprocessing and denois-
ing procedures.

Global signal regression was also applied to all scans, as we have 
previously demonstrated using multiple independent datasets that it 
improves behavioral prediction performance (75) and data denois-
ing (73, 74). The final derivatives used for prediction were 419 × 419 
matrices for each subject, which were computed using 400 cortical 
and 19 noncortical regions (for simplicity, noncortical regions are 
indicated as “subcortex”; Fig. 1A) by averaging the time series with-
in each parcel and computing interregional pair-wise Pearson cor-
relations. For each subject, the correlation values were z scored and 
the upper triangle of this matrix that consisted of 87,571 unique 
functional connectivity estimates was entered into the predic-
tion models.

Quantifying global cognitive functioning
For each of the three clinical datasets, PCA was applied to all avail-
able cognitive and neuropsychological measures to derive a robust 
measure of global cognition. Each dataset had a distinct set of neu-
ropsychological tests used to quantify cognitive functioning. A full 
list of measures for each dataset can be found in table S2. Briefly, for 
the HCP-EP, measures included the National Institutes of Health 
Toolbox (76) and Wechsler Abbreviated Scale of Intelligence (77). For 
the TCP, measures were administered online through the TestMyBrain 
platform (78), which included assessment of matrix reasoning, 
sustained attention, basic psychomotor speed, and processing 
speed, as well as Stroop and Hammer reaction time measures ac-
quired during MRI acquisition. For the CNP, measures included 
subtests from the California Verbal Learning Test, Wechsler Memo-
ry Scale (79), and Wechsler Adult Intelligence Scale (80). To re-
duce the complexity of the prediction model, the PCA for each 
dataset was computed on the full sample, before any cross-validation, 
rather than computed on the training sample at each of the 100 
splits. To ensure that data leakage between the train and test splits 
did not influence our results, we tested if prediction models general-
ized between the different and completely independent datasets, 
where the PCA was computed separately on full independent sam-
ples (see Evaluating model generalizability). For each dataset, the 
first principal component (PC) was retained. For the HCP-EP data-
set, the first PC explained 57.2% of the variance, with the second 
and third PC examining 13.6 and 6% of the variance, respectively. 
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For the TCP dataset, the first PC explained 25.9% of the variance, 
with the second and third PC examining 16.2 and 13.8% of the vari-
ance, respectively. For the CNP dataset, the first PC explained 32.5% 
of the variance, with the second and third PC examining 9.4 and 7% 
of the variance, respectively. For each dataset, a higher PC score in-
dexed better global cognition. The full list of loadings for each item 
can be found in table S2.

Brain-based predictive modeling
Consistent with the approach outlined in (38), we trained a single 
fully connected feed-forward DNN using the UK Biobank dataset to 
predict 67 different cognitive, health, and behavioral phenotypes 
from resting-state functional connectivity matrices. This type of 
DNN has a generic architecture, where the connectivity values enter 
the model through an input layer, and each output layer is fully con-
nected to the layer before it, meaning that values at each node are 
the weighted sum of node values from the previous layer. During the 
training process, these weights are optimized so that the output lay-
er results in predictions that are close estimations of observed phe-
notypes. In practice, any multivariate prediction method can be 
used instead of the DNN, but the fully connected feed-forward 
DNN offers an effective and parsimonious method to predict 67 
phenotypes using a single model (24, 38, 41, 81). The 67 cognitive, 
health, and behavioral variables were selected based on an initial list 
of 3937 phenotypes by a systematic procedure that excluded brain 
variables, categorical variables (except sex), repeated measures, 
and phenotypes that were not predictable using a held-out set of 
1000 participants (38). A full list of selected phenotypes can be 
found in table S3, and further details of the DNN architecture and 
variable selection procedure within the UK Biobank can be found 
elsewhere (38). This trained DNN model is openly available and 
can be implemented in any sample with available resting-state 
functional connectivity data (see https://github.com/ThomasYeoLab/
Meta_matching_models).

Following training of the DNN, it was applied to the clinical data-
sets using a nested cross-validation and stacking procedure. The pro-
cedure described below was implemented separately for each clinical 
dataset. First, the DNN was applied to the dataset, using resting-state 
functional connectivity matrices as inputs, resulting in 67 generated 
cognitive, health, and behavioral variables as outputs. These outputs 
and corresponding global cognitive scores were split into 100 distinct 
train (70%) and test (30%) sets without replacement. We then imple-
mented a stacking procedure, where a KRR model using a linear 
kernel with L2 regularization was trained to predict global cognitive 
functioning scores using the generated 67 cognitive, health, and be-
havioral variables as inputs. KRR is a classical machine learning tech-
nique that makes a prediction of a given phenotype in an individual 
as a weighted version of similar individuals. Similarity was defined 
as the interindividual correlation of predicted phenotypes. KRR has 
one free parameter that controls the strength of regularization and 
was selected based on fivefold cross-validation within the training 
set. Once optimized, the model was evaluated on the held-out test 
set. This was repeated for the 100 distinct train-test splits to obtain 
a distribution of performance metrics. We have previously demon-
strated that this stacking procedure improves the performance of 
the meta-matching framework in predicting behavioral phenotypes 
(38). In practice, any multivariable model can be used in place of 
KRR. However, KRR is a robust and flexible multivariable model for 
predicting behavioral phenotypes (24, 43, 75).

As a comparison to the meta-matching model described above, 
we also implemented a standard machine learning model to pro-
vide a baseline. Here, we used the standard implementation of 
KRR, where the model was trained to predict global cognitive 
function scores, using resting-state functional connectivity ma-
trices as inputs. This is in contrast to the KRR model implemented 
during the meta-matching stacking process, which was trained us-
ing the DNN-generated cognitive, health, and behavioral as inputs. 
KRR was used as a baseline model as it is widely used and has 
repeatedly been shown to work well for functional connectivity–
based behavioral and demographic prediction (24, 29, 38, 41, 81–83). 
In a recent work, we have further demonstrated that meta-matching 
with stacking is superior to a classic transfer learning approach 
(84). The nested cross-validation procedure used for the baseline 
comparison model was the same as the one used for the meta-
matching model, where each dataset was split into 100 distinct 
train (70%) and test (30%) sets without replacement, followed 
by fivefold cross-validation within the training set to tune the 
model hyperparameters, and the model performance was evalu-
ation on the held-out test set. All codes used for analysis and fig-
ure generation can be found online at https://github.com/sidchop/
PredictingCognition.

Evaluating model performance
The performance of each model is defined as the Pearson correlation 
between the true and predicted behavioral scores for the test sample 
in each split. Average performance was computed by taking the 
mean across the 100 distinct splits. We also evaluated absolute, as 
opposed to relative, prediction performance using the coefficient of 
determination [fig. S2; (1)]. All models were evaluated on whether 
they performed better than chance using null distributions of per-
formance metrics. For the meta-matching model, in each of the 
three clinical datasets, cognitive function scores were randomly per-
muted 10,000 times. Each permutation was used to train (70% of the 
sample) and test (30% of the sample) a null prediction model. The 
P value for the model’s significance was defined as the proportion of 
null prediction accuracies greater than the mean performance of the 
observed model. The same procedure was used to evaluate the sta-
tistical significance of the baseline comparison model.

Evaluating model generalizability
The generalizability of the model was evaluated by training the 
meta-matching model on all individuals from one dataset and test-
ing on all individuals from another dataset. This results in six train-
test pairs between the three clinical datasets (i.e., HCP-EP, TCP, and 
CNP). For each train-test pair, performance was again measured as 
the Pearson correlation between the predicted and actual scores on 
the test dataset. We also report absolute performance using the co-
efficient of determination [fig. S2; (1)]. Statistical significance was 
evaluated by permuting the training dataset cognitive function 
scores and computing a null meta-matching model 10,000 times. 
The P value corresponding to model significance was defined as the 
proportion null prediction accuracies greater than the performance 
of the observed model. To compare the within dataset prediction 
performance between standard baseline comparison and meta-
matching models, we computed a paired-sampled t test for each of 
the three clinical datasets. This allowed us to evaluate if the differ-
ence in the cross-validated prediction performance of the models 
was significantly greater than zero.

https://github.com/ThomasYeoLab/Meta_matching_models
https://github.com/ThomasYeoLab/Meta_matching_models
https://github.com/sidchop/PredictingCognition
https://github.com/sidchop/PredictingCognition
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Comparing neurobiological features between datasets and 
spatial scales
To increase the interpretability and reliability of feature weights 
from the prediction models, we used the Haufe transformation 
(31, 42, 66). To illustrate the need for the Haufe transformation, let 
us consider the prediction of a target variable, such as global cogni-
tion (y), based on the functional connectivity (FC) of two edges, 
denoted as FCA and FCB. In this example, let us assume that FCA = 
y−noise, and FCB = noise. Then, examining raw feature weights 
from a prediction model with 100% performance would errone-
ously show both edges as strongly related to and equally important 
for predicting global cognition. To address this issue, the Haufe 
transformation computes the covariance between the predicted tar-
get variable and the FC of the two edges. In this example, the Haufe 
transformation assigns a weight of zero to FCB, indicating that FCB 
is not related to global cognition, despite its contribution to the pre-
diction performance. While originally developed for linear models, 
the Haufe transformation can also recover the best linear interpreta-
tion of nonlinear models such as DNNs (31). Moreover, the predic-
tive features computed using Haufe transformation are more reliable 
and robust, further underscoring the importance of this inversion 
process (36, 66).

This procedure ensured that the feature weights index quanti-
ties that are statistically related to global cognition and results in 
a positive or negative predictive feature value for each edge of the 
functional connectivity matrix. A positive predictive feature value 
indicates that higher functional connectivity for the edge was 
associated with the greater predicted cognitive functioning, and a 
negative predictive feature value indicates that lower functional 
connectivity was associated with the greater predicted cognitive 
functioning. For each of the three models, the transformed fea-
ture weights were then averaged across the 100 splits to obtain 
mean feature weights, resulting in a single symmetric 419 × 419 pre-
dictive feature matrix for each dataset.

We assessed the association of neurobiological predictive features 
between each of the three predictive feature matrices at the edge, re-
gion, and network level. At the edge level, which comprises each of 
the 87,571 feature weights, similarity between the three samples was 
assessed using Pearson correlation. To account for spatial autocorre-
lation between each pair of feature weight matrices (32), we applied 
the spin test, where the cortical regions of the atlas are rotated on an 
inflated surface to generate 10,000 null atlas configurations, which 
preserve the spatial autocorrelation pattern of the cortex. These null 
atlas configurations are used to shuffle the rows and columns of the 
feature weight matrices, allowing the generation of a null distribution 
of Pearson correlation values between a pair of feature weight matri-
ces at the edge, region, and network level. Statistical significance was 
assessed as the proportion of null values greater than the observed 
value (Pspin). As the spin test procedure can only be applied to corti-
cal regions, the 19 noncortical regions were excluded when comput-
ing the P value. By taking the mean of all edges attached to each of 
the 419 brain regions, edge-level connections can be aggregated into 
region-level predictive features. By taking the mean of all edges with-
in and between 18 canonical functional networks including the sub-
cortex [Fig. 1A; (39)], edge-level connections can also be aggregated 
into 171 network-level predictive features. Pearson correlation was 
again used to assess association in region-level and network-level 
feature weights between the three samples. For both aggregated 
scales (region-level and network-level), positive and negative feature 

weights were considered separately by zeroing negative or positive 
values before averaging, respectively. This procedure allows exami-
nation of the relative contribution of the polarity of weights and is 
equivalent to summing the positive or negative feature weights. To 
compare the negative and positive feature weight correlations within 
each spatial scale, we used Fisher’s Z statistic modified for nonover-
lapping correlations based on dependent groups (85, 86).

Evaluating neurobiological features
To evaluate the statistical significance of feature weights for each of 
the three datasets, we implemented a permutation testing procedure. 
To reduce the multiple comparison burden, we evaluated the signifi-
cance of each model at the network level, where the observed feature 
weights for each model were averaged within and between 18 network 
blocks, resulting in 171 network-level features per model. This network 
averaging procedure was repeated for feature weights from 10,000 null 
models, where the cognitive function score had been randomly 
permuted. This results in null distribution of network-level feature 
weights for each of the 171 network connections, and the P value 
was computed as the proportion of the null network-level feature 
weights greater than the observed value. The P values were then 
false-discovery rate (FDR) corrected and evaluated at a P < 0.05 
level. To uncover the network-level predictive features that drive 
performance across the three datasets, we implemented a conjunc-
tion analysis, where, at each network connection, the minimum 
FDR-corrected P value was retained and evaluated for significance 
at P < 0.016, accounting for the three contrasts.

Control analyses
Demographic characteristics such as age and sex as well as head 
motion during neuroimaging can bias the performance of predic-
tion models (87). To ensure that model performance was not driven 
by these covariates, we repeated the primary models after adjusting 
for age, sex and mean framewise displacement. For each of the 
100 train-test splits, the variables were first regressed out of the 
global cognition training data, and the resulting regression coeffi-
cients were used to residualize the global cognition test data (88), 
after which the entire prediction modeling procedure was repeated. 
The reported results were robust to covariate inclusion and all three 
meta-matching models remained statistically significant (figs. S6 
and S7). Moreover, the edge-level feature weights from the original 
and covariate adjusted models were highly correlated at rs > 0.96 
for all three datasets (fig. S7). Performance remained stable in the 
HCP-EP sample (r = 0.51) and decreased in the TCP dataset (r = 
0.25) and CNP dataset (r = 0.28; fig. S6). The pattern of results 
showing the superior performance of the meta-matching compared 
to the conventional KRR model was maintained in all three datasets 
(fig. S6).

Meta-matching capitalizes on correlations between neurobiolo-
gy associated with diverse demographic, health, and behavioral phe-
notypes. We implemented the meta-matching framework using a 
two-step stacking approach (see Brain-based predictive modeling) 
that allows us to examine the feature weights that drive the predic-
tion of cognition associated with each of the 87,571 functional con-
nections of the brain, as well as the feature weights associated with 
each of the 67 demographic, health, and behavioral phenotypes. 
By examining the feature weights associated with the 67 DNN-
generated demographic, health, and behavioral variables, it is pos-
sible to evaluate which phenotypes are driving the prediction of 
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cognitive outcomes. The generated variables driving performance 
were highly consistent across the three datasets (all rs > 0.95; fig. 
S8). The primary drivers of prediction were directly related to cogni-
tion (fluid intelligence, matrix pattern completion, and symbol digit 
substitution). However, across the three datasets, both age and the 
first genetic PC were strong predictors, with the latter indexing an-
cestry, which can also be a proxy for complex forms of societal and 
environmental bias, in turn affecting cognitive performance. To in-
vestigate if the observed improvements in behavior prediction per-
formance extend beyond the functional connections associated with 
specific sociodemographic factors, we repeated the meta-matching 
stacking procedure for our primary analyses after removing the 
first genetic PC, age, and sex from the meta-matching model and 
found similar results to our original model (fig. S9). This analysis 
suggests that it is the functional connections associated with cognition-
related variables in the UK Biobank that drives the boost in predic-
tion performance in the three clinical datasets.

To assess if meta-matching prediction performance was depen-
dent on sample characteristics such as age, sex, and diagnosis, we 
conducted a leave-one-out cross-validation. For each sample, this 
procedure resulted in a predicted score for each subject. The overall 
prediction performance (correlation between predicted and ob-
served scores) remained comparable to the K-fold procedure used 
in the primary analyses (HCP-EP:r = 0.50; TCP:r = 0.35; CNP:r = 
0.41; fig. S10). To evaluate differences in model performance be-
tween diagnostic and demographic subgroups, we fitted a general 
linear model to the observed and predicted scores separately for 
each subgroup. Age was converted to a binary variable using a mean 
split, sex was treated as a binary variable, and diagnostic group was 
treated as a categorical variable that included a healthy control 
group. For each sample, we compared the mean square error be-
tween subgroups using a nonparametric Kruskal-Wallis test. In this 
way, we were able to determine if, for each given characteristic (e.g., 
sex), there is a significant difference in relative prediction error 
between subgroups (fig. S10). We only find a significant effect 
within the CNP dataset for diagnosis, with post hoc tests demon-
strating marginally worse prediction performance within patients 
diagnosed with bipolar disorder compared to the healthy control 
group (P = 0.024). These findings demonstrate that the meta-matching 
prediction model performance is largely robust to sample character-
istics and diagnoses.

To ensure that the subgroup of patients diagnosed with psychosis 
were not the primary driver of the cross-dataset generalizability 
model performance, we repeated the analyses after removing all pa-
tients with psychosis (N = 37) from the CNP dataset. We find that 
the cross-dataset prediction performance between the CNP and 
both the TCP and HCP-EP remains comparable in magnitude and 
statistically significant (0.33 < r < 0.51; fig. S12). To ensure that per-
formance and generalizability were maintained when applying the 
model to patients alone, we repeated the analyses after removing all 
healthy individuals. We find that both the performance (0.31 < r < 
0.55; fig. S13A) and the cross-dataset generalizability (0.31  <  r < 
0.56; fig. S13, B and C) in all datasets are comparable in magnitude, 
statistically significant, and superior to the baseline model.

Supplementary Materials
This PDF file includes:
Figs. S1 to S13

Tables S1 to S3
Additional information on TCP dataset
Detailed information on functional MRI processing, denoising, and quality control
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