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Abstract

Background: Plasma biomarkers have recently emerged for the diagnosis, assessment, and 

disease monitoring of Alzheimer’s disease (AD), but have yet to be fully validated in preclinical 

AD. In addition to AD pathologic plasma bio-markers (amyloid-β (Aβ) and phosphorylated tau 

(p-tau) species), a proteomic panel can discriminate between symptomatic AD and cognitively 

unimpaired older adults in a dementia clinic population.

Objective: Examine the added value of a plasma proteomic panel, validated in symptomatic AD, 

over standard AD pathologic plasma biomarkers and demographic and genetic (apolipoprotein 

(APOE) ɛ4 status) risk factors in detecting preclinical AD.

Methods: 125 cognitively unimpaired older adults (mean age = 66 years) who completed Aβ 
PET and plasma draw were analyzed using multiple regression with Aβ PET status (positive 

versus negative) as the outcome to determine the best fit for predicting preclinical AD. Model 

1 included age, education, and gender. Model 2 and 3 added predictors APOE ɛ4 status (carrier 

versus non-carrier) and AD pathologic blood biomarkers (Aβ42/40 ratio, p-tau181), respectively. 

Random forest modeling established the 5 proteomic markers from the proteomic panel that best 

predicted Aβ PET status, and these markers were added in Model 4.

Results: The best model for predicting Aβ PET status included age, years of education, APOE 
ɛ4 status, Aβ42/40 ratio, and p-tau181. Adding the top 5 proteomic markers did not significantly 

improve the model.
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Conclusions: Proteomic markers in plasma did not add predictive value to standard AD 

pathologic plasma biomarkers in predicting preclinical AD in this sample.
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Introduction

Alzheimer’s disease (AD) is the fifth leading cause of death for adults over the age of 65 

in the United States,1 and a projected 13.8 million people will have the disease by 2050.2 

The discovery of preclinical AD,3 a phase of AD during which amyloid-β plaques (Aβ) 

accumulate in the brain but older adults are cognitively unimpaired (CU), and do not yet 

exhibit any clinical symptoms of dementia, led to targeting potential secondary prevention 

therapeutics in AD, with the eventual goal of treating AD pathology prior to diagnosis, when 

cognitive symptoms and loss of function are already evident. Currently, one new therapy 

has been approved by the US Food and Drug Administration (FDA) for removing Aβ in 

symptomatic AD patients and another is pending FDA approval. However, clinical trials 

of preventative AD therapeutics are not cost-effective and have high screen-fail rates, as 

identifying preclinical disease in the general population requires screening of thousands of 

individuals.

Current measures to assess for the presence of preclinical AD include Aβ positron 

emission tomography (PET) scans using radioactive ligands and cerebrospinal fluid (CSF) 

testing using lumbar puncture. Secondary prevention treatment, once available, will require 

point-of-care screening for preclinical AD, which is not sustainable from a public health 

perspective using Aβ PET and CSF testing. Both techniques come with relatively high cost, 

low accessibility, are moderately invasive, and require specialist teams for administration 

and interpretation. Therefore, there is an unmet need to develop biomarkers for the detection 

of preclinical AD that are minimally invasive, cost-effective, and can be administered in 

point-of-care (i.e., primary care provider) settings and analyzed on site or analyzed at a 

central laboratory to: (1) advance secondary prevention treatment goals; and (2) improve 

cost and time efficiency of preclinical AD trials of new potential therapeutics.

There are standard demographic factors that increase risk for preclinical and clinical 

AD: age, gender, and educational attainment. Additionally, the apolipoprotein (APOE) ɛ4 

allele has a critical role in Aβ deposition levels, aggregation of lipids, and regulation 

of α-synuclein aggregation, neuroinflammation, lipid metabolism, and synaptic plasticity.4 

APOE ɛ4 status in CU older adults was found to be different between those who were 

positive (Aβ+) versus negative (Aβ−) on Aβ PET, showing correlation between carrying at 

least one copy of the APOE ɛ4 allele and Aβ+ status,5 and clinical trials of AD prevention 

therapeutics have focused on APOE ɛ4 as a key target risk factor for enrollment.6

Plasma biomarkers have emerged as a potential minimally invasive, cost-efficient, accessible 

biomarker for both symptomatic and preclinical AD. Unlike Aβ PET and lumbar puncture, 

a blood draw can be performed in a point-of-care setting and is relatively inexpensive 

to process/interpret. Established AD pathology related biomarkers of AD in plasma 
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include Aβ42/40, phosphorylated tau181 (p-tau181), phosphorylated tau231 (p-tau231), 

phosphorylated tau217 (p-tau217), glial fibrillary acidic protein (GFAP), and neurofilament 

light (NfL). Whereas these biomarkers have been assessed and validated for diagnosis 

and disease monitoring in symptomatic AD,7–12 their use and validation in preclinical AD 

requires further research.13,14

However, there are many other processes that are synergistic to AD pathogenesis. Notably, 

the current AD research framework for diagnosis of AD left open the consideration 

of new biomarkers as the field progressed.15 Inflammation is a known attribute of 

AD pathogenesis.16 Specifically, Aβ and tau can bind to receptors in astrocytes and 

microglia, which are key components of the innate immune system, and trigger an immune 

response that releases inflammatory mediators throughout the brain. When these mediators 

accumulate, there are higher amounts of neuroinflammation which in turn worsens AD 

pathogenesis.17 Inflammation can also interfere with the brain’s immune processes and 

response to further enhance disease progression.16 Additionally, both vascular (see18 for a 

review) and metabolic changes19 are known contributors to AD pathogenesis. Therefore, 

plasma biomarkers examining inflammatory, metabolic, and vascular changes hold can be 

valuable tools for AD diagnosis, assessment, and disease monitoring.

To that end, O’Bryant et al.20 developed a panel composed of inflammatory, metabolic, 

and vascular proteins that accurately diagnosed symptomatic AD versus healthy control 

participants in the Texas Alzheimer’s Research and Care Consortium, a sample largely 

recruited through dementia specialty clinics (area under the curve (AUC) = 0.91). The 

panel has also been validated for detection of symptomatic AD in the Alzheimer’s Disease 

Neuroimaging Initiative sample,21 and across assay platforms,22 as well as across 4 large, 

independent, multi-ethnic and community/clinic based cohorts.23

The proteomic panel is comprised of: c-reactive protein (CRP), intercellular adhesion 

molecule1 (ICAM1), vascular cellular adhesion molecule 1 (VCAM1), serum amyloid A 

(SAA), interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, IL-5, IL-7, Eotaxin-3, 

thymus and activation related chemokine (TARC), alpha-2-microglobulin (A2 M), beta-2-

microglobulin (B2 M), factor VII (FVII), tenascin-C (TNC), fatty acid binding protein-3 

(FABP-3), IL-18, pancreatic polypeptide (PPY), thrombopoietin (TPO) and t-lymphocyte 

secreted protein I-309 (I-309).

In normal aging, both age and the APOE ɛ4 allele confer increased risk for cerebral 

amyloid accumulation,24–28 and eventually clinical AD development, but their predictive 

value is not specific to AD. Therefore, AD pathologic and proteomic biomarkers are ideally 

positioned to detect AD risk in a point-of-care setting. Here, our aim was to: (1) apply 

an blood-based proteomic panel to predict Aβ PET positivity in CU older adults; and (2) 

examine the incremental utility of this proteomic panel over using age, APOE ɛ4 status, 

and AD pathologic plasma biomarkers to predict Aβ PET status in this population. We 

hypothesize, due to inflammatory, vascular, and metabolic changes associated with cerebral 

amyloidosis, that the proteomic panel in plasma will add value to standard demographic risk 

factors and AD pathologic plasma biomarkers in predicting preclinical disease.
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Methods

Participants

This study used a cross-sectional, retrospective research design. Participants were recruited 

from Butler Alzheimer’s Prevention Registry (BAPR), a research data-base that holds over 

1100 registrants from the community and contains the following data: basic demographics, 

medical history, and APOE genotype. Registrants can choose to complete optional specimen 

banking (plasma, cerebrospinal fluid). Inclusion criteria included: (1) member of BAPR; 

(2) age 55–85 inclusive; (3) willing and able to provide informed consent; (4) completed 

blood draw within 24 months of Aβ PET scan; (5) cognitively unimpaired (CU) as 

determined by brief cognitive screen (≥ 27/30 on Mini-Mental State Examination (MMSE) 

or ≥ 26/30 on Montreal Cognitive Assessment (MoCA)). Exclusion criteria for this study 

included: (1) history of brain injury or other known neurologic disease; (2) poorly controlled 

major depression/psychiatric disorder within the past year; (3) history of schizophrenia or 

psychosis within the past year; (4) history of alcohol or substance abuse within the past year. 

Participants that did not have an available numerical value for MoCA or MMSE score (N = 

2) were deemed cognitively normal by existing clinical trial screening protocols in the Butler 

Hospital Memory & Aging Program and a Clinical Dementia Rating Score (CDR) of 0. N = 

125 participants met these criteria, including N = 82 Aβ PET− and N = 43 Aβ PET + (see 

Table 1). This study was approved by the Butler Hospital Institutional Review Board and 

written informed consent was obtained from all human participants in accordance with the 

Declaration of Helsinki.

Procedures

Amyloid PET.—Aβ PET scans were assessed via previous participation in clinical trials at 

the Butler Memory & Aging Program. Depending on the source of the Aβ PET scan, three 

different ligand tracers were used: florbetapir (N = 89), florbetaben (N = 17), and NAV4694 

(N = 19). The prevention studies that utilized florbetapir ligand tracer were evaluated 

visually by two qualified raters and quantitatively, with Aβ PET positivity designated with 

a Standard Uptake Value Ratio (SUVr) cutoff value of 1.10.29,30 For florbetaben and 2–18F-

fluoro-6-(methylamino)-3-pyridinyl]-1-benzofuran-5-ol (NAV) ligands, binary visual reads 

(positive versus negative) were conducted by at least two qualified neuroradiologists as part 

of an AD clinical prevention protocol according to established protocols for each radioactive 

ligand.31,32

Plasma sample collection and processing.—Blood collection and preprocessing 

procedures were completed by trained phlebotomy staff according to published pre-analytic 

standard protocols.33 Samples were shipped to the O’Bryant Laboratory at the University of 

North Texas, and processed according to standardized protocol.23 A customized Hamilton 

Robotic StarPlus system (Microlab STAR line) was utilized to ensure precision of the 

prepared samples and plates for assay. Blood samples were processed in duplicate on a 

multiplex platform using electrochemiluminescence (ECL) technology using the SECTOR 

Imager 2400 A from Meso Scale Discovery (available: http://www.mesoscale.com). 

Biomarkers used in this study include A2 M, B2 M, SAA, FVII, CRP, svCAM-1, siCAM-1, 

TNC, FAB3, TPO, TARC, IL-18, PPY, IL-7, I-309, Eoxtain-3, TNF-a, IL-6, Il-5, and IL-10 
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in addition to Aβ42, Aβ40, and p-tau181. p-tau217 and p-tau231 plasma assays were not 

available at the time the analysis was performed.

APOE genotyping.—A portable reverse transcription polymerase chain reaction (PCR) 

(real time [RT]-PCR) device that analyzes epithelial cells from a cheek swab (Spartan 

Bioscience) was used for analysis of APOE genotype. The Spartan Cube has been found to 

have 100% concordance with the Clinical Laboratory Improvement Amendments (CLIA) 

certified gold standard laboratory assays.34 Participants provided cheek swab samples 

as a part of their participation in the registry. Study staff were trained in cheek swab 

sample acquisition and processing prior to beginning data collection, either remotely or in 

person, by Spartan Bioscience, to ensure compliance with procedure and minimize sample 

contamination.

Statistical analysis

Analyses were performed using R statistical software (version 4.2.1, Vienna, Austria). 

Plasma data that was below the detectable threshold for each biomarker was excluded. 

APOE genotype was also recoded as either APOE ɛ4 carrier or APOE ɛ4 non-carrier, as 

the sample contained very few ɛ4 homozygotes (N = 13). Independent samples t-tests were 

used to compare demographic variables between Aβ PET + and Aβ PET− groups. Specific 

plasma analytes (CRP, sVCAM1, and SAA) were converted to the same scale as the other 

plasma markers for analytic purposes. Participants missing more than 80% of the proteomic 

data (N = 9) or APOE status (N = 8) or Aβ PET (N = 3) data were excluded from analyses, 

leaving a total of 125 participants. Any remaining missing data were handled using a 

multiple imputation approach.35 Random forest modeling using the randomForest package36 

for R was used to examine the accuracy of the plasma biomarkers in the proteomic panel20 

in predicting Aβ PET status. Random forest is a supervised machine-learning based method 

that employs several decision trees. The RF model has four steps: (1) generate many random 

subsets (bootstrap samples) from the original data; (2) build a decision tree from each 

random subset; (3) make a prediction from each decision tree model, and 4) combine 

the predictions from each individual tree to get the final prediction. The RF model can 

be used to predict both binary/categorical outcomes and continuous outcomes. In this 

analysis, it was used to enhance classification of a binary outcome (Aβ PET + versus Aβ 
PET−). To do this, the RF model builds many classification trees, and then combines the 

predictions from individual trees by a majority vote approach. This method has been shown 

to perform well in many classification and prediction scenarios,37,38 including algorithmic 

approaches to CSF,39 EEG40 and fMRI41 findings. Importantly, this approach has been used 

previously with this proteomic panel in order to classify binary/categorical and continuous 

outcomes.21,23,42,43 The number of features entered in Random Forest Modeling can affect 

the outcome in two ways: selecting many features increases the strength of the individual 

trees, whereas reducing the number of features leads to a reduction in the correlation among 

the trees, strengthening the forest as a whole.44 Because no existing data optimizes the 

number of features selected in this population, we compared random forest models with a 

wide range of features (N = 20, 10, N = 8, and N = 5) to determine which combination 

of proteomic markers best predicted Aβ PET positivity in this population. Statistics used to 

evaluate model fit included sensitivity, specificity, positive predictive value (PPV), negative 
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predictive value (NPV), and area under the curve (AUC). Then, multiple regression models 

were constructed with Aβ PET status (positive versus negative) as the key outcome variable. 

In order to assess the incremental utility of plasma biomarkers over APOE genotype alone, 

the following models were created: (1) age, education, gender; (2) age, education, gender, 

and APOE status (carrier versus non-carrier); (3) age, education, gender, APOE status 

(APOE ɛ4 carrier versus APOE ɛ4 non-carrier), Aβ42/40 ratio, p-tau181; (4) age, education, 

gender, APOE status, Aβ42/40 ratio, p-tau181, and the best predictor model identified in 

the random forest analysis; and for comparison purposes, (5) age, education, gender, APOE 
status (carrier versus non-carrier) and all 21 proteomic markers. Likelihood ratio tests were 

used to compare the models, accounting for multiple imputation.

Results

Demographics

There were no significant differences between the Aβ PET + and Aβ PET − groups in terms 

of gender, age, years of education, race, and MMSE score (all p > 0.05, see Table 1). Aβ 
PET + CU older adults had a significantly lower MoCA score (mean = 26.73, SD = 2.12) 

than Aβ PET– CU older adults (mean = 27.90, SD = 1.87, See Table 1), although both 

groups were above the clinical cut-off for cognitive impairment. Finally, as expected, there 

were more APOE ɛ4 allele carriers in the Aβ PET + than the Aβ PET− group (p < 0.001, see 

Table 1).

Proteomic panel: random forest analysis

Random forest modeling was used to determine the most accurate combination of the 20 

proteins assayed as part of the proteomic panel to predict Aβ PET status (positive versus 

negative). We tested random forest models that included all 20 inflammatory proteins, 

as well as the top 10, 8, and 5 inflammatory proteins. Models were compared based on 

sensitivity, specificity, PPV, NPV, and AUC (see Table 2, Figure 1). The model including the 

top 5 proteins (CRP, SAA, sVCAM1, TNFα, and TARC) was the best fit with sensitivity of 

0.88, specificity of 0.31, PPV of 0.71, NPV of 0.57 and AUC of 0.63. This model was then 

used to run the remaining multiple regression analyses.

Additive value of proteomic panel to standard pathologic AD plasma biomarkers

Multiple regression analyses were used to examine the best model for predicting Aβ PET 

status. In model 1, age, education, and gender were not significant predictors of Aβ PET 

results (p = 0.16). Model 2 with variables age, education, gender, and APOE status was 

a significant predictor of Aβ PET status (p=<0.01, see Table 4), and showed significant 

improvement over Model 1 (p < 0.01; see Table 3). Model 3 with variables age, education, 

gender, APOE status, Aβ42/40 ratio, and ptau181 was a significant predictor of Aβ PET 

status (p=<0.01; see Table 4), and showed significant improvement over Model 2 (D3 = 

10.11, p < 0.001, Table 3). Adding the 5-predictor model identified through Random Forest 

analysis (Table 2; Figure 1) to Model 3 did not significantly improve the model (p = 

0.23; Table 3), showing that the proteomic panel biomarkers did not significantly improve 

prediction of Aβ PET status over APOE ɛ4 status and pathologic AD plasma biomarkers 

(Aβ42/40, ptau181) in this sample (Table 4). For comparison purposes, Model 5 shows that 
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adding all proteomic markers to Model 3 does not significantly improve prediction of Aβ 
PET status (p = 0.09; Table 3) over APOE ɛ4 status and pathologic AD plasma biomarkers 

(Aβ42/40, ptau181) in this sample (Table 4).

Discussion

In this sample of CU older adults, the best model for predicting Aβ PET positivity 

included age, years of education, gender, APOE ɛ4 status, plasma Aβ42/40 ratio and plasma 

p-tau181. Adding the top 5 markers from a 21-item proteomic panel previously validated for 

discriminating mild cognitive impairment (MCI) and dementia due to AD from CU older 

adults in dementia clinics20 did not significantly improve the ability of the model to predict 

Aβ PET status in CU older adults. This study, to our knowledge, was the first to examine the 

ability of this proteomic panel to detect preclinical AD.

Inflammation is a well-known and well-studied response to AD pathology; however, other 

research suggests that inflammatory responses may occur later downstream.45 In response 

to amyloid plaque accumulation, microglia produce inflammatory cytokines leading to 

neuroinflammation,46 and exacerbating Aβ and tau pathology.47 This constant state of 

inflammation leads to worsening degeneration and contributes to the progression of AD.48 

Phase I and Phase IIa clinical trials in rodent models of AD have revealed that preventive 

anti-inflammatory strategies reduce AD neuropathology such as synaptic loss, astrogliosis, 

and excitotoxicity as well as decreases in cognitive functioning.49

The five inflammatory proteins found to be the best fit for predicting Aβ PET status were 

CRP, SAA, sVCAM1, TNFα, and TARC. Together, these markers had a high positive 

predictive value and high sensitivity to amyloid PET status, suggesting potential use for 

identifying preclinical AD in the general population. However, the low NPV and specificity 

reduce enthusiasm for use as a screening tool for preclinical AD in CU older adults. All 5 of 

these inflammatory markers have shown changes in clinical AD50–53 compared to CU older 

adults. Existing research on these biomarkers in preclinical AD is limited (see54). TNFα is 

associated with greater risk of progression to incident MCI in CU older adults,55 suggesting 

that longitudinal monitoring of CU older adults with heightened expression of TNFα may 

be warranted. In a sample of 1323 CU older adults, Metti et al.56 found that extreme 

CRP variability over a 10-year follow-up period was associated with cognitive decline, 

specifically in women and APOE ɛ4 non-carriers, which they attributed to greater vascular 

and metabolic disease burden. In an interesting study, Wang et al.57 examined CRP levels 

and their relationship to AD biomarkers across the lifespan in CU older adults in 4 large 

cohorts and found that elevated CRP was associated with decreased hippocampal volume 

across the lifespan but had no relationship to Aβ PET or CSF Aβ. They did find that APOE 
ɛ4 was associated with lower CRP across the lifespan and suggested a lifespan approach 

to determine whether APOE ɛ4 is associated with diminished inflammatory response across 

the lifespan, and how this may affect incident dementia risk. In contrast, Oberlin et al.58 

found that elevated CRP at baseline predicted greater increase over a two-year follow-up 

period in global and regional Aβ deposition (as measured by Aβ PET) in CU older adults, 

especially in those who were Aβ PET+ at baseline. Our study was cross-sectional, and 
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future longitudinal follow-up is warranted to determine whether these proteomic panel 

markers may predict longitudinal change in cerebral amyloidosis in preclinical AD.

Our results indicate that the inflammatory changes associated with AD may occur later 

downstream in the pathogenesis of the disease. Alternatively, these results could indicate 

that the pathological inflammatory processes associated with cerebral amyloidosis are not 

detectable above a critical threshold using these particular plasma biomarkers in CU older 

adults. Using a binary outcome (Aβ PET+ versus Aβ PET−) in our analysis may limit the 

generalizability of our results. It is possible that these proteomic markers in plasma may 

reflect more subtle and/or regional accumulation of cerebral amyloid measured continuously 

(i.e., using the centiloid scale) in this population. Studies are ongoing to test this hypothesis. 

Additionally, we compared binary (positive versus negative) reads across 3 different tracers 

in this study, and although the majority of our sample used the florbetapir tracer (N = 89), 

the use of the centiloid scale would eliminate tracer-driven variability from the other two 

tracers (N = 36).

Our results confirm previous studies indicating that the APOE ɛ4 allele and p-tau181 

measured in plasma are both strong predictors of Aβ PET positivity in CU older adults. 

Previous studies have found that the APOE ɛ4 allele predicts Aβ PET positivity24–26 and 

cognitive, specifically episodic memory decline,27,28 one of the first emergent cognitive 

symptoms in AD, in CU older adults. In a recent publication, plasma p-tau181 was 

comparable to Aβ PET in predicting cerebral amyloid accumulation over a 2–10 year 

follow-up period in CU older adults.59 Moreover, plasma p-tau181 predicted Aβ PET status 

with high accuracy in CU older adults in the Australian Imaging, Biomarker and Lifestyle 

(AIBL) study (AUC = 0.808).60 Interestingly, in preclinical AD, ptau181 shows faster 

accumulation over time in APOE ɛ4 carriers than non-carriers,61 which corroborates work 

suggesting that p-tau181 increases in preclinical AD in APOE ɛ4 carriers 7–13 years prior 

to disease onset,62 and that longitudinal increase in this biomarker is related to reduction of 

encoding-related activity in the hippocampus.62 Overall, our results support a growing body 

of literature that both APOE ɛ4 and plasma p-tau181 are accurate predictors of cerebral 

amyloidosis in CU older adults.

Our study has some notable limitations. First, plasma p-tau217 and p-tau231 assays were 

not yet publicly available at the time these samples were analyzed. Research shows high 

discriminative accuracy for Aβ PET status in these biomarkers between patients with AD 

compared to other neurodegenerative diseases.12 Also, GFAP, hypothesized to be a sensitive 

biomarker for cerebral Aβ accumulation in CU older adults5 was not included in the study, 

which is an area of opportunity for future research. Additionally, future work should include 

a larger and more racial/ethnically diverse sample to ensure population-based representation. 

It should be noted that the participants in the study were community volunteers who signed 

up for the BAPR online due to interest in AD research, many due to a family history 

of AD, and therefore APOE ɛ4 carriers could have been over-represented in our sample. 

Finally, inflammatory response may fluctuate depending on many other factors; examination 

of these longitudinal fluctuations in these proteomic plasma biomarkers will add to the 

literature about this panel in preclinical AD. Of note, the processes of inflammation and 
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AD pathogenesis could be additive or synergistic. Mechanistically, pathologic inflammation 

could be increasing concentrations of AD pathologic markers such as ptau181, or vice versa.

Future work should examine the timeline of the inflammatory response outside of Aβ and 

tau pathologies in preclinical AD to fully grasp this inflammation cascade in this critical 

phase of AD development. Longitudinal studies examining proteomic markers in plasma 

from preclinical disease to mild cognitive impairment, to symptomatic AD dementia, will 

provide much needed information on the inflammation cascade throughout the AD disease 

continuum.

Acknowledgments

We would like to thank the participants in this study for donating their time to research at the Butler Hospital 
Memory & Aging Program.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication 
of this article: This project was supported by Institutional Development Award Number U54GM115677 from the 
National Institute of General Medical Sciences of the National Institutes of Health, which funds Advance Clinical 
and Translational Research (Advance RI-CTR). The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health.

Declaration of conflicting interests

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, 
and/or publication of this article: JA receives funding from R21AG074153, R01AG079241, and the Warren 
Alpert Foundation. AL receives funding from R01AG068990, U24AG057437, U01AG057195 and the Alzheimer’s 
Association.

Data availability

The data supporting the findings of this study are available on request from the 

corresponding author. The data are not publicly available due to privacy or ethical 

restrictions.

References

1. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement 2023; 19: 1598–1695. [PubMed: 
36918389] 

2. Hebert LE, Weuve J, Scherr PA, et al. Alzheimer disease in the United States (2010–2050) estimated 
using the 2010 census. Neurology 2013; 80: 1778–1783. [PubMed: 23390181] 

3. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s 
disease: recommendations from the national institute on aging-Alzheimer’s association workgroups 
on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 280–292. [PubMed: 
21514248] 

4. Uddin MS, Kabir MT, Al Mamun A, et al. APOE And Alzheimer’s disease: evidence mounts that 
targeting APOE4 may combat Alzheimer’s pathogenesis. Mol Neurobiol 2019; 56: 2450–2465. 
[PubMed: 30032423] 

5. Prins S, de Kam ML, Teunissen CE, et al. Inflammatory plasma biomarkers in subjects with 
preclinical Alzheimer’s disease. Alzheimers Res Ther 2022; 14: 106. [PubMed: 35922871] 

6. Langlois CM, Bradbury A, Wood EM, et al. Alzheimer’s prevention initiative generation program: 
development of an APOE genetic counseling and disclosure process in the context of clinical trials. 
Alzheimers Dement (N Y) 2019; 5: 705–716. [PubMed: 31921963] 

Leclerc et al. Page 9

J Alzheimers Dis. Author manuscript; available in PMC 2024 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Doecke JD, Pérez-Grijalba V, Fandos N, et al. Total Aβ42/Aβ40 ratio in plasma predicts amyloid-
PET status, independent of clinical AD diagnosis. Neurology 2020; 94: 15.

8. Ashton NJ, Pascoal TA, Karikari TK, et al. Plasma p-tau231: a new biomarker for incipient 
Alzheimer’s disease pathology. Acta Neuropathol 2021; 141: 709–724. [PubMed: 33585983] 

9. Milà-Alomà M, Suárez-Calvet M and Molinuevo JL. Latest advances in cerebrospinal fluid and 
blood biomarkers of Alzheimer’s disease. Ther Adv Neurol Disord 2019; 12: 1–23.

10. Karikari TK, Benedet AL, Ashton NJ, et al. Diagnostic performance and prediction of clinical 
progression of plasma phospho-tau181 in the Alzheimer’s disease neuroimaging initiative. Mol 
Psychiatry 2021; 26: 429–442. [PubMed: 33106600] 

11. Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for 
Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from 
four prospective cohorts. Lancet Neurol 2020; 19: 422–433. [PubMed: 32333900] 

12. Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for 
Alzheimer disease vs other neurodegenerative disorders. JAMA 2020; 324: 772–781. [PubMed: 
32722745] 

13. Fandos N, Pérez-Grijalba V, Pesini P, et al. Plasma Aβ42/40 ratios as biomarkers for Aβ cerebral 
deposition in cognitively normal individuals. Alzheimers Dement (Amst) 2017; 8: 179–187. 
[PubMed: 28948206] 

14. Jonaitis EM, Janelidze S, Cody KA, et al. Plasma phosphorylated tau 217 in preclinical 
Alzheimer’s disease. Brain Commun 2023; 5: fcad057. [PubMed: 37013174] 

15. Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research framework: toward a biological 
definition of Alzheimer’s disease. Alzheimers Dement 2018; 14: 535–562. [PubMed: 29653606] 

16. Heneka MT, Carson MJ, Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet 
Neurol 2015; 14: 388–405. [PubMed: 25792098] 

17. Novoa C, Salazar P, Cisternas P, et al. Inflammation context in Alzheimer’s disease, a relationship 
intricate to define. Biol Res 2022; 55: 39. [PubMed: 36550479] 

18. Santos CY, Snyder PJ, Wu W-C, et al. Pathophysiologic relationship between Alzheimer’s disease, 
cerebrovascular disease, and cardiovascular risk: a review and synthesis. Alzheimers Dement 
(Amst) 2017; 7: 69–87. [PubMed: 28275702] 

19. Benedet AL, Ashton NJ, Pascoal TA, et al. Plasma neurofilament light associates with Alzheimer’s 
disease metabolic decline in amyloid-positive individuals. Alzheimers Dement (Amst) 2019; 11: 
679–689. [PubMed: 31673598] 

20. O’Bryant SE. A serum protein–based algorithm for the detection of Alzheimer disease. Arch 
Neurol 2010; 67: 1077. [PubMed: 20837851] 

21. O’Bryant SE, Xiao G, Barber R, et al. A blood-based screening tool for Alzheimer’s disease that 
spans serum and plasma: findings from TARC and ADNI. PLoS One 2011; 6: e28092. [PubMed: 
22163278] 

22. O’Bryant SE, Xiao G, Zhang F, et al. Validation of a serum screen for Alzheimer’s disease 
across assay platforms, species, and tissues. J Alzheimers Dis 2014; 42: 1325–1335. [PubMed: 
25024345] 

23. O’Bryant SE, Edwards M, Johnson L, et al. A blood screening test for Alzheimer’s disease. 
Alzheimers Dement (Amst) 2016; 3: 83–90. [PubMed: 27453929] 

24. Pletnikova O, Kageyama Y, Rudow G, et al. The spectrum of preclinical Alzheimer’s disease 
pathology and its modulation by ApoE genotype. Neurobiol Aging 2018; 71: 72–80. [PubMed: 
30099348] 

25. Murphy KR, Landau SM, Choudhury KR, et al. Mapping the effects of ApoE4, age and cognitive 
status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and 
growth. Neuroimage 2013; 78: 474–480. [PubMed: 23624169] 

26. Morris JC, Roe CM, Xiong C, et al. APOE Predicts amyloid-beta but not tau Alzheimer pathology 
in cognitively normal aging. Ann Neurol 2010; 67: 122–131. [PubMed: 20186853] 

27. Lim YY, Villemagne VL, Pietrzak RH, et al. APOE E4 moderates amyloid-related memory decline 
in preclinical Alzheimer’s disease. Neurobiol Aging 2015; 36: 1239–1244. [PubMed: 25559335] 

28. Mormino EC, Betensky RA, Hedden T, et al. Amyloid and APOE e4 interact to influence short-
term decline in preclinical Alzheimer disease. Neurology 2014; 82: 176–1777.

Leclerc et al. Page 10

J Alzheimers Dis. Author manuscript; available in PMC 2024 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Clark CM. Use of florbetapir-PET for imaging β-amyloid pathology. JAMA 2011; 305: 275. 
[PubMed: 21245183] 

30. Camus V, Payoux P, Barré L, et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain 
amyloid load in a clinical environment. Eur J Nucl Med Mol Imaging 2012; 39: 621–631. 
[PubMed: 22252372] 

31. Joshi AD, Pontecorvo MJ, Lu M, et al. A semiautomated method for quantification of F 18 
Florbetapir PET images. J Nucl Med 2015; 56: 1736–1741. [PubMed: 26338898] 

32. Landau SM, Breault C, Joshi AD, et al. Amyloid-β imaging with Pittsburgh compound B and 
florbetapir: comparing radiotracers and quantification methods. J Nucl Med 2013; 54: 70–77. 
[PubMed: 23166389] 

33. O’Bryant SE, Gupta V, Henriksen K, et al. Guidelines for the standardization of preanalytic 
variables for blood-based biomarker studies in Alzheimer’s disease research. Alzheimers Dement 
2015; 11: 549–560. [PubMed: 25282381] 

34. Lee A, Menard W, Tonini G, et al. Reliability of a rapid APOE assay for Alzheimer’s risk 
assessment and clinical trial screening. J Prev Alzheimers Dis 2018; 5: 182.

35. Van Buuren S and Groothuis-Oudshoorn K. Mice: multivariate imputation by chained equations in 
R. J Stat Softw 2011; 45: 1–67.

36. Liaw A and Wiener M. Classification and regression by randomForest, http://
www.stat.berkeley.edu/ (2002).

37. Díaz-Uriarte R and Alvarez de Andrés S. Gene selection and classification of microarray data 
using random forest. BMC Bioinformatics 2006; 7: 3. [PubMed: 16398926] 

38. Wu B, Abbott T, Fishman D, et al. Comparison of statistical methods for classification of ovarian 
cancer using mass spectrometry data. Bioinformatics 2003; 19: 1636–1643. [PubMed: 12967959] 

39. Finehout EJ, Franck Z, Choe LH, et al. Cerebrospinal fluid proteomic biomarkers for Alzheimer’s 
disease. Ann Neurol 2007; 61: 120–129. [PubMed: 17167789] 

40. Lehmann C, Koenig T, Jelic V, et al. Application and comparison of classification algorithms for 
recognition of Alzheimer’s disease in electrical brain activity (EEG). J Neurosci Methods 2007; 
161: 342–350. [PubMed: 17156848] 

41. Tripoliti EE, Fotiadis DI and Argyropoulou M. An automated supervised method for the diagnosis 
of Alzheimer’s disease based on fMRI data using weighted voting schemes. In: 2008 IEEE 
International Workshop on Imaging Systems and Techniques, pp.340–345: IEEE.

42. O’Bryant SE, Xiao G, Barber R, et al. Molecular neuropsychology: creation of test-specific blood 
biomarker algorithms. Dement Geriatr Cogn Disord 2014; 37: 45–57. [PubMed: 24107792] 

43. O’Bryant SE, Xiao G, Barber R, et al. A serum protein-based algorithm for the detection of 
Alzheimer disease. Arch Neurol 2010; 67: 1077–1081. [PubMed: 20837851] 

44. Breiman L Random forests. Mach Learn 2001; 45: 5–32.

45. Zotova E, Nicoll JA, Kalaria R, et al. Inflammation in Alzheimer’s disease: relevance to 
pathogenesis and therapy. Alzheimers Res Ther 2010; 2: 1. [PubMed: 20122289] 

46. Hansen DV, Hanson JE and Sheng M. Microglia in Alzheimer’s disease. J Cell Biol 2018; 217: 
459–472. [PubMed: 29196460] 

47. Kinney JW, Bemiller SM, Murtishaw AS, et al. Inflammation as a central mechanism in 
Alzheimer’s disease. Alzheimers Dement (N Y) 2018; 4: 575–590. [PubMed: 30406177] 

48. Leng F and Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do 
we go from here? Nat Rev Neurol 2021; 17: 157–172. [PubMed: 33318676] 

49. Decourt B, Lahiri DK and Sabbagh MN. Targeting tumor necrosis factor alpha for Alzheimer’s 
disease. Curr Alzheimer Res 2016; 14: 412–425.

50. Tao Q, Alvin Ang TF, Akhter-Khan SC, et al. Impact of C-reactive protein on cognition and 
Alzheimer disease biomarkers in homozygous APOE ɛ4 carriers. Neurology 2021; 97: e1243–
e1252. [PubMed: 34266923] 

51. Cao X and Chen P. Changes in serum amyloid A (SAA) and 8-OHdG in patients with senile early 
cognitive impairment. Med Sci Monitor 2020; 26: e919586–1.

52. Chen J, Dai AX, Tang HL, et al. Increase of ALCAM and VCAM-1 in the plasma predicts the 
Alzheimer’s disease. Front Immunol 2023; 13: 1097409. [PubMed: 36685605] 

Leclerc et al. Page 11

J Alzheimers Dis. Author manuscript; available in PMC 2024 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.stat.berkeley.edu/
http://www.stat.berkeley.edu/


53. Plantone D, Pardini M, Righi D, et al. The role of TNF-α in Alzheimer’s disease: a narrative 
review. Cells 2024; 13: 54.

54. Watermeyer TJ, Raymont V and Ritchie K. Neuroinflammation in preclinical Alzheimer’s disease: 
a review of current evidence. J Alzheimers Dis Parkinsonism 2018; 8: 434.

55. Gross AL, Walker KA, Moghekar AR, et al. Plasma markers of inflammation linked to clinical 
progression and decline during preclinical AD. Front Aging Neurosci 2019; 11: 229. [PubMed: 
31555121] 

56. Metti AL, Yaffe K, Boudreau RM, et al. Trajectories of inflammatory markers and cognitive 
decline over 10 years. Neurobiol Aging 2014; 35: 2785–2790. [PubMed: 24997674] 

57. Wang Y, Grydeland H, Roe JM, et al. Associations of circulating C-reactive proteins, APOE ϵ4, 
and brain markers for Alzheimer’s disease in healthy samples across the lifespan. Brain Behav 
Immun 2022; 100: 243–253. [PubMed: 34920091] 

58. Oberlin LE, Erickson KI, Mackey R, et al. Peripheral inflammatory biomarkers predict the 
deposition and progression of amyloid-β in cognitively unimpaired older adults. Brain Behav 
Immun 2021; 95: 178–189. [PubMed: 33737171] 

59. De Meyer S, Schaeverbeke JM, Luckett ES, et al. Plasma pTau181 and pTau217 predict 
asymptomatic amyloid accumulation equally well as amyloid-PET. Brain Commun 2024; 6: 
fcae162. [PubMed: 39051027] 

60. Fowler CJ, Stoops E, Rainey-Smith SR, et al. Plasma p-tau181/Aβ1–42 ratio predicts Aβ-PET 
status and correlates with CSF-p-tau181/Aβ1–42 and future cognitive decline. Alzheimers Dement 
(Amst) 2022; 14: e12375. [PubMed: 36447478] 

61. Yakoub Y, Ashton NJ, Strikwerda-Brown C, et al. Longitudinal blood biomarker trajectories in 
preclinical Alzheimer’s disease. Alzheimers Dement 2023; 19: 5620–5631. [PubMed: 37294682] 

62. Salami A, Adolfsson R, Andersson M, et al. Association of APOE ɛ4 and plasma p-tau181 with 
preclinical Alzheimer’s disease and longitudinal change in hippocampus function. J Alzheimers 
Dis 2022; 85: 1309–1320. [PubMed: 34924376] 

Leclerc et al. Page 12

J Alzheimers Dis. Author manuscript; available in PMC 2024 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
AUC curve for 4 models generated in random forest analysis. Light purple line = 21 

predictor model. Dark purple = 10 predictor model. Light blue = 8 predictor model. Dark 

blue = 5 predictor model.
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Table 3.

Model comparison between multiple regression models 1–4.

Model D3 Statistic p

Model 1—Age, education, and gender – –

Model 2—Model 1 plus APOE ɛ4 status 18.37 <0.001

Model 3—Model 2 plus Aβ42/40 and ptau-181 10.11 <0.001

Model 4—Model 3 plus 5 proteomic markers 0.23 0.95

Model 5—Model 3 plus 21 proteomic markers 1.43 0.09

The D3 statistics are a result of a likelihood ratio test that accounts for multiple imputation. The entry for Model 2 is comparing Models 1 and 2. 
The entry for Model 3 is comparing Models 2 and 3. The entry for Model 4 is comparing Models 3 and 4.
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