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Integrated analysis of microbiome and metabolome reveals 
signatures in PDAC tumorigenesis and prognosis
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ABSTRACT Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma 
(PDAC), is one of the most malignant tumors of the digestive system. Emerging evidence 
suggests the involvement of the microbiome and metabolic substances in the develop­
ment of PDAC, yet the results remain contradictory. This study aims to identify the 
alterations and relationships in intratumoral microbiome and metabolites in PDAC. We 
collected matched tumor and normal adjacent tissue (NAT) samples from 105 PDAC 
patients and performed a 6-year follow-up. 2bRAD-M sequencing, untargeted liquid 
chromatography-tandem mass spectrometry, and untargeted gas chromatography-mass 
spectrometry were performed. Compared with NATs, microbial α-diversity decreased in 
PDAC tumors. The relative abundance of Staphylococcus aureus, Cutibacterium acnes, and 
Cutibacterium granulosum was higher in PDAC tumor after adjusting for confounding 
factors body mass index and M stage, and the presence of Ralstonia pickettii_B was 
found associated with a worse overall survival. Metabolomic analysis revealed distinctive 
differences in composition between PDAC and NAT, with 553 discriminative metabo­
lites identified. Differential metabolites were revealed to originate from the microbiota 
and showed significant interactions with shifted bacterial species through KO (KEGG 
Orthology) genes. These findings suggest that the PDAC microenvironment harbors 
unique microbial-derived enzymatic reactions, potentially influencing the occurrence 
and development of PDAC by modulating the levels of glycerol-3-phosphate, succinate, 
carbonate, and beta-alanine.

IMPORTANCE We conducted a large sample-size pancreatic adenocarcinoma micro­
biome study using a novel microbiome sequencing method and two metabolomic 
assays. Two significant outcomes of our analysis are: (i) commensal opportunistic 
pathogens Staphylococcus aureus, Cutibacterium acnes, and Cutibacterium granulosum 
were enriched in pancreatic ductal adenocarcinoma (PDAC) tumors compared with 
normal adjacent tissues, and (ii) worse overall survival was found related to the presence 
of Ralstonia pickettii_B. Microbial species affect the tumorigenesis, metastasis, and 
prognosis of PDAC via unique microbe-enzyme-metabolite interaction. Thus, our study 
highlights the need for further investigation of the potential associations between 
pancreatic microbiota-derived omics signatures, which may drive the clinical transforma­
tion of microbiome-derived strategies toward therapy-targeted bacteria.

KEYWORDS PDAC, pancreatic ductal adenocarcinoma, microbial metabolism, 
microbiota, metabolome, carcinogenesis

P ancreatic ductal adenocarcinoma (PDAC) remains a highly fatal malignancy, with 
a 5-year overall survival (OS) of 13% (1–4). Therapeutic methods for PDAC remain 

limited (5). Surgery combined with adjuvant chemotherapy remains the only curative 
therapeutic option, but more than 60% of patients are diagnosed with unresectable 
disease (6). The pathogenesis of PDAC is complex, and genetic alterations in PDAC 
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fail to explain carcinogenesis alone, which leaves environmental factors, including the 
microbiota, emerging as potential mediators of PDAC carcinogenesis. Thus, as an 
essential hallmark of cancer (7), the role of polymorphic microbiomes in cancer remains 
to be explored, and there is a pressing need to identify microorganisms that might 
explain the differences between PDAC tumors and normal pancreatic tissue so that new 
concepts can be developed for future therapies (8).

Numerous studies have shown that microorganisms are critical in carcinogenesis (9, 
10). Intratumoral bacteria have been observed in various tumors, including PDAC (11), 
which is associated with PDAC carcinogenesis, progression, and poor prognosis via a 
complex mechanism. Geller et al. initially proposed a connection between intratumoral 
microbiota and PDAC (12). The prevalence of intratumoral bacteria in PDAC tissues was 
significantly higher than in normal pancreatic tissues. The presence of microbiota in 
the pancreas of both healthy and cancerous subjects was also confirmed in a study by 
Thomas et al. (13). In a study involving 12 PDAC patients, Pushalka et al. found higher 
bacterial biomass in PDAC tumors than in normal pancreatic tissue (14, 15). α-Diversity 
was reported to be slightly higher in healthy controls versus in patients (16). The most 
common class identified in the PDAC intratumor microbiome is Gammaproteobacte­
ria, with the dominant genus Pseudomonas (12, 14), which carries long-form cytidine 
deaminase that metabolizes the chemotherapeutic drug gemcitabine (2′,2′-difluoro-
deoxycytidine) into its inactive form (2′,2′-difluorodeoxyuridine) (12). Riquelme et al. 
investigated the impact of tumor microbiota on PDAC patient survival (17). Patients with 
long-term survival exhibited higher α-diversity and enrichment for Pseudoxanthomonas, 
Saccharopolyspora, and Streptomyces. Guo et al. revealed that Acinetobacter, Pseudomo­
nas, and Sphingopyxis, intratumoral microbiota of basal-like PDAC, were associated with 
worse prognosis by inducing inflammation (18). These studies support that distinctive 
profiles of tumor microbiota may underlie PDAC heterogeneity, and comprehensive 
characterization of the PDAC intratumoral microbiome may be an essential step in 
unraveling the effects of bacteria on PDAC tumorigenesis and prognosis. Despite these 
developments, the clinical significance of the intratumoral microbiome in PDAC is still 
poorly understood. Previous comparative PDAC-healthy control studies were generally 
constrained by the limitations of a small number of samples and the vague classifica-
tion of taxonomy. Thus, extensive sample-size studies are urgently required. Therefore, 
further investigation of the PDAC tumor microbiome’s profiles and clarifying its clinical 
significance and prognostic value re imperative.

Microbiota-derived metabolites are important natural products that establish a 
strong connection between the microbiome and cancer (19). For example, microbial 
byproducts can actively contribute to carcinogenesis. Secondary metabolites, including 
lithocholic acid and deoxycholic acid (20, 21), as well as catabolites, such as acetate 
and butyrate (22, 23), play a crucial role in enhancing either epithelial-mesenchymal 
transition or cell proliferation in several models of cancer (24). Metabolomic compar­
isons of human PDAC tumor tissue and normal adjacent tissue (NAT) revealed that 
tumor tissues exhibit lower levels of glucose, upper glycolytic intermediates, creatine 
phosphate, and the amino acids glutamine and serine, which are the primary metabolic 
substrates (25). However, evidence of the involvement of microbiome-derived metabo­
lites in PDAC carcinogenesis is limited.

In summary, to advance our understanding of the microbiome and metabolome 
characteristics associated with PDAC and to elucidate the intricate role of their interac­
tion in PDAC carcinogenesis and prognosis, we conducted comprehensive analyses of 
the microbiome and metabolome of surgically excised PDAC tumor and its matched 
NATs from a large scale of 105 patients based on 2bRAD-M sequencing, untargeted liquid 
chromatography-tandem mass spectrometry (LC-MS), and untargeted gas chromatog­
raphy-mass spectrometry (GC-MS). Our study provided data support for subsequent 
studies on PDAC, thereby expanding the perspective in this field.
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RESULTS

Participant characteristics

We collected 208 tissue samples (103 matched PDAC and NATs, plus unpaired 2 NATs) 
from 105 patients. The demographic, clinical, and pathological characteristics of the 
patients are shown in Table 1. The average age was 61.57 ± 8.18, and 63 patients (60.0%) 
were male. Diabetes was present in 39 (37.1%) patients, and among them, 14 (13.3%) 
were new-onset diabetes. The number of patients with tumor size, node, and metastasis 
(TNM) stages I, II, III, and IV were 36 (34.3%), 47 (32.4%), 19 (18.1%), and 3 (2.9%), 
respectively. Tumor differentiation was well (16.1%), moderate (41.0%), and poor (42.9%).

PDAC and NAT microbiome differ from global scale

Negative controls were collected in the operating room and laboratory to remove the 
interference of contaminating microorganisms introduced during the sample collection 
and experimental manipulation. Using a combination of decontam, microDecon, and 
FEAST, background microorganisms were deducted based on the negative controls. After 
decontamination, 1,920 species were identified. A broad overview of our taxonomic data 
from the 105 subjects is provided in Fig. S1.

α-Diversity was calculated at the species level to compare differences between 
groups. Significant decreases in Chao1, Shannon, and Simpson index were observed 
in PDAC (Fig. 1A; P = 0.0017, 0.00012, and 0.00089, respectively). Due to the signifi-
cant differences in α-diversity between NAT and PDAC tissues, we further examined 
the compositional diversity of the microbiota in these two groups. A Venn diagram 
of the microbiota composition revealed that NAT had a greater variety of microorgan­
isms (Fig. 1B). At the species level, 512 microorganisms were shared by the NAT and 
PDAC groups. Principal coordinate analysis (PCoA) based on the Bray-Curtis distance 
was performed on the samples (Fig. 1C). The results of the permutational multivariate 
analysis of variance (PERMANOVA) test indicated a statistically significant difference in 
the β-diversity between PDAC and NAT (R2 = 0.011; P = 0.01).

Next, we investigated the potentially relevant influence factors for microbiome 
alterations. PERMANOVA was used to explore the associations between variations in 
the pancreatic microbiota and host characteristics. Given a false discovery rate (FDR) of 
5%, three parameters were significantly associated with microbial variations derived from 
Bray-Curtis distances calculated on the species level (Fig. 1C). Group, M stage, and body 
mass index (BMI) level were explanatory factors consistent with previous research.

Taxonomic signatures of microbiota in PDAC tumor

Next, we attempted to identify PDAC-associated taxa using multivariable microbiome 
associations with a linear model (MaAsLin 2) to control for confounding factors (26). 
The model included group as the fixed effect and BMI and M stage as random effects. 
Thirteen species were identified as differentially abundant bacterial species between 
PDAC and NAT (Fig. 2A and C, Table S1). Samples from the PDAC group had higher 
levels of Staphylococcus aureus, Cutibacterium acnes, and Cutibacterium granulosum, 
while having lower levels of Sphingomonas aquatilis, BACL27 sp014190055, QWOQ01 
sp003669585, Limnohabitans_A sp005789685, Mycobacterium koreense, Mycobacterium 
intermedium, UBA953 sp002293125, Bacillus_A bombysepticus, Pelomonas sp003963075, 
and Dialister hominis (Table S2). After adjusting for the M stage, the associations were still 
significant. To compare our results with those of previous studies, we performed MaAsLin 
2 at the genus level, and the results were broadly consistent with the species level. 
Besides, Bifidobacterium was slightly increased in PDAC, while Dietzia and Streptococcus 
were depleted (Fig. 2B and D).

According to the PERMANOVA results (Fig. 1C), we conducted an analysis of bacterial 
changes associated with the M stage. The pathogens Pseudomonas fulva, Dietzia maris, 
Massilia timonae, and Brevundimonas diminuta were positively associated with the M1 
stage, whereas Pseudomonas_E sp900187635 was depleted in the M1 stage (Fig. S3). In a 
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TABLE 1 Characteristics of PDAC patients enrolled

Characteristics Count

n (Patient) 105
Gender = male (%) 63 (60.0)
Age [mean (SD)] 61.57 (8.18)
Family history = yes (%) 20 (19.0)
Pancreatitis = yes (%) 31 (30.1)
Other malignancy = yes (%) 8 (7.6)
BPDa = yes (%) 17 (16.2)
EUS FNAb = yes (%) 11 (10.5)
Weight loss [mean (SD)] 4.19 (4.82)
Body mass index [mean (SD)] 24.76 (3.20)
Smoking (%)
  Never 58 (55.2)
  Ever 12 (11.4)
  Current 35 (33.3)
Diabetes (%)
  New-onset 14 (13.3)
  No 66 (62.9)
  Yes 25 (23.8)
Alcohol (%)
  Never 65 (61.9)
  Ever 2 (1.9)
  Current 38 (36.2)
Hyperlipidemia (%)
Dyslipidemia 14 (13.3)
  No 58 (55.2)
  Yes 33 (31.4)
Biliary disease = yes (%) 62 (59.0)
Antibiotics = yes (%) 10 (9.5)
Location = tail (%) 44 (41.9)
CA19-9 upregulate = yes (%) 85 (81.0)
Differentiation (%)
  Poor 45 (42.9)
  Moderate 43(41.0)
  Well 17 (16.1)
Perineural invasion = yes (%) 74 (70.5)
Blood vessel invasion = yes (%) 40 (38.1)
T stage (%)
  T1 27 (25.7)
  T2 47 (44.8)
  T3 28 (26.7)
  T4 3 (2.9)
N stage (%)
  N0 51 (48.6)
  N1 37 (35.2)
  N2 17 (16.2)
  M stage = M1 (%) 3 (2.9)
Stage (%)
  IA 15 (14.3)
  IB 21 (20.0)
  IIA 13 (12.4)
  IIB 34 (32.4)
  III 19 (18.1)

(Continued on next page)
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subset containing only PDAC samples, these results remained consistent. However, it is 
important to note that only three patients were diagnosed with stage M1, rendering this 
result incidental.

To investigate the function of the intratumoral microbiota in PDAC, we predicted the 
biological functions of the bacteria utilizing PICRUSt2. We identified 7,301 KO (KEGG 
Orthology) genes altogether. Using the MaAsLin 2 analysis, 1,079 KO genes were found 
to be differentially expressed between the two groups after adjusting for BMI (Supple­
mentary data).

Microbial species related to overall survival

Analysis of the relationship between microbial species and overall survival is performed 
only in PDAC tumor samples. Among them, one patient with perioperative cardiac death 
and four patients with uncertain time of death were excluded. A total of 98 PDAC 
patients were included in the survival analysis, resulting in a median of 15 months of 
follow-up (range 1–71 months).

In 100 times 10-fold cross-validated elastic-net Cox regression models for OS, we 
found species Ralstonia pickettii_B and age were selected >50% of the time with P < 
0.20 in the standard univariate Cox regression. Based on these results, we then tested 
the relationship between Ralstonia pickettii_B and OS by stratifying the patients in 
two groups based on the presence of Ralstonia pickettii_B. As expected, we found that 
patients colonized with Ralstonia pickettii_B had significantly worse OS (median OS: 17 
months) than those Ralstonia pickettii_B negative ones (median OS: 37 months) using 
Kaplan-Meier curve tested by log-rank [hazard ratio (HR), 2.79; 95% CI, 0.98–7.94; P = 
0.045] (Fig. 3A; Table S2). Given that PDAC is a disease in which risk increases with 
age, we stratified the patients into two groups by age 65. A median OS of 36 months 
was obtained for middle-aged group and 17 months for elder patients group (HR, 2.10; 
95% CI, 1.06–4.19; P = 0.0047) (Fig. 3B). Subgroup analyses of age and colonization 
of Ralstonia pickettii_B found that only the Ralstonia pickettii_B-negative group had a 
difference in OS between middle-aged and older adults, but the older group was too 
under-represented. Our follow-up is ongoing, and the existing results will be updated as 
the study continues. Our findings indicate that the presence of Ralstonia pickettii_B in the 
tumor could predict survival outcome in resected PDAC patients, further elaborating the 
potential of the microbiome composition in mediating PDAC progression.

Untargeted metabolomics profiling revealed significantly altered metabo­
lites

Untargeted metabolomic profiling was performed on a subset of 98 NAT and 90 
PDAC samples to investigate the interactions between the pancreatic microbiota and 
host-microbe co-metabolism.We conducted LC-MS and GC-MS to make our assay as 
comprehensive as possible. A total of 6,375 metabolites were quantified from tissue 
samples using LC-MS and 481 were quantified using GC-MS.

Orthogonal partial least squares-discriminant analysis (OPLS-DA) (Fig. 4A and B) 
showed differences in the tissue metabolite profiles between PDAC and NAT groups, 
indicating a tumor-metabolite shift in PDAC carcinogenesis. The ability of the OPLS-DA 
model was tested during a seven cross-validation through 200 random permutation 
tests. The intercepts of goodness-of-fit (R2) and goodness-of-prediction (Q2) illustrate 
that the OPLS-DA model is reliable and does not overfit. We plotted fold changes using 
volcano plots of the levels of identified metabolites in PDAC relative to NAT samples, 

TABLE 1 Characteristics of PDAC patients enrolled (Continued)

Characteristics Count

  IV 3 (2.9)
  Neoadjuvant therapy = yes (%) 4 (3.8)
aBPD, Bbiliary and pancreatic duct drainage
bEUS-FNA, Eendoscopic ultrasound-guided fine-needle aspiration.

Research Article Microbiology Spectrum

November 2024  Volume 12  Issue 11 10.1128/spectrum.00962-24 5

https://doi.org/10.1128/spectrum.00962-24


considering the statistically significant difference (P-value) and variable importance in 
the projection. As shown in Fig. 4D and E, the levels of the differential metabolites in 
PDAC were significantly different from those in NAT in LC-MS and GC-MS profiling. PDAC 
was associated with significant changes in the metabolome from LC-MS and GC-MS 
profiling.

The altered metabolites and KEGG pathways in PDAC tissues compared with 
NAT

We then investigated the association of each annotated metabolite with the PDAC 
group. We identified 417 different metabolites in PDAC tissues compared with NAT, 
including 138 elevated and 279 depleted metabolites from LC-MS profiling [variable 
importance in projection (VIP) > 1 and Q value <0.05] (Fig. 4D). We identified 147 
differential metabolites using GC-MS profiling, of which 17 were elevated and 130 were 
depleted (Fig. 4E). Metabolite origin analysis using MetOrigin revealed 149 differential 
metabolites associated with host and microbiota, including 4 host-specific metabolites, 
43 bacterial metabolites, and 102 bacteria-host co-metabolites (Fig. 4C). The abundance 
of 145 bacterial-related metabolites was shown as a heatmap (Fig. S5). The depleted 
metabolites glycerophosphocholine and 2-lysophosphatidylcholine had the highest VIP 

FIG 1 Pancreatic microbiota dysbiosis in PDAC. (A) α-Diversity between PDAC and NAT base on Chao1, Shannon, and 

Simpson indices (P = 0.0017, 0.00012, 0.00089). The box represented the interquartile range (IQR) between the first and the 

third quartiles, and the midline represented the median. (B) Venn diagram shows numbers of species observed in PDAC 

and NAT. (C) Confounder factor analysis using PERMANOVA test based on Bray-Curtis distance with 999 permutations, *P < 

0.05 and **P < 0.01. (D) PCoA for PDAC (blue) and NAT samples (pink) based on Bray-Curtis distance (R2 = 0.011; P = 0.01).
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scores, whereas the most important enriched metabolites were oleamide, palmitoylcar­
nitine, and L-acetylcarnitine. Among the amino acid metabolites, beta-alanine, ergothio­
neine, and L-isoleucine levels were significantly increased in PDAC, whereas other amino 
acids and analogs, such as L-isoleucine, L-valine, L-aspartic acid, L-cysteine, L-serine, and 
L-glutamine were significantly reduced in PDAC samples. The roles of these altered 

FIG 2 Differential relative abundance of pancreatic microbiota in PDAC and NAT. (A and B) Differential taxa at the species and genus level identified by 

microbiome multivariable associations with linear model (MaAsLin 2) adjusted for confounding factors BMI and M stage (*q < 0.25) .** represent LEfSe analysis 

significant (LDA >2). (C and D) Boxplot showed relative abundance of group-distinct bacterial species and genus with LEfSe analysis significant.
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metabolites in PDAC need to be further studied, allowing for potential correlation 
analysis based on metabolite-microbial interactions.

We conducted metabolite pathway enrichment analysis (MPEA) on differential 
metabolites from the host, microbiota, and bacteria-host co-metabolites. There were 
3 and 82 metabolic pathways related to the bacteria and co-metabolism pathway, 
respectively (Fig. 4F). Among these, 3 and 32 metabolic pathways were identified 
as significantly associated with PDAC correspondingly (P < 0.05) (Fig. 4G). Based on 
origin-based function analysis, no metabolic pathway was found specifically related to 
host, while ascorbate and aldarate metabolism and folate biosynthesis were specific to 
the bacteria alone, and 32 metabolic pathways associated with amino acids, lipids, and 
sugars were shared by both host and microbiota.

The association between discriminative species and metabolites

Our multi-omics data enabled us to identify dynamic interactions between differen-
tial taxonomic and metabolic signatures. To dissect interactions between the host 
and microbiota that might underlie features in PDAC, we assessed the correlations 
between PDAC-related species, altered KO genes, and differentially abundant metabo­
lites originating from microbiota in PDAC and NAT, respectively. Furthermore, to explore 
more accurate evidence of microbial enzyme-metabolite interactions, based on the 
reactions in the KEGG (Kyoto Encyclopedia of Genes and Genomes) database, we 
associated the altered metabolites with the discriminate KO genes, which significantly 
correlated to both species and metabolites.

Broadly, in the Spearman correlation analysis, we observed more significant 
correlations in the NAT samples (Fig. S6A and B). A total of 46 differential metabolites 
were found to be significantly correlated with eight differential species, and 302 KO 
genes were identified to be concurrently associated with both, resulting in a cumulative 
total of 2,523 correlations (Fig. S6C). Among them, the PDAC-enriched species Cutibac­
terium acnes and Cutibacterium granulosum were broadly negatively correlated with 
differentially abundant metabolites in NAT samples (Fig. S6A). In PDAC samples, 397 KO 
genes were found to form 1,260 correlations with 16 differential metabolites and five 
differential species (Fig. S6D). Cutibacterium granulosum was only negatively correlated 
with D-ornithine, and Cutibacterium acnes was only negatively correlated with EPA (d5) 
(eicosapentaenoic acid). Meanwhile, Cutibacterium acnes and Cutibacterium granulosum 

FIG 3 Prognostic microbial biomarker. Kaplan-Meier curves illustrating the difference in overall survival in tumor samples stratified by (A) presence of microbial 

species Ralstonia pickettii_B. and (B) age. P-values were calculated using log-rank test. HRs and 95% CIs were calculated using univariate Cox regression analysis.

Research Article Microbiology Spectrum

November 2024  Volume 12  Issue 11 10.1128/spectrum.00962-24 8

https://doi.org/10.1128/spectrum.00962-24


formed new positive correlations with carbonate, and Cutibacterium acnes formed a new 
negative correlation with L-serine (Fig. S6B).

In the representative formula listed for chemical reactions involving differential 
metabolite and bacterial enzyme genes (Fig. 5C and D; Table S3), the levels of sub­
strate sn-glycero-3-phosphoethanolamine and its product glycerol-3-phosphate (G3P) 
were significantly reduced in PDAC samples, while the enzymes metabolizing them, 
namely glpQ and ugpQ, were elevated. Similarly, pcrB, which catalyzes the conversion 

FIG 4 Metabolome profile and function changes in PDAC (A) and (B) OPLS-DA showed that PDAC and NAT samples were separated into two distinct clusters. 

(D, E) Volcano plot demonstrated metabolite changes between 90 PDAC and 98 NAT samples. The x-axis indicates log2-transformed fold change of metabolite 

abundances, and the y-axis denotes log10-transformed Q values (P-value adjusted using the tail area-based FDR). The horizontal lines represent q < 0.05. (C and 

(F) Venn plot showed results of metabolites origin analysis. (G) The functions of discriminative metabolites derived from microbiota were analyzed using the 

KEGG (Kyoto Encyclopedia of Genes and Genomes) database, and the enriched metabolic pathways are presented in a bubble plot.The size of bubble represents 

the number of metabolites detected in the KEGG pathway.

Research Article Microbiology Spectrum

November 2024  Volume 12  Issue 11 10.1128/spectrum.00962-24 9

https://doi.org/10.1128/spectrum.00962-24


of O-succinyl-L-homoserine and hydrogen sulfide to L-homocysteine and succinate, 
respectively, was upregulated in PDAC samples. In contrast, the levels of its reaction 
product succinate decreased. In other identified chemical reactions, enzymes tsaC, 
rimN, and SUA5, responsible for carbonate decomposition, were significantly enriched 
in carbonate content. Additionally, beta-alanine and 2-oxoglutarate were significantly 
enriched compared to adjacent control tissues, and the enzyme gene puuE catalyz­
ing their reaction to produce glutamate was also significantly enriched. In summary, 
though it remains further explored, our analysis indicates that the PDAC microenviron­
ment exhibits distinct enzymatic reactions and metabolic processes originating from 
microorganisms.

FIG 5 Integrated analysis of multi-omics in NAT and PDAC. (A, B) The network revealed representatively significant and suggestive associations (P < 0.05, | 

r | > 0.3, Spearman analysis) among differentially abundant taxa, metabolites, and KO genes, (A) NAT group, and (B) PDAC group. Lines connecting nodes 

indicate positive (red) or negative (blue) correlations. (C, D) Representative metabolites-KO gene reactions. Representative enzymes, metabolites appearing in 

the existing PDAC metabolite-enzyme reactions are shown in the formula listed. Each boxplot in a reaction represents a compound or a KO gene (two-side 

Wilcoxon rank-sum test). Boxplots display the average abundance of metabolites or KO genes. (C) NAT group and (D) PDAC group.
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DISCUSSION

This study reports an integrated analysis of the pancreatic microbiome, metabolome, 
and predicted microbial KO genes in patients with PDAC. Owing to the unavailability 
of healthy pancreatic specimens, we used matched normal adjacent tissue specimens; 
comparison between matched PDAC and NAT minimized interpatient confounding 
factors such as diet or lifestyle, which are already known to impact commensal micro­
biome composition significantly (27, 28). Integrated analysis showed unique reactions in 
PDAC, providing new mechanistic insights into the pathogenesis of the disease. In this 
study, the α-diversity of pancreatic microbiota was higher in normal adjacent tissues than 
in tumor tissues, consistent with the results of a previous study (16, 29). Many altered 
differential microbial species and metabolites have been identified between PDAC and 
NAT samples, which may indicate a general mechanism for PDAC.

The colonization of bacteria in PDAC has been demonstrated by several studies. 
In our study, the composition of the high-abundance intratumoral bacteria observed 
was consistent with previous PDAC studies (29, 30). The dominant phyla identified 
were Proteobacteria and Firmicutes, with Gammaproteobacteria emerging as the most 
dominant microbial class. At the genus level, the dominant genera identified in our 
study, such as Pseudomonas, Staphylococcus, Ralstonia, and Sphingomonas, have also 
been recognized as dominant taxa in previous studies (29, 30). However, our findings on 
the differential microbial species between PDAC and NAT differ from previous studies, 
which also reported great variability (29–31). Specifically, our research identified that 
commensal opportunistic pathogens, including Staphylococcus aureus, Cutibacterium 
acnes, and Cutibacterium granulosum, were enriched in PDAC tumor. Although these 
findings differ from earlier pancreatic cancer studies, they aligned with alterations 
observed in other tumors, indicating the potential roles in tumorigenesis (32, 33). 
Cavarretta et al. described increased Staphylococcus aureus and Cutibacterium acnes 
in prostate cancer. Staphylococcus aureus was found to colonize the tumor tissue of 
breast cancer patients, and the intratumor Staphylococcus significantly contributed to 
tumor metastasis in animal experiments (33). Inflammation promotes the development 
of tumors (34, 35). Cutibacterium acnes has phosphatidylinositol and peptidoglycan in 
the outer envelope, which contribute to the induction of an inflammatory response via 
TLR-2 or TLR-4 (Ttoll-like receptor-4), thus playing a critical role in acne inflammation 
(36). Davidsson et al. found that Cutibacterium acnes contributes to an immunosuppres­
sive environment in prostate cancer by recruiting Tregs and increasing the expression 
of immunosuppressive mediators such as PD-L1 (Programmed cell death 1 ligand 1), 
CCL17 (C-C motif chemokine ligand 17), and CCL18 (C-C motif chemokine ligand 18) 
(37). High immunosuppression is a vital characteristic of PDAC, and this result suggests 
that Cutibacterium acnes may contribute to the formation of this immunosuppressive 
microenvironment of PDAC. The abundance of gut commensal bacteria Dialister hominis, 
a succinate consumer, was reduced in PDAC tumor tissues compared to non-tumor 
tissues, which differs from previous findings in digestive tract cancer (38, 39). A meta-
analysis based on six studies showed that the relative abundance of Dialister was 
significantly higher in mucosal from gastric cancer patients than in control samples (38). 
In addition, a high abundance of the genus Dialister in tumors, adjacent tumors, and 
off-tumor areas was associated with shorter overall survival in colorectal cancer patients 
and works as an index for predicting the risk of colorectal cancer recurrence and disease 
prognosis (39). This discrepancy in abundance may be attributed to variances in the host 
organ being colonized or may stem from the finer taxonomic resolution employed in this 
study, which extends to the species level.

In our survival analysis, we discovered that patients whose tumor was colonized with 
Ralstonia pickettii_B had significantly worse OS. Ralstonia pickettii is a non-fermenting 
gram-negative commensal bacillus and is an opportunistic pathogen that often causes 
nosocomial infections (40). However, the effects of Ralstonia pickettii in tumorigenesis 
have yet to be well studied. A study by Higuchi et al. observed that Ralstonia pickettii 
was presented in almost all mesothelioma patients (41). In addition, Ralstonia pickettii 
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belongs to class Gammaproteobacteria, which has been reported to carry long cytidine 
deaminase that can metabolize the chemotherapy drug gemcitabine, thereby inducing 
chemoresistance in pancreatic cancer (12). Therefore, induction of chemoresistance may 
be the mechanism by which colonization of Ralstonia pickettii significantly shortens the 
overall survival time of pancreatic cancer patients after surgery.

After conducting two untargeted approaches, our current metabolomic analysis 
revealed a significantly higher number of decreasing lipid and lipid-like compounds than 
increasing ones in the PDAC group. Most of these compounds could be classified into 
the fatty acyls and glycerophospholipids classes. Dysregulated lipid metabolism is now 
recognized as a hallmark of many malignancies (42, 43). High phosphorylcholine and low 
glycerophosphorylcholine levels are consistently observed in aggressive cancers, and an 
elevated phosphorylcholine/glycerophosphorylcholine ratio has also been proposed as a 
biomarker of tumor progression (44–46). MPEA further implied that glycerophospholipid 
metabolism is a critical pathway in PDAC pathogenesis. In the present study, substrate 
sn-glycero-3-phosphoethanolamine and its product G3P were downregulated in PDAC 
samples, while metabolic enzymes glpQ and ugpQ originating from bacteria were 
significantly enriched in PDAC. This phenomenon may be attributed to the high demand 
for G3P consumption in pancreatic cancer metabolism since the glycerol-3-phosphate 
shuttle serves as a crucial NADH shuttle mechanism, not only facilitating the transfer of 
cytosolic reducing equivalents into the mitochondria but also acting as a metabolic hub 
linking glycolysis, lipid synthesis, and oxidative phosphorylation (47).

By integrating multi-omics data, our study revealed a range of microbiome-metabo­
lite interactions. Association analysis indicated a markedly reduced number of statisti­
cally significant correlations between microbial species and metabolites within PDAC 
tumor samples, as opposed to the NAT samples, which coincides with the decrease 
in bacterial α-diversity in PDAC progression. Within the module of amino acid metabo­
lism, MPEA identified key metabolic routes, including alanine, aspartate and glutamate 
metabolism, and arginine biosynthesis. Notably, there was an observed enrichment 
of beta-alanine, coupled with a marked depletion of L-aspartic acid, L-glutamine, 
and L-serine in PDAC. These alterations could be attributed to pancreatic microbiota 
variations and their associated enzymatic activities. Furthermore, the enzyme K00823 
[EC:2.6.1.19] and its substrates beta-alanine and 2-oxoglutarate demonstrated signifi-
cant enrichment in PDAC. Beta-alanine was reported to suppress tumor aggressiveness 
in vitro (48). Simultaneously, the PDAC-enriched Staphylococcus aureus exhibited a 
significant positive correlation with K00823 while showing a marked negative correlation 
with the anti-tumor potential metabolite beta-alanine, suggesting that Staphylococcus 
aureus may influence the tumorigenesis of PDAC through its involvement in amino acid 
metabolism. However, due to the potential of beta-alanine as a dietary supplement, 
the absence of dietary information collected from patients in this study does not 
preclude the possibility of beta-alanine originating from diet. Moreover, Vaughan et 
al. have highlighted the significant role of β-alanine in regulating cytoplasmic acidity 
(48). Another notable finding in this study is the representative reaction involving the 
decomposition of carbonate catalyzed by bacterial enzyme EC:2.7.7.87, suggesting that 
this reaction may also contribute to the regulation of acidity within the tumor microen­
vironment.

Our study has several limitations. Although 2bRAD-M is very powerful in character­
izing microbiota at the species level and covering a comprehensive range of species, 
it has a limitation in uncovering the full genetic content compared to metagenomic 
sequencing. We found that the M stage significantly impacted certain microbes, but only 
three M1 stage patients in our study cohort required future exploration of advanced 
PDAC. Additionally, our study used pancreatic tissues for metabolomic detection. Due 
to the complexity of the PDAC tumor microenvironment, the detection results not only 
characterized the metabolic alteration of PDAC tumor cells but also provided a picture of 
the entire microenvironment.
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In conclusion, leveraging multi-omics data, our study attempted to reveal the 
ordinary states of pancreatic microbiome dysbiosis and metabolome dysregulation in 
patients with PDAC. We found that microbial species affect the tumorigenesis, metasta­
sis, and prognosis of PDAC and identified unique microbe-enzyme-metabolite interac­
tion. Although more mechanistic studies and clinical validation are needed, our study 
can provide a novel insight for the need to investigate the potential associations 
between pancreatic microbiota-derived omics signatures, which may drive the clinical 
transformation of microbiome-derived strategies toward therapy-targeted bacteria.

MATERIALS AND METHODS

Study participants and sample collection

A total of 105 patients diagnosed with PDAC who underwent surgery between July 
2016 and August 2022 at the Peking Union Medical College Hospital, Peking, China, 
were enrolled for microbiome and untargeted metabolome analysis. Normal adjacent 
tissues were used as controls. All diagnoses were made by postoperative pathological 
examinations. Tissue samples were collected during surgery into a sterile tube which 
were then stored at −80°C for microbiome sequencing and metabolic analysis. The 
tumor stage was evaluated based on the TNM staging system. Tumor differentiation 
was assessed using the standard pathological grading scheme into well-differentiated, 
moderately differentiated, or poorly differentiated based on the lowest differentiation 
grade observed.

Microbiota analysis

A detailed description of DNA extraction, amplification, sequencing processing, and 
decontamination has been provided in the supplementary materials. In brief, the 
genomic DNA of pancreatic tissues was extracted using a TIANamp Micro DNA Kit 
(Tiangen, cat. #DP316). The 2bRAD-M library preparation method was primarily based 
on the original protocol developed by Wang et al. (49, 50), with slight modifications. 
The PCR products were purified using a QIAquick PCR purification kit (Qiagen) and 
then sequenced using the Illumina Nova PE150 platform. 2bRAD-M sequencing was 
performed at Qingdao OE Biotech Co., Ltd. (Qingdao, China). Reads with an N base 
proportion greater than 8% and low-quality reads (with a base quality value below Q30 
constituting more than 20% of the total bases in a read) were removed during sequence 
quality control. To identify the microbial species within each sample, the sequenced 
2bRAD tags underwent quality control and were subsequently mapped against the 
2bRAD marker database using a built-in Perl script (50). The relative abundance of a 
specific species was determined by calculating the ratio of the number of microbial 
individuals attributed to that species to the total number of individuals from known 
species detectable within a given sample. The present study employed air samples from 
laboratory and surgical environments as negative controls, utilizing a combination of 
decontam, microDecon, and FEAST to eliminate background microorganisms from the 
experimental samples effectively. Contaminants were identified based on tissue samples 
and environmental control samples using microDecon’s decon function and decontam’s 
isContaminant function. Based on the list of contaminants identified by microDecon and 
decontam, the union set is taken as the final pollutant list. The proportion of unknown 
origin calculated using FEAST replaces the value of the contaminant in the experimental 
group sample. Each experimental sample was normalized by dividing by the sum of 
the samples to obtain the relative abundance after decontamination. Decontamination 
analyses used default parameters. The relative abundance feature table was imported 
into R for further analysis. The α-diversity of each sample was evaluated using the Chao 1, 
Simpson, and Shannon indices calculated on the species level. Compositional differences 
between each pair of groups were analyzed using PERMANOVA (999 permutations). 
The distance matrix was constructed based on the Bray-Curtis distance of the relative 
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abundance of species. The compositional shift was visualized using PCoA based on the 
same distance matrix. The alterations at genus, species, and KO gene levels among 
different groups were determined by MaAsLin2 (Microbiome Multivariable Associations 
with Linear Models, MaAsLin2 R package) with BMI adjusted according to clinical details 
of included patients. Species with a total relative abundance greater than 0.05% and a 
prevalence of greater than 10% were included in differential analysis. The significance 
criteria were prevalence >10% and adjusted Q value <0.25 as default (26).

Survival analysis

Survival analysis was conducted using PDAC samples. Overall survival includes death 
from any cause as events after the perioperative period. Person-time refers to the 
duration from surgery to the occurrence of event or loss to follow-up (censored) for 
all endpoints. Microbial species with relative abundance under 0.05% and prevalence 
under 10% were excluded, resulting in the inclusion of 26 species. Clinical charac­
teristics [age, gender, BMI level, smoking, alcohol, family history, other malignancy, 
diabetes, hyperlipidemia, antibiotics usage, location, upregulation of CA19-9, differentia-
tion, perineural invasion, blood vessel invasion, T stage, N stage, M stage, stage, and 
neoadjuvant therapy] were included in the model. We built an elastic-net penalized 
Cox regression model using the “glmnet” function in the “glmnet” R package, with an 
α value of 0.5 to allow groups of correlated predictors to be selected. A 100 times 
10-fold cross-validation for the elastic-net penalized Cox regression was conducted 
using the “cv.glmnet” function to determine the value of optimal lambda.1se to build 
a regularized Cox model with the fewest number of variables. We summed the number 
of times each factor was selected out of the 100 repetitions. We focused further on 
factors selected ≥50% of the 100 times (50 times or more) and with P < 0.20 in stand­
ard univariate Cox proportional hazards models. The effects of identified species and 
clinical characteristics on OS were investigated using Kaplan-Meier survival curves, and 
compared using the log-rank test.

Metabolome data analysis

A detailed description of sample preparation, experiment condition, and data process­
ing for LC-MS and GC-MS untargeted metabolome analysis has been described in the 
supplementary materials. The quality control results are shown in Fig. S7. In brief, the 
original LC-MS data were processed using Progenesis QI V2.3 (Nonlinear, Dynamics, 
Newcastle, UK) for baseline filtering, peak identification, integration, retention time 
correction, peak alignment, and normalization. The GC/MS rawdata were obtained 
in .D format and were transferred to .abf format using the software Analysis Base 
File Converter. The data were then imported into MS-DIAL software, which performs 
peak detection, peak identification, MS2Dec deconvolution, characterization, peak 
alignment, wave filtering, and missing value interpolation. After the data were normal­
ized, redundancy removal and peak merging were performed to obtain the data matrix.

The matrix was imported into R for analysis. OPLS-DA was used to identify differenti-
ating metabolites between the groups. To mitigate overfitting, sevenfold cross-validation 
and 200 response permutation testing were performed to evaluate the model’s quality. 
VIP value derived from the OPLS-DA model was used to rank the overall contribution 
of each variable to group discrimination. Subsequently, a two-tailed Student’s t-test was 
conducted to verify the statistical significance of the identified metabolites differentiat-
ing between the groups. Differential metabolites were selected based on VIP values 
greater than 1.0 and P-values less than 0.05.

Analysis of microbiome-metabolites interactions

Metabolite origin was analyzed using MetOrigin (51). Spearman correlation analysis 
was performed using the “psych” package in R to investigate the associations between 
differential microbial species, microbial KO genes, and microbe-derived metabolites in 
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PDAC and NAT, respectively. Only associations with an absolute correlation coefficient (R) 
value greater than 0.3 and P < 0.05 were considered significant. The resulting associa­
tions were visualized using heatmap and network.

Statistical analyses

All pairwise comparisons were performed using a two-sided Wilcoxon rank-sum test 
(Mann-Whitney U-test). Dissimilarity tests among groups (PERMANOVA) were conduc­
ted on Euclidean distance for metabolites and Bray-Curtis distance for bacteria, with 
999 permutations in the R package vegan. Multiple comparisons were adjusted using 
Benjamini-Hochberg method. All statistical analyses were performed using R, version 
4.2.1.

ACKNOWLEDGMENTS

The authors would like to thank Professor Taiping Zhang for his efforts in sample 
collection. Wenbo Kou of OE Biotechnology Company (Qingdao, China) for his technical 
support in removing contamination from the sequencing data. This study was funded 
by National Multidisciplinary Cooperative Diagnosis and Treatment Capacity Building 
Project for Major Diseases, National High Level Hospital Clinical Research Funding 
(2022-PUMCH-D-001), Chinese Academy of Medical Sciences (CAMS) Innovation Fund 
for Medical Sciences (CIFMS, 2021-I2M-1–002), National Multidisciplinary Cooperative 
Diagnosis and Treatment Capacity Building Project for Major Diseases (NSFC, 81970763), 
Nonprofit Central Research Institute Fund of CAMS (PT201832014), National Natural 
Science Foundation of China (NSFC, 82103016) and (NSFC, 62133006). The funders 
played no role in study design, data collection, analysis and interpretation of data, or 
the writing of this manuscript.

L.Y. and Y.P.Z. supervised the study. J.R., X.W., Y.F. and F.H.Z. collected samples and 
provided clinical information. Y.F. performed the bioinformatics analyses. S.H. have 
provided helpful comments. Y.F. and X.H.L. interpreted the results. Y.F. wrote the 
manuscript.

All authors have read and approved the final manuscript.

AUTHOR AFFILIATIONS

1Department of General Surgery, Peking Union Medical College Hospital, Peking Union 
Medical College, Chinese Academy of Medical Sciences, Beijing, China
2Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, 
Beijing, China
3National Science and Technology Key Infrastructure on Translational Medicine in Peking 
Union Medical College Hospital, Beijing, China
4State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical 
College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical 
College, Beijing, China
5Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China

AUTHOR ORCIDs

Shi Huang  http://orcid.org/0000-0002-7529-2269
Lei You  http://orcid.org/0000-0001-6030-6560
Yupei Zhao  http://orcid.org/0000-0001-7081-2299

FUNDING

Funder Grant(s) Author(s)

National High Level Hospital Clinical Research Funding 2022-PUMCH-D-001 Lei You

Research Article Microbiology Spectrum

November 2024  Volume 12  Issue 11 10.1128/spectrum.00962-2415

https://doi.org/10.1128/spectrum.00962-24


Funder Grant(s) Author(s)

CAMS | Chinese Academy of Medical Sciences Initiative 
for Innovative Medicine (中国医学科学院创新工程)

2021-I2M-1-002 Lei You

National Multidisciplinary Cooperative Diagnosis and 
Treatment Capacity Building Project for Diseases

81970763 Lei You

Nonprofit Central Research Institute Fund of CAMS PT201832014 Lei You

MOST | National Natural Science Foundation of China 
(NSFC)

82103016 Lei You

MOST | National Natural Science Foundation of China 
(NSFC)

62133006 Lei You

National Multidisciplinary Cooperative Diagnosis and 
Treatment Capacity Building Project for Major Diseases

Not applicable Lei You

AUTHOR CONTRIBUTIONS

Yuan Fang, Conceptualization, Formal analysis, Investigation, Visualization, Writing – 
original draft | Xiaohong Liu, Visualization, Writing – review and editing | Jie Ren, data 
curation, Resources, Writing – review and editing | Xing Wang, data curation, Resources, 
Writing – review and editing | Feihan Zhou, data curation, Resources, Writing – review 
and editing | Shi Huang, Methodology, Writing – review and editing | Yupei Zhao, Project 
administration, Resources, Supervision.

DATA AVAILABILITY

The data sets required to reproduce the results in the current study are included in this 
published article and its supplementary information files. No unique code was generated 
in this study. The code and raw sequencing data for this study is available upon request 
from corresponding author Lei You, florayo@163.com.

ETHICS APPROVAL

Ethical approval for this study was obtained from the Human Research Ethics Committee 
of Peking Union Medical College Hospital I-23PJ1417. The requirement for consent was 
waived by the ethics committee due to the retrospective study.

ADDITIONAL FILES

The following material is available online.

Supplemental Material

Dataset S1 (Spectrum00962-24-S0001.xlsx). Dataset required to reproduce the results 
in the manuscript.
Figure S1 (Spectrum00962-24-S0002.pdf). Stackplot of bacterial composition.
Figure S2 (Spectrum00962-24-S0003.pdf). Microbial biomarkers identified by LEfSe 
analysis.
Figure S3 (Spectrum00962-24-S0004.pdf). Differential bacterial species associated to 
tumor metastasis.
Figure S4 (Spectrum00962-24-S0005.pdf). Subgroup survival Kaplan-Meier curve 
Presence of Ralstonia pickettii_B.
Figure S5 (Spectrum00962-24-S0006.pdf). Heatmap of differential metabolites.
Figure S6 (Spectrum00962-24-S0007.pdf). Correlation between differential metabolites.
Figure S7 (Spectrum00962-24-S0008.pdf). PCA plot of metabolome quality control.
Supplemental material (Spectrum00962-24-S0009.docx). Legends for supplemental 
figures and tables, and additional experimental details.
Table S1 (Spectrum00962-24-S0010.docx). The STORMS checklist.

Research Article Microbiology Spectrum

November 2024  Volume 12  Issue 11 10.1128/spectrum.00962-2416

https://doi.org/10.1128/spectrum.00962-24
https://doi.org/10.1128/spectrum.00962-24


Open Peer Review

PEER REVIEW HISTORY (review-history.pdf). An accounting of the reviewer comments 
and feedback.

REFERENCES

1. Mizrahi JD, Surana R, Valle JW, Shroff RT. 2020. Pancreatic cancer. Lancet 
395:2008–2020. https://doi.org/10.1016/S0140-6736(20)30974-0

2. Rahib L, Wehner MR, Matrisian LM, Nead KT. 2021. Estimated projection 
of US cancer incidence and death to 2040. JAMA Netw Open 4:e214708. 
https://doi.org/10.1001/jamanetworkopen.2021.4708

3. Siegel RL, Miller KD, Wagle NS, Jemal A. 2023. Cancer statistics, 2023. CA 
Cancer J Clin 73:17–48. https://doi.org/10.3322/caac.21763

4. Siegel RL, Giaquinto AN, Jemal A. 2024. Cancer statistics, 2024. CA 
Cancer J Clin 74:12–49. https://doi.org/10.3322/caac.21820

5. Nevala-Plagemann C, Hidalgo M, Garrido-Laguna I. 2020. From state-of-
the-art treatments to novel therapies for advanced-stage pancreatic 
cancer. Nat Rev Clin Oncol 17:108–123. https://doi.org/10.1038/s41571-
019-0281-6

6. Overbeek KA, Levink IJM, Koopmann BDM, Harinck F, Konings ICAW, 
Ausems MGEM, Wagner A, Fockens P, van Eijck CH, Groot Koerkamp B, 
Busch ORC, Besselink MG, Bastiaansen BAJ, van Driel LMJW, Erler NS, 
Vleggaar FP, Poley J-W, Cahen DL, van Hooft JE, Bruno MJ, Dutch Familial 
Pancreatic Cancer Surveillance Study Group. 2022. Long-term yield of 
pancreatic cancer surveillance in high-risk individuals. Gut 71:1152–
1160. https://doi.org/10.1136/gutjnl-2020-323611

7. Hanahan D. 2022. Hallmarks of cancer: new dimensions. Cancer Discov 
12:31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

8. McQuade JL, Daniel CR, Helmink BA, Wargo JA. 2019. Modulating the 
microbiome to improve therapeutic response in cancer. Lancet Oncol 
20:e77–e91. https://doi.org/10.1016/S1470-2045(18)30952-5

9. Human Microbiome Project C. 2012. Structure, function and diversity of 
the healthy human microbiome. Nature 486:207–214. https://doi.org/10.
1038/nature11234

10. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer 
M. 2012. Global burden of cancers attributable to infections in 2008: a 
review and synthetic analysis. Lancet Oncol 13:607–615. https://doi.org/
10.1016/S1470-2045(12)70137-7

11. Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, Rotter-
Maskowitz A, Weiser R, Mallel G, Gigi E, et al. 2020. The human tumor 
microbiome is composed of tumor type-specific intracellular bacteria. 
Science 368:973–980. https://doi.org/10.1126/science.aay9189

12. Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, 
Gavert N, Zwang Y, Cooper ZA, Shee K, et al. 2017. Potential role of 
intratumor bacteria in mediating tumor resistance to the chemothera­
peutic drug gemcitabine. Science 357:1156–1160. https://doi.org/10.
1126/science.aah5043

13. Thomas RM, Gharaibeh RZ, Gauthier J, Beveridge M, Pope JL, Guijarro 
MV, Yu Q, He Z, Ohland C, Newsome R, Trevino J, Hughes SJ, Reinhard M, 
Winglee K, Fodor AA, Zajac-Kaye M, Jobin C. 2018. Intestinal microbiota 
enhances pancreatic carcinogenesis in preclinical models. Carcinogene­
sis 39:1068–1078. https://doi.org/10.1093/carcin/bgy073

14. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, 
Mohan N, Aykut B, Usyk M, Torres LE, et al. 2018. The pancreatic cancer 
microbiome promotes oncogenesis by induction of innate and adaptive 
immune suppression. Cancer Discov 8:403–416. https://doi.org/10.1158/
2159-8290.CD-17-1134

15. Dickson I. 2018. Microbiome promotes pancreatic cancer. Nat Rev 
Gastroenterol Hepatol 15:328. https://doi.org/10.1038/s41575-018-
0013-x

16. Del Castillo E, Meier R, Chung M, Koestler DC, Chen T, Paster BJ, 
Charpentier KP, Kelsey KT, Izard J, Michaud DS. 2019. The microbiomes 
of pancreatic and duodenum tissue overlap and are highly subject 
specific but differ between pancreatic cancer and noncancer subjects. 
Cancer Epidemiol Biomarkers Prev 28:370–383. https://doi.org/10.1158/
1055-9965.EPI-18-0542

17. Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, Quesada P, 
Sahin I, Chandra V, San Lucas A, et al. 2019. Tumor microbiome diversity 

and composition influence pancreatic cancer outcomes. Cell 178:795–
806. https://doi.org/10.1016/j.cell.2019.07.008

18. Guo W, Zhang Y, Guo S, Mei Z, Liao H, Dong H, Wu K, Ye H, Zhang Y, Zhu 
Y, Lang J, Hu L, Jin G, Kong X. 2021. Tumor microbiome contributes to an 
aggressive phenotype in the basal-like subtype of pancreatic cancer. 
Commun Biol 4:1019. https://doi.org/10.1038/s42003-021-02557-5

19. Yang Q, Wang B, Zheng Q, Li H, Meng X, Zhou F, Zhang L. 2023. A review 
of gut microbiota‐derived metabolites in tumor progression and 
cancer therapy. Adv Sci (Weinh) 10:e2207366. https://doi.org/10.1002/
advs.202207366

20. Nguyen TT, Lian S, Ung TT, Xia Y, Han JY, Jung YD. 2017. Lithocholic acid 
stimulates IL-8 expression in human colorectal cancer cells via activation 
of Erk1/2 MAPK and suppression of STAT3 activity. J Cell Biochem 
118:2958–2967. https://doi.org/10.1002/jcb.25955

21. Flynn C, Montrose DC, Swank DL, Nakanishi M, Ilsley JNM, Rosenberg 
DW. 2007. Deoxycholic acid promotes the growth of colonic aberrant 
crypt foci. Mol Carcinog 46:60–70. https://doi.org/10.1002/mc.20253

22. Belcheva A, Irrazabal T, Robertson SJ, Streutker C, Maughan H, Rubino S, 
Moriyama EH, Copeland JK, Surendra A, Kumar S, Green B, Geddes K, 
Pezo RC, Navarre WW, Milosevic M, Wilson BC, Girardin SE, Wolever TMS, 
Edelmann W, Guttman DS, Philpott DJ, Martin A. 2014. Gut microbial 
metabolism drives transformation of MSH2-deficient colon epithelial 
cells. Cell 158:288–299. https://doi.org/10.1016/j.cell.2014.04.051

23. Yao L, Jiang L, Zhang F, Li M, Yang B, Zhang F, Guo X. 2020. Acetate 
promotes SNAI1 expression by ACSS2-mediated histone acetylation 
under glucose limitation in renal cell carcinoma cell. Biosci Rep 
40:BSR20200382. https://doi.org/10.1042/BSR20200382

24. Rossi T, Vergara D, Fanini F, Maffia M, Bravaccini S, Pirini F. 2020. 
Microbiota-derived metabolites in tumor progression and metastasis. Int 
J Mol Sci 21:5786. https://doi.org/10.3390/ijms21165786

25. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, 
Vander Heiden MG, Miller G, Drebin JA, Bar-Sagi D, Thompson CB, 
Rabinowitz JD. 2015. Human pancreatic cancer tumors are nutrient poor 
and tumor cells actively scavenge extracellular protein. Cancer Res 
75:544–553. https://doi.org/10.1158/0008-5472.CAN-14-2211

26. Mallick H, Rahnavard A, McIver LJ, Ma SY, Zhang YC, Nguyen LH, Tickle 
TL, Weingart G, Ren BY, Schwager EH, Chatterjee S, Thompson KN, 
Wilkinson JE, Subramanian A, Lu YR, Waldron L, Paulson JN, Franzosa EA, 
Bravo HC, Huttenhower C. 2021. Multivariable association discovery in 
population-scale meta-omics studies. PLoS Comput Biol 17:e1009442. 
https://doi.org/10.1371/journal.pcbi.1009442

27. Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. 2011. 
Understanding the role of gut microbiome-host metabolic signal 
disruption in health and disease. Trends Microbiol 19:349–359. https://
doi.org/10.1016/j.tim.2011.05.006

28. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, 
Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath 
AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber 
C, Clemente JC, Knights D, Knight R, Gordon JI. 2012. Human gut 
microbiome viewed across age and geography. Nature 486:222–227. 
https://doi.org/10.1038/nature11053

29. Abe S, Masuda A, Matsumoto T, Inoue J, Toyama H, Sakai A, Kobayashi T, 
Tanaka T, Tsujimae M, Yamakawa K, et al. 2024. Impact of intratumoral 
microbiome on tumor immunity and prognosis in human pancreatic 
ductal adenocarcinoma. J Gastroenterol 59:250–262. https://doi.org/10.
1007/s00535-023-02069-5

30. Wang W, Qian C, Wang T, Jiang Y, Zhou Y, Liu K, Ma Z, Liu P, Wu Y, Chen 
L, Wang H, Zhou T. 2024. A combination of faecal and intratumour 
microbial community profiling reveals novel diagnostic and prognostic 
biomarkers for pancreatic tumours. Clin Transl Med 14:e1726. https://
doi.org/10.1002/ctm2.1726

31. Zhang Z, Wang T, Xu M, Zhang Z, Wang H, Xue J, Wang W. 2024. 
Deciphering the pancreatic cancer microbiome in Mainland China: 
impact of Exiguobacterium/Bacillus ratio on tumor progression and 

Research Article Microbiology Spectrum

November 2024  Volume 12  Issue 11 10.1128/spectrum.00962-2417

https://doi.org/10.1016/S0140-6736(20)30974-0
https://doi.org/10.1001/jamanetworkopen.2021.4708
https://doi.org/10.3322/caac.21763
https://doi.org/10.3322/caac.21820
https://doi.org/10.1038/s41571-019-0281-6
https://doi.org/10.1136/gutjnl-2020-323611
https://doi.org/10.1158/2159-8290.CD-21-1059
https://doi.org/10.1016/S1470-2045(18)30952-5
https://doi.org/10.1038/nature11234
https://doi.org/10.1016/S1470-2045(12)70137-7
https://doi.org/10.1126/science.aay9189
https://doi.org/10.1126/science.aah5043
https://doi.org/10.1093/carcin/bgy073
https://doi.org/10.1158/2159-8290.CD-17-1134
https://doi.org/10.1038/s41575-018-0013-x
https://doi.org/10.1158/1055-9965.EPI-18-0542
https://doi.org/10.1016/j.cell.2019.07.008
https://doi.org/10.1038/s42003-021-02557-5
https://doi.org/10.1002/advs.202207366
https://doi.org/10.1002/jcb.25955
https://doi.org/10.1002/mc.20253
https://doi.org/10.1016/j.cell.2014.04.051
https://doi.org/10.1042/BSR20200382
https://doi.org/10.3390/ijms21165786
https://doi.org/10.1158/0008-5472.CAN-14-2211
https://doi.org/10.1371/journal.pcbi.1009442
https://doi.org/10.1016/j.tim.2011.05.006
https://doi.org/10.1038/nature11053
https://doi.org/10.1007/s00535-023-02069-5
https://doi.org/10.1002/ctm2.1726
https://doi.org/10.1128/spectrum.00962-24


prognostic significance. Pharmacol Res 204:107197. https://doi.org/10.
1016/j.phrs.2024.107197

32. Cavarretta I, Ferrarese R, Cazzaniga W, Saita D, Lucianò R, Ceresola ER, 
Locatelli I, Visconti L, Lavorgna G, Briganti A, Nebuloni M, Doglioni C, 
Clementi M, Montorsi F, Canducci F, Salonia A. 2017. The microbiome of 
the prostate tumor microenvironment. Eur Urol 72:625–631. https://doi.
org/10.1016/j.eururo.2017.03.029

33. Fu AK, Yao BQ, Dong TT, Chen YY, Yao J, Liu Y, Li H, Bai HR, Liu XQ, Zhang 
Y, Wang CH, Guo YJ, Li N, Cai S. 2022. Tumor-resident intracellular 
microbiota promotes metastatic colonization in breast cancer. Cell 
185:1356–1372. https://doi.org/10.1016/j.cell.2022.02.027

34. Mantovani A, Allavena P, Sica A, Balkwill F. 2008. Cancer-related 
inflammation. Nature 454:436–444. https://doi.org/10.1038/-
nature07205

35. Coussens LM, Werb Z. 2002. Inflammation and cancer. Nature 420:860–
867. https://doi.org/10.1038/nature01322

36. Kim J. 2005. Review of the innate immune response in acne vulgaris: 
activation of toll-like receptor 2 in acne triggers inflammatory cytokine 
responses. Dermatology (Basel) 211:193–198. https://doi.org/10.1159/
000087011

37. Davidsson S, Carlsson J, Greenberg L, Wijkander J, Söderquist B, 
Erlandsson A. 2021. Cutibacterium acnes induces the expression of 
immunosuppressive genes in macrophages and is associated with an 
increase of regulatory T-cells in prostate cancer. Microbiol Spectr 
9:e0149721. https://doi.org/10.1128/spectrum.01497-21

38. Liu CA, Ng SK, Ding YQ, Lin YF, Liu WX, Wong SH, Sung JJY, Yu J. 2022. 
Meta-analysis of mucosal microbiota reveals universal microbial 
signatures and dysbiosis in gastric carcinogenesis. Oncogene 41:3599–
3610. https://doi.org/10.1038/s41388-022-02377-9

39. Huo RX, Wang YJ, Hou SB, Wang W, Zhang CZ, Wan XH. 2022. Gut 
mucosal microbiota profiles linked to colorectal cancer recurrence. 
World J Gastroenterol 28:1946–1964. https://doi.org/10.3748/wjg.v28.
i18.1946

40. Ryan MP, Adley CC. 2014. Ralstonia spp.: emerging global opportunistic 
pathogens. Eur J Clin Microbiol Infect Dis 33:291–304. https://doi.org/10.
1007/s10096-013-1975-9

41. Higuchi R, Goto T, Hirotsu Y, Otake S, Oyama T, Amemiya K, Mochizuki H, 
Omata M. 2021. Streptococcus australis and Ralstonia pickettii as major 
microbiota in mesotheliomas. J Pers Med 11:297. https://doi.org/10.
3390/jpm11040297

42. Anand PK. 2020. Lipids, inflammasomes, metabolism, and disease. 
Immunol Rev 297:108–122. https://doi.org/10.1111/imr.12891

43. Zhang CP, Wang K, Yang LJ, Liu RH, Chu YW, Qin X, Yang PY, Yu HX. 2018. 
Lipid metabolism in inflammation-related diseases. Analyst 143:4526–
4536. https://doi.org/10.1039/C8AN01046C

44. Iorio E, Ricci A, Bagnoli M, Pisanu ME, Castellano G, Di Vito M, Venturini E, 
Glunde K, Bhujwalla ZM, Mezzanzanica D, Canevari S, Podo F. 2010. 
Activation of phosphatidylcholine cycle enzymes in human epithelial 
ovarian cancer cells. Cancer Res 70:2126–2135. https://doi.org/10.1158/
0008-5472.CAN-09-3833

45. Li ZZ, Tan Y, Li X, Quan J, Bode AM, Cao Y, Luo XJ. 2022. DHRS2 inhibits 
cell growth and metastasis in ovarian cancer by downregulation of CHKα 
to disrupt choline metabolism. Cell Death Dis 13:845. https://doi.org/10.
1038/s41419-022-05291-w

46. Cheng ML, Rizwan A, Jiang L, Bhujwalla ZM, Glunde K. 2017. Molecular 
effects of doxorubicin on choline metabolism in breast cancer. Neoplasia 
19:617–627. https://doi.org/10.1016/j.neo.2017.05.004

47. Shestov AA, Liu XJ, Ser Z, Cluntun AA, Hung YP, Huang L, Kim D, Le A, 
Yellen G, Albeck JG, Locasale JW. 2014. Quantitative determinants of 
aerobic glycolysis identify flux through the enzyme GAPDH as a limiting 
step. Elife 3:e03342. https://doi.org/10.7554/eLife.03342

48. Vaughan RA, Gannon NP, Garcia-Smith R, Licon-Munoz Y, Barberena MA, 
Bisoffi M, Trujillo KA. 2014. β-alanine suppresses malignant breast 
epithelial cell aggressiveness through alterations in metabolism and 
cellular acidity in vitro. Mol Cancer 13:14. https://doi.org/10.1186/1476-
4598-13-14

49. Wang S, Meyer E, McKay JK, Matz MV. 2012. 2b-RAD: a simple and 
flexible method for genome-wide genotyping. Nat Methods 9:808–810. 
https://doi.org/10.1038/nmeth.2023

50. Sun Z, Huang S, Zhu PF, Tzehau L, Zhao HL, Lv J, Zhang RC, Zhou LS, Niu 
QY, Wang XP, Zhang M, Jing GC, Bao ZM, Liu JQ, Wang S, Xu J. 2022. 
Species-resolved sequencing of low-biomass or degraded microbiomes 
using 2bRAD-M. Genome Biol 23:36. https://doi.org/10.1186/s13059-
021-02576-9

51. Yu G, Xu C, Zhang D, Ju F, Ni Y. 2022. MetOrigin: discriminating the 
origins of microbial metabolites for integrative analysis of the gut 
microbiome and metabolome. iMeta 1:e10. https://doi.org/10.1002/
imt2.10

Research Article Microbiology Spectrum

November 2024  Volume 12  Issue 11 10.1128/spectrum.00962-2418

https://doi.org/10.1016/j.phrs.2024.107197
https://doi.org/10.1016/j.eururo.2017.03.029
https://doi.org/10.1016/j.cell.2022.02.027
https://doi.org/10.1038/nature07205
https://doi.org/10.1038/nature01322
https://doi.org/10.1159/000087011
https://doi.org/10.1128/spectrum.01497-21
https://doi.org/10.1038/s41388-022-02377-9
https://doi.org/10.3748/wjg.v28.i18.1946
https://doi.org/10.1007/s10096-013-1975-9
https://doi.org/10.3390/jpm11040297
https://doi.org/10.1111/imr.12891
https://doi.org/10.1039/C8AN01046C
https://doi.org/10.1158/0008-5472.CAN-09-3833
https://doi.org/10.1038/s41419-022-05291-w
https://doi.org/10.1016/j.neo.2017.05.004
https://doi.org/10.7554/eLife.03342
https://doi.org/10.1186/1476-4598-13-14
https://doi.org/10.1038/nmeth.2023
https://doi.org/10.1186/s13059-021-02576-9
https://doi.org/10.1002/imt2.10
https://doi.org/10.1128/spectrum.00962-24

	Integrated analysis of microbiome and metabolome reveals signatures in PDAC tumorigenesis and prognosis
	RESULTS
	Participant characteristics
	PDAC and NAT microbiome differ from global scale
	Taxonomic signatures of microbiota in PDAC tumor
	Microbial species related to overall survival
	Untargeted metabolomics profiling revealed significantly altered metabolites
	The altered metabolites and KEGG pathways in PDAC tissues compared with NAT
	The association between discriminative species and metabolites

	DISCUSSION
	MATERIALS AND METHODS
	Study participants and sample collection
	Microbiota analysis
	Survival analysis
	Metabolome data analysis
	Analysis of microbiome-metabolites interactions
	Statistical analyses



