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Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting 
nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease 
(MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver 
steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adipose-
liver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune 
cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, 
neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modula-
tions targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, 
F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fe-
cal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advanc-
ing clinical therapeutic strategies. (Clin Mol Hepatol 2024;30:620-648)
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INTRODUCTION

Excessive alcohol consumption and a high-calorie diet 

are two major etiologic factors for chronic steatotic liver dis-

ease (SLD), including metabolic dysfunction-associated al-

coholic liver disease (MetALD)1 and metabolic dysfunction-

associated steatotic liver disease (MASLD).2 Meanwhile, 

the development of MetALD and MASLD increases the 

burden of cirrhosis and liver cancer3 and becomes leading 

causes of death worldwide.4 It is imperative to thoroughly 

dissect the pathoph-ysiology of MetALD and MASLD in de-

tail, which promotes the development of new therapeutic 

modalities and alleviates the socioeconomic burden asso-

ciated with liver diseases.5

The role of immunity in promoting inflammation and the 

progression of MetALD and MASLD has been demonstrat-

ed through continuous accumulation of clinical and experi-

mental research.6 In the development of MetALD and 

MASLD, the liver is not an isolated organ but rather under-

goes complex interactions with other organs, such as adi-

pose tissue and intestines, through blood circulation and 

immune cells. For example, alcohol, metabolites of ethanol, 

microbes and microbial metabolites damage the gastroin-

testinal tract and adipocytes, subsequently disrupting the 

immune system in MetALD.7 Furthermore, the dysfunction 

of the immune system contributes to the formation of 

MASLD.2 

Importantly, abnormal aggregation of hepatic immune 

cells leads to uncontrolled inflammatory reactions and liver 

injury in MetALD and MASLD. The complex interplay be-

tween multiple immune cells and hepatocytes, such as he-

patic stellate cells (HSCs) and hepatic sinusoidal endothe-

lial cells, plays a crucial role in disease progression.8 For 

example, dysregulated metabolism in MetALD and MASLD 

affects the activation and proliferation of immune cells such 

as T cells, B cells, macrophages, neutrophils, dendritic 

cells (DCs), natural killer (NK) cells, and natural killer T 

(NKT) cells.9,10

In this review, we focus on the impact of immunity in Met-

ALD and MASLD, along with the possible clinical mecha-

nisms involved in affecting intestinal disorders, the adi-

pose-liver axis, accelerating hepatocyte death and 

affecting immune cell-mediated inflammatory processes. In 

particular, we also discuss recent advances in pathways 

regulating multiple immune cells and corresponding immu-

nological modulations in MetALD and MASLD. In conclu-

sion, the liver is an immune organ that undoubtedly plays a 

key role in the pathology of SLD.

IMMUNOLOGICAL MECHANISMS IN SLD

The mechanisms underlying the pathogenesis of Met-

ALD and MASLD differ in some ways, but the immune sys-

tem plays an indelible role in both diseases.11 The immunity 

in MetALD and MASLD is complex and multifactorial, in-

volving the gut-liver axis,12,13 adipocyte-liver axis,14,15 adap-

tive and innate immune cells,15,16 and increased inflamma-

tory cytokines released by hepatocytes, adipocytes and 

mucosal immune cells (Fig. 1).17

Immunological mechanisms in MetALD

In terms of MetALD, hepatotoxicity induced by alcohol 

and oxidative stress are the major factors leading to im-

mune responses.18 However, studies suggest that immune 

responses may also play a key role in the development of 

MetALD,19 especially in its inflammatory condition, alcoholic 

Abbreviations: 
Apaf-1, apoptotic protease activating factor 1; ASH, alcoholic steatohepatitis; BAFF, B cell-activating factor; CCL2, Chemokine (CC-motif) ligand 2; CCR2+ chemokine 
(C-C motif) receptor 2-positive; cDC1s, conventional DCs; CXCL, chemokine (C-X-C motif) ligand; CYP2E1, cytochrome P450 family 2, subfamily E, polypeptide 1; DAMPs, 
danger associated molecular patterns; DCs, dendritic cells; ER, endoplasmic reticulum; EVs, extracellular vesicles; FMT, fecal microbiota transplantation; FXR, farnesoid 
X receptor; G-CSF, Granulocyte colony-stimulating factor; GSDMD, gasdermin D; GSH, glutathione; HA35, Hyaluronic acid 35; HCC, hepatocellular carcinoma; HSCs, 
hepatic stellate cells; IFNγ, interferon γ; IL, interleukin; ILCs, lymphoid cells; KCs, Kupffer cells; LPS, lipopolysaccharide; MAIT, Mucosal Associated Invariant T cells; MASH, 
metabolic dysfunction-associated steatohepatitis; MASLD, metabolic dysfunction-associated steatotic liver disease; MetALD, metabolic dysfunction-associated alcoholic 
liver disease; MLKL, mixed lineage kinase domain like; MyD88, myeloid differentiation primary response 88; NETs, neutrophil extracellular traps; NF-ĸB, nuclear factor 
kappa B; NK cells, natural killer cells; NKT cell, natural killer T cells; NLRP3, NACHT, LRR, and PYD domains-containing protein 3; PAMPs, pathogen associated molecular 
patterns; PPARα, peroxisome proliferator-activated receptor alpha; PTX, pentoxifylline; RIP-1/3, receptor interacting protein-1/3; RORγt, retinoid-related orphan receptor-
gammat; ROS, reactive oxygen species; SLD, steatotic liver diseases; TGF-β, transforming growth factor-β; TH, T helper; TLR, toll-like receptors; TNF-α, tumor necrosis 
factor-α; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand; UCP1, uncoupling protein 1; UPR, unfolded protein response; Uri1, unconventional prefoldin 
RPB5 interactor
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steatohepatitis (ASH).20 Immune involvement in the patho-

genesis of MetALD involves multiple organs and pathways, 

mainly including gut microbiota and microbiota products, 

adipose tissue, and hepatocytes.21

Figure 1. Continued.
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The main mechanism is as follows: (1) Alcohol intake 

damages the intestinal barrier, allowing gut-derived metab-

olites or gut microbiota itself to reach hepatocytes. This 

triggers an immune response by disrupting communication 

between the gut and liver through effects on the gut-liver 

axis, biliary system and portal vein system.19,22 (2) Alcohol 

consumption alters adipose tissue secretion of adipokines, 

pro-inflammatory, anti-inflammatory cytokines and adipo-

kines to activate immune cells, leading to liver inflammation 

and deterioration of fibrosis.23 (3) The immune response 

leads to various types of hepatocyte death, such as apop-

tosis, necroptosis, pyroptosis, and ferroptosis, affecting the 

severity of liver inflammation and the progression of Met-

ALD.24

Gut dysbiosis in MetALD
The gut microbiota maintains the integrity of the intestinal 

barrier, regulating intestinal homeostasis and stimulating 

host immune responses.25 Intestinal barrier integrity and 

gut microbiota and their metabolites are necessary for reg-

ulating MetALD progression.26 The intestine communicates 

with the liver through the biliary system and portal vein via 

the gut-liver axis, transferring intestinal-derived metabolic 

substances or intestinal microbiota itself to the liver and 

stimulating immune reactions in MetALD progression.27 For 

example, antibiotics alleviate alcohol-induced intestinal 

tight junction damage and inflammatory activation.28 Probi-

otic compounds reverse the gut dysbiosis induced by Met-

ALD and maintain the integrity of the intestinal barrier, thus 

reducing liver injury, mainly by upregulating the production 

of mucus and the expression of tight junction proteins.29 

Additionally, intestinal bacterial metabolites such as short-

chain fatty acids can penetrate into the blood and then 

modulate immune cells such as DCs precursors in the 

bone marrow.30 Commensals regulate both innate and 

adaptive immune systems to establish sustained tolerance 

to innocuous antigens. Innate lymphocytes are often locat-

ed in peripheral tissues and are regulated by microbiota.31 

Adaptive lymphocytes are also influenced by gut microbes, 

such as B cells generating IgA controlled by microbes, 

TH17 cells regulated by segmented filamentous bacteria, 

regulatory T (Treg) cells modulated by Clostridia, and T fol-

licular helper cells influenced by Akkermansia muciniphi-

la.32

Adipose-liver organ crosstalk in MetALD
Ethanol is likely unique among toxins in that it perturbs 

almost all aspects of hepatic adipose tissue, partly due to 

the enormous metabolic demand of alcohol metabolism on 

the liver.33,34 Alcohol-induced adipose injury is regulated by 

the release of mediators containing pro-inflammatory and 

anti-inflammatory cytokines and adipokines. For instance, 

after consuming ethanol, the differentiation of preadipo-

cytes and the production of adipokines by adipocytes are 

impaired,35 leading to adipose tissue inflammation and adi-

pocyte death.36,37 These factors result in insulin resistance 

in adipose tissue, increased lipolysis and the production of 

pro-inflammatory cytokines,38 especially TNF, IL-1β, CCL2, 

IL-10 and IL-18 production. These factors are positively cor-

related with the severity of MetALD.38-40 In addition, multiple 

Figure 1. Immune dysregulation in MetALD through the interaction of the gut, liver, and adipose organs. The immune dysregulation in 
MetALD involves hepatocyte death, the adipocyte-liver axis and gut dysbiosis. (1) Chronic alcohol damages the intestinal barrier, increas-
es intestinal permeability, and triggers an immune response. The dysfunctional gut barrier and products released by gut microbiota lead 
to the transfer of components and metabolites to the liver and initiate an immune reaction through the biliary system and portal vein com-
municating with the liver via the gut-liver axis.27 (2) The crosstalk between adipose and liver organs is mediated by various factors, includ-
ing neurotransmitters, pro-inflammatory cytokines (e.g., TNF, CCL2, IL-6), anti-inflammatory cytokines (e.g., IL-10), miRNAs, extracellular 
vesicles (EVs), metabolites, and adipocytokines. This crosstalk promotes hepatocyte damage and inflammation in MetALD.38 (3) Exces-
sive alcohol consumption can lead to various types of hepatocyte death, such as apoptosis, necroptosis, pyroptosis, and ferroptosis. He-
patocyte apoptosis involves the secretion of apoptosis factors that combine with apaf-1 and caspase-9 to form the apoptosome (intrinsic) 
and cell apoptosis through miR-21 (extrinsic).50,51 Hepatocyte necroptosis involves RIP1 and RIP3 activation and subsequent MLKL phos-
phorylation, leading to DAMPs.54,55 Canonical pyroptosis depends on caspase-1 and is mediated by the NLRP3 inflammasome, inducing 
the release of proinflammatory cytokines.57 Noncanonical pyroptosis is activated by LPS and then activates caspase-4/5 and GSDMD, 
which regulates NF-ĸB signaling.61 Ferroptosis is an iron-dependent cell death mechanism characterized by glutathione (GSH) depletion 
and damage to system Xc-, leading to cell death through ROS accumulation and lipid peroxidation.63 These factors activate mucosal im-
mune cells such as macrophages, NK T cells, KCs, MAIT cells and T cells releasing proinflammatory cytokines and chemokines, ulti-
mately leading to hepatocyte death. MetALD, metabolic dysfunction-associated alcoholic liver disease; CCL2, Chemokine (CC-motif) li-
gand 2; IL, interleukin; RIP-1/3, receptor interacting protein-1/3; MLKL, mixed lineage kinase domain like; DAMPs, danger associated 
molecular patterns; NLRP3, NACHT, LRR, and PYD domains-containing protein 3; LPS, lipopolysaccharide; GSDMD, gasdermin D; NF-
ĸB, nuclear factor kappa B; ROS, reactive oxygen species; KCs, Kupffer cells; MAIT, Mucosal Associated Invariant T cells.
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immune cells are present in adipose tissue, including mac-

rophages, DCs, neutrophils, T cells and B cells, which are 

affected by excessive alcohol intake and toll-like receptors 

(TLR)4 expression.41 Moreover, excessive alcohol intake 

alters the adipokine secretion of leptin, visfatin, resistin, 

and adiponectin to activate both Kupffer cells (KCs) and 

HSCs, leading to liver inflammation and fibrosis forma-

tion.42,43 A recent study found that excessive drinking in-

creases the expression and activity of uncoupling protein 1 

(UCP1) in brown adipose tissue.44 Brown adipose tissue 

and beige fat oxidize fatty acids to provide fuel for UCP1-

mediated thermogenesis, thus inhibiting lipid transport to 

the liver. The deletion of the UCP1 gene exacerbates alco-

hol-induced liver steatosis, injury, inflammation, and fibro-

sis.45,46 Acute adipocyte death causes liver injury and acti-

vates inflammation in a chemokine (C-C motif) receptor 

2-positive (CCR2+) macrophage-dependent manner, fur-

ther increasing the sensitivity of hepatocytes to lipotoxici-

ty.47 Therefore, adipose-liver crosstalk plays a role in in-

creasing liver inflammation and injury in MetALD. However, 

for future clinical considerations, it is necessary to continu-

ously explore more potential mechanisms.

Hepatocyte death crosstalk in MetALD
Excessive alcohol consumption can result in various 

types of hepatocyte death, such as apoptosis, necroptosis, 

pyroptosis, and ferroptosis, which are closely linked to the 

severity of inflammation in MetALD.48 Ethanol is metabo-

lized by alcohol dehydrogenase, cytochrome P450 family 2, 

subfamily E, polypeptide 1 (CYP2E1) and catalase, leading 

to the production of reactive oxygen species (ROS).49 Etha-

nol-induced oxidative stress activates the mitochondrial 

(intrinsic) apoptosis pathway, involving the release of apop-

tosis factors like cytochrome c and apoptosis-inducing fac-

tors into the cytosol. These factors combine with apoptotic 

protease activating factor 1 (apaf-1) and caspase-9 to form 

the “apoptosome”, finally activating the internal apoptotic 

pathway.50,51 Therefore, apoptotic cells are efficiently en-

gulfed by surrounding macrophages, contributing to the 

non-inflammatory nature of the MetALD pathway. Pro-

longed alcohol exposure triggers death receptor-mediated 

(extrinsic) cell apoptosis pathways, including Fas ligands 

and TNF-α, and induces cell apoptosis through miR-21.52 

Hepatocyte stress is a result of ethanol metabolism and in-

creased exposure to gut-derived pathogen-associated mo-

lecular patterns (PAMPs) and endogenous danger-associ-

ated molecular patterns (DAMPs), establishing a close link 

to necroptosis.

The characteristics of necroptosis include damage to the 

structure of the cell membrane, nucleus, and cytoplasm to 

varying degrees, increased permeability of the cell mem-

brane, deformation and dissolution of the nucleus, and loss 

of activity in enzymes and proteins in the cytoplasm during 

the progression of MetALD. Necroptotic cells release vari-

ous damage-associated molecular patterns (DAMPs) that 

trigger inflammatory responses.53 The process is regulated 

by the activation of receptor-interacting protein (RIP) 1 and 

RIP3, which is partially induced by the necrosome complex 

and subsequent phosphorylation of mixed lineage kinase 

domain like (MLKL).54,55 As a result, necrotic liver cell death 

is immunogenic, leading to excessive inflammation and he-

patocyte death by activating innate immune cells or induc-

ing other forms of hepatocyte death, such as pyroptosis.56

Pyroptosis also plays a crucial role in the progression of 

MetALD. Canonical pyroptosis relies on caspase-1 and is 

facilitated by inflammatory bodies, such as the NLR family 

pyrin domain-containing 3 (NLRP3),57 resulting in LPS-in-

duced ER stress in hepatocytes.58 Similarly, the absence of 

NLRP3 can ameliorate liver steatosis and chronic ethanol 

damage.59 Moreover, pyroptosis triggered by intestinal 

PAMP and metabolic DAMP, such as uric acid and adenos-

ine triphosphate, leads to the secretion of inflammasome-

dependent cytokines by immune cells damaged by etha-

nol.60 Additionally, LPS can directly trigger noncanonical 

pyroptosis signaling independently of TLR4. Mechanistical-

ly, activated caspase-11 or caspase-4/5 in the liver detects 

intracellular LPS, cleaves gasdermin D (GSDMD) within its 

linker ring, binds to phosphoinositol on the plasma mem-

brane, cleaves it, and ultimately induces cell death. Fur-

thermore, GSDMD regulates adipogenesis, inflammatory 

response, and nuclear factor kappa B (NF-ĸB) signaling, all 

of which are critical in the progression of MetALD.61

Ferroptosis is induced in hepatocytes treated with etha-

nol.62 Excessive alcohol consumption promotes an in-

crease in serum ferritin concentration and transferrin satu-

ration, leading to an increase in liver iron reserves.63 

Ferroptosis is an iron-dependent oxidative programmed 

cell death mechanism characterized by glutathione (GSH) 

depletion, damage to the glutamate antiporter (system Xc-),  

and overexpression of lipid hydroperoxides.64 This process 
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produces oxygen and causes local inflammation in the liv-

er.65 Subsequently, the inactivation of glutathione peroxi-

dase 4, which can reduce lipid peroxides in the plasma 

membrane, leads to cell death through the accumulation of 

ROS caused by excessive iron-induced lipid peroxidation 

or the Fenton reaction.66 These reactive hydroxyl radicals 

destroy the lipid membrane, induce lipid peroxidation and 

membrane instability, and eventually lead to the leakage of 

cell substances and cell death.67

All in all, the immunological mechanisms in MetALD are 

complex and multifactorial, involving hepatocyte death, ad-

ipose-liver organ crosstalk disorder, and intestinal distur-

bance caused by excessive alcohol intake. However, the 

mechanisms between MetALD and MASLD are quite dif-

ferent.

Immunological mechanisms in MASLD

The spectrum of MASLD includes steatosis, metabolic 

dysfunction associated steatohepatitis (MASH), fibrosis, 

cirrhosis, and MASH associated hepatocellular carcinoma 

(HCC).68,69 Recent research suggests the “multiple hit” hy-

pothesis for the development of MASLD, indicating that im-

munological mechanisms in the liver, intestines, and adi-

pose tissue influence the progression of MASLD.5

The main mechanisms include: (1) Damage to the intesti-

nal barrier results in the transfer of bacteria or bacterial 

components into the bloodstream, which is necessary for 

liver inflammation and the progression of MASLD.70 (2) Adi-

pose tissue plays a key role in regulating MASLD progres-

sion by releasing adiponectin, leptin, lipid moieties and lipid 

substances like tumor necrosis factor-α (TNF-α), interleu-

kin (IL)-6 and calprotectin such as S100A8 and S100A9.71 

(3) Different immune cells produce various cytokines and 

chemokines, such as TNF-α, IL-1 and IL-18 (Fig. 2).16

Gut dysbiosis in MASLD
Gut microbiota is also essential for the progression of 

MASLD.12 The intestines and liver communicate through 

tight junction interactions via the biliary tract, portal vein 

and systemic circulation. This communication allows gut-

derived products to be directly transported to the liver, 

while the liver provides feedback on bile and antibody se-

cretion to the intestine.8 An unhealthy state of gut microbio-

ta in MASLD patients is characterized by a high abundance 

of pathogens such as Escherichia coli, Campylobacter je-

juni, Salmonella enterica, Vibrio cholerae, and Bacteroides 

fragilis and a low abundance of key genera including Bac-

teroides, Prevotella and Ruminococcus, which represents 

an unhealthy state for gut microbiota in MASLD pa-

tients.72,73 Furthermore, MASLD is associated with intestinal 

inflammation, where the number of immune cells in the in-

testinal mucosa, such as CD4+ and CD8+ T lymphocytes, 

is reduced. This reduction is linked to increased cytokine 

secretion, leading to the breakdown of the tight junctions in 

the intestinal barrier.74 

Bile acid metabolism is completed under the influence of 

gut microbiota, and the enzymes produced by gut microbi-

ota play a crucial role in the enterohepatic circulation of bile 

acids.75 Additionally, bile acids regulate the size and com-

position of gut microbiota.76 These interactions between 

bile acids and intestinal microbiota significantly impact lipid 

metabolism and the progression of MASLD,77 consequently 

influencing the immune response. Bile acids also influence 

the differentiation of T cells and the polarization of macro-

phages. The metabolism of bile acids and a distinct lym-

phocyte population collectively maintain the integrity of the 

intestinal barrier system, with Treg cells expressing fork-

head box protein P3 (FOXP3) contributing to the homeo-

stasis of the intestinal immune system. Furthermore, bile 

acids promote the polarization of macrophages towards 

the M1 phenotype, partly through the transactivation of 

TLR2 by M2 muscarinic acetylcholine receptor, leading to 

an increased production of pro-inflammatory cytokines.

In addition, the development of damage-associated mo-

lecular patterns (DAMPs) and pathogen-associated molec-

ular patterns (PAMPs) is encouraged by immunity, which is 

linked to changes in the gut microbiota, particularly the ac-

tivity of LPS.78 These factors then cause the production of 

cytokines, chemokines, and growth factors by stimulating 

and activating TLRs and inflammasomes. These occur-

rences promote the recruitment, activation, and differentia-

tion of monocytes into tumor-associated macrophages, 

which leads to angiogenesis and fibrosis and works in con-

cert with cancer-associated fibroblasts.79 Furthermore, 

HSCs activation and differentiation into myofibroblast-like 

cells exacerbate fibrogenesis. Moreover, active HSCs pro-

mote T-reg activation while impairing the capacity of Natu-

ral Killer cells (NKs) to induce HSC death, hence impairing 

immuno-tolerance.80 The aforementioned macrophages, 
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which can stimulate a TH2 immune response and result in 

an immuno-tolerance status, also aid in these last steps. 

All the processes mentioned above exacerbate and ad-

vance MASLD development.81

Figure 2. Immune dysregulation in MASLD through the interaction of the gut, liver, and adipose organs. The immune dysregulation in 
MASLD involves hepatocyte death, the adipocyte-liver axis and gut dysbiosis. (1) High fat diets (HFD) consumption leads to gut barrier 
dysfunction, escalating intestinal inflammation and triggering an ectopic immune response. Damage to the intestinal barrier facilitates the 
passage of bacteria or bacterial components into the bloodstream, essential for hepatocyte death and MASLD progression.12 (2) HFD 
consumption transforms lean adipose tissue into obese adipose tissue. Obese adipose tissue releases adiponectin, leptin and lipid moi-
eties like palmitic acids, ceramide, IL-6 and TNF, inducing cell stress and hepatocyte death in MASLD.83,84 (3) Both gut dysbiosis and 
obese adipose tissue lead to hepatocyte death, which mainly encompasses apoptosis, necroptosis and pyroptosis. These factors acti-
vate KCs, producing TNF, TRAIL and FAS ligands by engulfing apoptotic bodies, thereby stimulating the secretion of chemokines and 
triggering hepatocyte apoptosis.96 These factors further damage hepatocytes, leading to necroptosis and pyroptosis. This process in-
volves the release of IL-1 and IL-18 into the bloodstream, influencing autophagy alterations in hepatocytes and nonparenchymal cells like 
KCs and HSCs.103 All these factors then activate the mucosal immune cells such as macrophages, NK T cells, Kupffer cells, neutrophils, 
T cells and DCs to release inflammatory cytokines and chemokines, further leading to hepatocyte death. MASLD, metabolic dysfunction-
associated steatotic liver disease; IL, interleukin; KCs, Kupffer cells; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand; 
HSCs, hepatic stellate cells; DCs, dendritic cells.
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Adipose-liver organ crosstalk in MASLD
Adipose tissue is the largest endocrine organ in the body, 

involved in various physiological and pathological process-

es such as energy metabolism, endocrine homeostasis, 

and inflammatory reactions. Adipose-liver crosstalk influ-

ences systemic metabolism and insulin resistance.82 Re-

cent studies have revealed that adipose tissue not only 

serves as the primary source of fatty acids in the liver but 

also plays a crucial role in regulating MASLD progression 

by releasing adiponectin, leptin, lipid moieties, lipotoxic 

substances and calprotectin.83,84 Adiponectin inhibits the 

proliferation of HSCs,85 while leptin triggers inflammation 

by activating KCs and enhancing their release of TNF-α.86 

Additionally, lipid moieties like palmitic acids and ceramide 

released by adipocytes inhibit the functions of the endo-

plasmic reticulum (ER) and mitochondria, causing cell 

stress and eventual hepatocyte death.87 Furthermore, lipo-

toxic substances and calprotectin (S100A8 and S100A9) 

from adipose tissue stimulate infiltrating macrophages88 

and KCs89 through TLR4 and NLRP3 signaling.90,91 These 

processes result in the release of inflammatory factors from 

adipose tissue, such as TNF-α, leading to hepatocyte 

death and activation of KCs through JNK pathways.92,93 A 

recent study demonstrated that acute adipocyte death trig-

gers lipolysis by activating chemokine receptor 2-positive 

CCR2+ macrophages and increasing epinephrine and nor-

epinephrine levels.94 Therefore, adipose-liver crosstalk 

contributes to the escalation of liver inflammation and injury 

in MASLD.33 However, for future clinical considerations, a 

comprehensive understanding of adipose-liver crosstalk is 

essential to continually explore additional potential mecha-

nisms.

Hepatocyte death in MASLD
Hepatocyte death is a major factor contributing to the 

progression of MASLD.95 Various mechanisms of hepato-

cyte death, such as apoptosis, necroptosis, and pyroptosis, 

play a crucial role in the development of MASLD.96 Hepato-

cyte apoptosis leads to the release of DNA fragments from 

apoptotic bodies, activates HSCs, and contributes to  

fibrosis formation, making it a significant contributor to 

MASLD.97 Furthermore, hepatocyte death induced by death 

receptors like TRAIL stimulates the release of extracellular 

vesicles (EVs) and certain chemokines, which in turn en-

hance the recruitment and activation of the immune sys-

tem.98,99 Additionally, by engulfing apoptotic particles, KCs 

release TNF, TRAIL, and FAS ligands, thereby accelerating 

hepatocyte death and leading to hepatitis and fibrosis.96 

Necrosis, a regulated form of programmed cell death, is 

mediated by a combination of RIP1 and RIP3. In MASLD, 

increased RIP3 expression is associated with JNK activity 

and inflammation,100,101 and hepatic inflammation and liver 

fibrosis are significantly reduced with RIP3 deficiency.102 

Pyroptosis, a recently identified form of caspase 1-depen-

dent cell death, activates the inflammasome, leading to the 

release of IL-1 and IL-18, and continuous release of cyto-

plasmic contents.103 The circulation of IL-1 and IL-18 acti-

vates the immune system.104 Several studies suggest that 

altered autophagy in hepatocytes and nonparenchymal 

cells like KCs and HSCs contributes to the pathophysiology 

of MASLD.105 For example, dysregulated unfolded protein 

response (UPR) in hepatocytes led to apoptosis and in-

flammation in mice.106 Moreover, reduced liver autophagy 

results in inadequate clearance of damaged mitochondria, 

leading to MASLD-related oxidative stress, release of mito-

chondrial factors, hepatocyte death and liver inflamma-

tion.107 In animal models of MASLD, inhibiting IL-1 signaling 

reduced liver fibrosis, inflammation, steatosis and hepato-

cyte death.108

In summary, the immunological mechanisms in MASLD 

are complex and multifactorial, involving hepatocyte death, 

adipose-liver organ crosstalk disorder, and intestinal disor-

der induced by metabolic dysfunction. These factors sub-

sequently impact the accumulation of immune cells in the 

liver.

IMMUNE CELLS-INDUCED IMMUNE DYS-
REGULATION IN SLD

The liver, the largest immune organ, houses a variety of 

innate and adaptive immune cells, such as macrophages, 

KCs and lymphocytes.109 These cells possess immunologi-

cal functions and can eliminate viruses, bacteria, and spe-

cific antigens from the body. Moreover, the liver’s high level 

of vascularization, combined with reduced blood flow in its 

fenestrated capillary-like sinusoids, creates a unique envi-

ronment that promotes immune cell exposure to blood-

borne and intestinal infections.16,110 The liver contains a 

wide range of immune cells, including lymphoid and my-
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eloid cell lineages, primarily situated in the sinusoids, intra-

vascular spaces and subcapsular compartments (Fig. 3).111 

Recent developments have improved our understanding 

of how the immune cell repertoire is altered during MetALD 

and MASLD in mice, as well as in the cirrhotic liver of hu-

mans.112 For example, significant changes in the myeloid 

compartment were observed in both mice and humans, ac-

companied by a notable influx of monocytes and cells origi-

Figure 3. Immune modulations of SLD pathogenesis. The hepatic immune cell repertoire is altered and participates in the uncontrolled 
inflammatory environment that promotes hepatocyte death and liver fibrosis. These immune cells include innate-like T cells, such as 
iNKT cells, MAIT cells and γδ T cells, as well as conventional CD8+ T cells and CD4+ T cell subsets, including IFNγ-producing TH1 cells,156 
IL-4- and/or IL-13-producing TH2 cells,169 and IL-17-producing TH17 cells.157 NETs are secreted or released during NETosis. Neutrophil ac-
cumulation is a precursor to SLD that causes inflammation and liver damage.189,190 The population of DCs and type 1 conventional DCs 
(cDC1s in particular) increases, promoting hepatic damage and liver inflammation by activating CD8+ T cells.131,132 Monocytes are also 
quickly recruited to the liver, where they can develop into pro-inflammatory macrophages or differentiate into KCs, which are derived from 
monocytes.194,195 Platelets are more numerous and more active, which promotes liver steatosis, inflammation, and damage. This suggests 
that platelets may activate and directly bind to KCs in a glycoprotein GPIb-dependent manner. B lymphocytes, particularly IgA+ plasma 
cells, accelerate the development of SLD by exhausting CD8+ T lymphocytes, which is one of their immunosuppressive actions.185,186 Ad-
ditionally, the cytotoxic actions of fatty acids reduce the anti-injury potential of CD4+ T cells, promoting SLD progression to HCC.142,143 
Moreover, CD8+ T cells and, particularly, the auto-aggressive CXCR6+ subset promote liver damage and the SLD-HCC transition by se-
creting pro-inflammatory cytokines like TNF and directly killing hepatocytes in a FASL-dependent and TNF-dependent manner.159,160 SLD, 
steatotic liver diseases; NKT cell, natural killer T cells; MAIT, Mucosal Associated Invariant T cells; IFNγ, interferon γ; NETs, neutrophil 
extracellular traps; SLD, steatotic liver diseases; DCs, dendritic cells; KCs, Kupffer cells; HCC, hepatocellular carcinoma.

Alcohol

High fat diet

Neutrophils
NET secretion

NETs

Dendritic cells

Portal triad

Central vein

Hepatic lobule

Hepatic stellate cells
Platelets

Mediated cells 
recruitment! in SLD

Activated HSC during 
SLD

Fibrogenic 
myofibroblasts

Kupffer cells

NKT cell

GPIba
dependent

Liver 
capsule

Activating 
CD8+ T cells

Increased numbers 
during SLD

Early infiltration  
during SLD

Healthy liver MASL/MetAL Steatosis Cirrhosis

MASLD/MetALD

Hepatocytes

Monocyte

Neutrophils

Cholangiocyte

Sinusoid

NK cell

MAIT cell

iNKT cells

MAIT cell

TNF-α IL-1β 
CCL2 CXCL1

Macrophages Anti-inflammation

TGFβ IL-10
Pro-inflammation 

M2

IL-17

IL-17 
IFNγ IL-4 

Osteopontini

M1

Monocyte

TH2 cell

Conventional T cells B cells

Differentiation

CD8+T cell exhaustion

B2 B cells
IgA+ 

plasma 
cell

Increased numbers
during SLD

IL-4
IL-13

IL-17 
IFNγ

IFNγ TNF

Increased numbers
during SLD

Increased numbers
during SLD

Increased numbers
during SLD

CD8+
T cell

TH1 cellTH17 cells

iNKT cell

Portal vein

IgA+ plasma
cell

B cells
CD8+  

TRM cell

Kupffer cell

Hepatic artery

Central vein

Macrophages Innate-like T cells
Kupffer cell

TNF-α IL-1 IL-17

ILC1s

αβ T cell

αβ T cell

Hepatic stellate cell

γδ T cell

γδ T cell

Bile duct
Dendritic cell

Liver capsule 
mesothelium

Liver capsular 
macrophage

HCC



 Mengyao Yan, et al.
 Immunity landscape in FLD

https://doi.org/10.3350/cmh.2024.0315 629http://www.e-cmh.org

nating from monocytes.113 These alterations in the hepatic 

immune cell composition likely contribute to the uncon-

trolled inflammatory environment that exacerbates liver 

damage and progresses MetALD and MASLD.114 Through-

out these diseases, there is undoubtedly a complex inter-

play among various immune cell types, hepatocytes, 

HSCs, and liver sinusoidal endothelial cells.115 However, the 

complexity of this interaction is still not fully understood, 

and our current knowledge is primarily based on the study 

of specific immune cell types in the pathogenesis of Met-

ALD and MASLD, as shown in the following (Table 1).116 

B cells and plasma cells in SLD

B cells generate immunoglobulins,117 present antigens118 

and release cytokines119 after activating pathogen-related 

molecular patterns mediated by TLR, impacting immune-

mediated inflammatory responses in numerous ways.120 In 

mice, B cells have pro-inflammatory properties in the SLD, 

which involves the adaptive immune mechanism mediated 

by B cell receptors and the myeloid differentiation primary 

response 88 (MyD88)-dependent innate immune mecha-

nism.121 In humans, B cells were activated concurrently with 

the beginning of steatohepatitis, developed into plasma-

blasts and plasma cells, and then accumulated in SLD with 

lobular inflammation and fibrosis.122 Furthermore, B cells 

may be influenced by the increase in intestinal permeability 

and inflammatory mediators produced by the microbiota. 

Finally, decreased inflammation and fibrosis in B-cell de-

fective animals resulted in a reduction in SLD severity.121,123

B cells can be categorized into two main lineages based 

on their heterogeneity.124 In secondary lymphoid organs, 

B2 cells are activated and supported by CD4+ T helper (TH) 

cells to generate high-affinity antibodies that target specific 

antigens. As part of an innate-like immune response, B1 

cells produce “natural” antibodies such as immunoglobu-

lins encoded by the germline and present even without ex-

ternal antigen stimulation.125 Depletion of B2 cells has been 

associated with a decrease in SLD-related hepatic fibro-

sis,122 although the exact role of B1 cells in SLD remains 

unknown. Serum levels of B cell-activating factor (BAFF), a 

cytokine that regulates B2 cell development and survival 

but not B1 cell survival,126 are elevated in SLD patients and 

further increased in those with fibrosis. In mice, neutralizing 

BAFF reduced liver damage in SLD.127

B2 cells undergo differentiation after activation to be-

come plasma cells or long-lived B cells that produce anti-

bodies.128 The liver is particularly abundant in plasma cells 

that produce IgA, IgG, or IgE, the number of these cells in-

creases during SLD.129 Moreover, patients with SLD had in-

Table 1. Immune cell populations in SLD pathogenesis

Cell type
Relative increase/

Decrease
Function Reference

B cells + Promoting the differentiation of B2 B cells into IgA+ plasma cells and 
exhausting CD8+ T lymphocytes

117, 120

DCs + Stimulating CD4+ T cells 131, 132

CD4+ T cells + Differentiating TH1, TH2 and TH17 cells and releasing cytokines 142, 143

CD8+ T cells + Producing IFN, TNF and cytotoxic chemicals 159, 160

iNKT cells + Producing IFN, IL-4, osteopontin and IL-17 172, 173

γδ T cells + Releasing IL-17 and cause hepatic damage 178

MAIT cells + Regulating anti-inflammatory macrophages 180, 181

TH1 cells + Producing IFNγ 156

TH17 cells + Producing IFNγ and IL-17 157

TH2 cells + Producing IL-4 and IL-13 169

Platelets + Releasing GPIbα and boosting NKT cell recruitment leading to cell aggregates 185, 186

Neutrophils + Producing ROS, cytokines, proteases, and NETs 189, 190

Macrophages + Developing into pro-inflammatory macrophages or differentiate into KCs 194, 195

SLD, steatotic liver diseases; IFNγ, interferon γ; IL, interleukin; NKT cell, natural killer T cells; ROS, reactive oxygen species; NETs, 
neutrophil extracellular traps; KCs, Kupffer cells; DCs, dendritic cells; MAIT, Mucosal Associated Invariant T cells.



https://doi.org/10.3350/cmh.2024.0315630

Clinical and Molecular Hepatology
Volume_30 Number_4 October 2024

http://www.e-cmh.org

creased numbers of activated intestinal B-cells and 

showed a positive correlation between IgA levels and acti-

vated Fc receptor gamma-chain in hepatic myeloid cells as 

well as the degree of liver fibrosis.130 However, although 

there is ample evidence linking B cells and IgA to SLD 

pathophysiology, more research on the underlying mecha-

nisms is necessary. More research is needed to determine 

the antigen specificity of the B cells that are produced in 

SLD patients and are involved in the development of the 

disease.

Dendritic cells in SLD

DCs play a significant role in directing hepatic immunity. 

The plasmacytoid and myeloid subsets of DCs, which con-

stitute less than 1% of all hepatic myeloid cells, are further 

categorized into type 1 and type 2 DCs.131 The onset of 

SLD is associated with the expansion of myeloid DCs and 

their ability to specifically stimulate CD4+ T cells, triggering 

an adaptive immune response.132 DCs contribute to local 

inflammation by recognizing various PAMP, including TLR 

and other pattern-recognition receptors.133,134 While both 

CD103+ cDC1s and CD11b+ cDC2s subsets of conventional 

DCs are present in the liver and increase during SLD in 

mice, their specific roles in the disease’s pathophysiology 

remain unclear.135 In humans, individuals with SLD exhibit 

higher levels of cDC1s in their livers, and an increase in 

cDC1s was associated with more SLD-specific symptoms. 

Activation of SLD in ATF-Like-3-deficient animals lacking 

cDC1s leads to elevated liver triglyceride levels but compa-

rable levels of liver damage.136,137 Similarly, SLD induction in 

ATF-Like-3-deficient mice lacking cDC1s leads to in-

creased liver triglyceride levels but similar liver injury lev-

els.138,139 However, this whole-body deletion of ATF-Like-3 

may have influenced SLD independently of cDC1 loss. Us-

ing a more precise cDC1 depletion model, cDC1s induce 

liver damage in mice, although the mechanisms are still not 

fully understood.140 On the other hand, the role of cDC2s in 

SLD has not been explored yet. In conclusion, further re-

search is needed to comprehensively comprehend the role 

of cDCs in SLD pathogenesis and the associated mecha-

nisms.

Conventional CD4+ and CD8+ T cells in SLD

Conventional CD4+ TH cells play a crucial role in immune 

surveillance and adopt various specialized cell fates 

through interactions with specific DC subpopulations and 

cytokine environments.141 TH1, TH2 and TH17 cell fates are 

distinguished by the production of interferon-γ (IFNγ), IL-4 

and/or IL-13 and IL-17, respectively.142 The roles of these cy-

tokines and their signaling pathways have been studied in 

SLD.143 As these cytokines are also secreted by cell types 

other than CD4+ T cells, it is challenging to definitively attri-

bute the observed phenotype to alterations in the TH cell 

population. Therefore, further research is necessary to en-

hance our comprehension of this aspect.

Mice lacking IFN, the prototype TH1 cell cytokine, had a 

substantial inhibition of macrophage inflammatory re-

sponse and further suppressed HSCs activation and liver 

fibrosis.144 Reduced fibrosis in these animals is related to 

much lower production of osteopontin, a recognized induc-

er of liver fibrogenesis, although its mechanisms are still 

mostly unclear.144 Other cell types that produce IFN, such 

as CD8+ T cells, contribute to the phenotype.145 Additional-

ly, CXCL10, an IFN-inducible chemokine, is also implicated 

in SLD etiology.146 CXCL10 causes CXCR3-expressing 

cells, including T lymphocytes, to chemotaxis.147 CXCL10 

levels in the blood are elevated in SLD patients, and 

CXCL10 deletion or antibody-mediated CXCL10 neutraliza-

tion reduces steatosis, liver damage, and fibrosis in rats.148 

CXCR3 deficiency decreased the development of SLD. 

Thus, reduced CXCL10-CXCR3 signaling may help to ex-

plain the impact of IFN insufficiency on SLD.

It has also been discussed how several cytokines linked 

to TH2 cells affect SLD.149 Higher serum levels of IL-13, and 

their livers have higher levels of IL-13RA2 expression in 

SLD. HSCs express IL-13RA2, and the clinical characteris-

tics of SLD are ameliorated by cytotoxin-mediated death of 

IL-13RA2+ cells. Patients with SLD have higher serum lev-

els of IL-13 and higher liver expression levels of its recep-

tor, IL-13RA2.150 IL-33 induces the secretion of type 2 cyto-

kines IL-4, IL-5, and IL-13, which is consistent with the 

recognized involvement of type 2 cytokines in extracellular 

matrix synthesis.151 IL-33 therapy also contributes to tissue 

regeneration and fibrosis after injury in mice.152 However, 

treatment with IL-33 restricts the buildup of hepatic triglyc-

erides and results in a minor decrease in liver damage in a 
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mouse model of SLD.153 In general, it is uncertain how TH2 

cell-mediated immunity is involved in SLD.

TH17 cells cells perform various functions, including 

maintaining the gut barrier in response to commensals and 

contributing to inflammatory disorders in response to 

pathogens.154 Patients with SLD show an increase in TH17 

cells and the expression of TH17 cell-related genes.155 In 

SLD mouse models, there is an elevation of TH17 cells, 

particularly a subset of pro-inflammatory CXCR3+ TH17 

cells that contribute to SLD.148 SLD worsens in animals 

lacking the unconventional prefoldin RPB5 interactor (Uri1) 

in hepatocytes (HepΔUri1 mice) due to DNA damage, which 

is linked to TH17 cell differentiation and increased hepatic 

IL-17A production.156,157 In HepΔUri1 mice, blocking IL-17A with 

a monoclonal antibody or reducing TH17 cells production 

with the RORγt inhibitor digoxin reduces the hallmarks of 

SLD. Lack of IL-17A provides protection, while administer-

ing recombinant IL-17A exacerbates hepatic DNA damage, 

steatosis, liver injury, and fibrosis in wild-type mice fed an 

SLD-inducing diet. Disrupted IL-17-induced signaling in my-

eloid cells shields HepΔUri1 animals from SLD, suggesting 

significant communication IL-17-producing cells, especially 

TH17 cells and phagocytes.158 Depleting all CD4+ T cells 

reduce hepatic fibrosis, aligning with the fibrosis-promoting 

effects of cytokines produced by TH1, TH2 and TH17 cells as 

mentioned earlier.143

CD8+ T cells are primarily responsible for the production 

of IFN, TNF and cytotoxic chemicals such as perforins.159,160 

In both mice and humans, the number of hepatic CD8+ T 

cells increases during SLD, particularly CD8+ T cells ex-

pressing CXCR6.161 CXCR6+ CD8+ T lymphocytes stimulate 

hepatocyte death in a perforin-independent, FasL (CD95L)-

dependent way. CD8+ T cell depletion reduced liver dam-

age in a diet-induced animal model of SLD. SLD symptoms 

were enhanced in perforin 1-deficient animals, which have 

a larger amount and activating state of hepatic CD8+ T 

cells.162 Perforin deficiency has been shown to promote 

CD8+ T cell activation.163,164 This action is cell-extrinsic and 

includes the survival of immunostimulatory DCs in the ab-

sence of antigen-loaded DCs being killed by perforin.165,166 

Furthermore, CXCR6+ CD8+ T cells that concentrate in SLD 

express the exhaustion marker PD1, block PD1 and in-

crease the activation CD8+ T cells, leading to faster SLD 

pathogenesis in mice.167 As a result, CD8+ T lymphocytes 

are expected to contribute to hepatic damage during SLD.

Overall, there is a lack of an integrated mechanism ex-

plaining how T cell subsets are activated and contribute to 

increased hepatic inflammation in SLD.168 The majority of 

current research focuses on cytokines released by T cell 

subsets rather than on T cells themselves.169 Furthermore, 

while CD8+ T cell-mediated hepatocyte death develops in 

an antigen-independent manner during SLD, it is uncertain 

if adaptive, antigen-specific T cell responses are also in-

volved.170,171 More studies will be needed to fill these infor-

mation gaps and discover how these pathways might be 

addressed therapeutically without compromising immune 

defenses.

Innate-like T cells in SLD

iNKT cells are generally concentrated in the liver relative 

to other organs and are significantly elevated in SLD dis-

ease progression.172 CD1D-deficient or TRAJ18-deficient 

mice, in which iNKT cells do not mature, were used to 

study their function in SLD etiology.173 iNKT cells enhance 

liver fibrosis by increasing osteopontin expression in the 

liver, which promotes fibrogenesis in SLD.174,175 Recent re-

search found that iNKT cells promote hepatic steatosis 

and, together with CD8+ T cells, cause hepatic injury, lead-

ing to SLD progression.176 T-bet+ iNKT1 cells, GATA3+ 

iNKT2 cells and RORγt+ iNKT17 cells are all types of iNKT 

cells that generate IFN, IL-4 and IL-17, respectively.177 Type 

2 cytokines like IL-4 promote collagen formation and extra-

cellular matrix deposition, which is intriguing to investigate 

the involvement of iNKT2 cells in SLD-induced fibrosis.151

γδ T cells are another type of innate-like T cell that exists 

in the steady-state liver and develops and is sustained in a 

microbiota-dependent way.178 During SLD, the number of 

γδ T cells in the mouse liver rises, promoting hepatic dam-

age. Importantly, the formation of hepatic γδ T cells is hin-

dered in Cd1d–/– mice, which may contribute to the damp-

ened SLD phenotype.179

MAIT cells proliferate during SLD development, and their 

absence exacerbates hepatic inflammation and dam-

age.180,181 However, it remains unclear how MAIT cells pro-

tect against diet-induced SLD, despite possessing pro-in-

flammatory characteristics similar to monocyte-derived 

macrophages and enhancing the mitogenic and pro-inflam-

matory functions of fibrogenic cells.182 Additionally, this 

study did not investigate the involvement of MAIT cells in fi-
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brosis, although previous studies have suggested a pro-fi-

brogenic impact of MAIT cells in acute liver injury mod-

els.183 Therefore, further research is warranted to elucidate 

the role of MAIT cells in SLD, particularly in hepatic dam-

age.

Platelets in SLD

In addition to their primary roles in coagulation and he-

mostasis, platelets also play a role in regulating inflamma-

tory processes.184 For example, platelets coming into con-

tact with blood-borne pathogens enhance Kupffer cell-

mediated bacterial clearance in the liver. Moreover, 

platelets collaborate with monocytes to promote athero-

sclerotic plaque formation, boost arterial inflammation and 

facilitate additional leukocyte recruitment.185,186 Platelets are 

implicated in the development of SLD. Anti-platelet medica-

tion has been shown to reduce SLD development in 

mice.187 However, the underlying processes remain un-

known. Recent research has revealed platelet activation, 

adhesion, and platelet-derived granules are crucial in SLD 

development. Platelets interact with KCs during both the 

early and late phases of SLD, promoting steatosis, inflam-

mation, and damage in mice. Additionally, platelets en-

hance the accumulation of inflammatory cells in the liver 

during SLD through a glycoprotein GPIbα-dependent 

mechanism.188 Therefore, based on the aforementioned 

findings, platelets may play a significant role in SLD devel-

opment.

Neutrophils in SLD

Compared to their positive effects in fighting infection, 

neutrophils exhibit a negative impact on chronic inflamma-

tory diseases by producing ROS, cytokines, proteases, 

and neutrophil extracellular traps (NETs).189,190 Both animal 

models and human biopsies demonstrate hepatic neutro-

phil infiltration in SLD.191 Neutrophil accumulation occurs 

early in SLD mouse models.192 Depleting neutrophils slows 

the progression of SLD in rats by reducing inflammation 

and liver damage, but these benefits diminish as the dis-

ease progresses. Inhibiting the serine protease neutrophil 

elastase has a similar effect in the early stages of SLD. 

Neutrophil elastase is produced as a component of 

NETs,190 which are detected very early in the liver during 

SLD pathogenesis in mice and at high levels in the blood 

of SLD patients.193 Dismantling NETs using deoxyribonu-

clease I reduces hepatic inflammation, liver damage and 

liver fibrosis in rats, suggesting that these structures are 

harmful to SLD development.193 Overall, neutrophils seem 

to play a crucial role in the initial stages of SLD through 

NETs formation, but their significance in later stages of 

SLD remains unknown.

Macrophages in SLD

Inflammatory signals during SLD promote the recruitment 

of blood monocytes to the liver, where they differentiate lo-

cally into monocyte-derived macrophages, expanding the 

liver’s macrophage pool.194 Recent research has given in-

formation on the variety of hepatic macrophages in SLD.195

A significant finding is that the self-maintenance of em-

bryonically generated KCs is reduced in SLD mice due to 

the presence of KCs with low TIMD4 cell surface expres-

sion levels.194 These TIMD4low KCs resemble the monocyte-

derived KCs that are produced in mice following the non-

physiological reduction of embryonically derived KCs, 

indicating the generation of monocyte-derived KCs during 

SLD.196 Monocytes contribute to the pool of KCs during 

SLD, and immunostaining studies have shown that these 

monocyte-derived KCs localize to hepatic sinusoids, simi-

lar to embryonically formed KCs. Monocyte-derived KCs 

are generated in response to the increased mortality of 

embryonically derived KCs during SLD, with the goal of 

maintaining KCs levels. During SLD, a gene signature re-

lated to lipotoxicity is enriched in both embryonically gener-

ated and monocyte-derived KCs, as indicated by a tran-

scriptomic study.

This type of cellular stress signature most likely explains 

why embryonically derived KCs die during SLD and why 

they are unable to effectively self-renew. Although the gen-

eration of KCs from monocytes helps maintain the KCs 

population in the liver, their gene expression profile differs 

from that of embryonically derived KCs. Specifically, mono-

cyte-derived Kupffer cells do not exhibit the full spectrum 

of gene expression associated with auxiliary functions of 

embryonically derived KCs, such as erythrophagocytosis. 

As a result, monocyte-derived KCs have a more pro-

nounced inflammatory profile compared to their embryoni-

cally derived counterparts.
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Finally, monocyte-derived KCs and embryonically gener-

ated KCs have differing functional effects on SLD. Although 

monocyte-derived KCs reduce hepatic triglyceride accu-

mulation, they cause more liver damage than embryonical-

ly produced KCs. Thus, during SLD, Kupffer cell homeosta-

sis is significantly disrupted, which influences liver 

pathophysiology.197

Monocytes, in addition to contributing to the pool of KCs, 

follow a typical differentiation route during SLD, resulting in 

the formation of monocyte-derived inflammatory macro-

phages. It is worth noting that the SLD environment has a 

systemic influence on monocytes, as they already exhibit 

SLD-associated transcriptional changes in mouse bone 

marrow.198 Monocyte-derived macrophages in the liver pro-

duce significant quantities of secreted phosphoprotein 1, 

integrin subunit alpha X, glycoprotein nonmetastatic B, 

CD9, and triggering receptor expressed on myeloid cells 2, 

all of which are also expressed in monocyte-derived KCs.199 

The monocyte-derived macrophages that accumulate in 

the liver during SLD resemble the lipid-associated macro-

phages found in obese white adipose tissue, suggesting 

that metabolic inflammation induces a common gene sig-

nature in monocyte-derived macrophages in different tis-

sues and metabolic contexts.200 In terms of function, mono-

cyte-derived macrophages in the mouse liver localize to 

regions of tissue fibrosis near desmin+ HSCs, indicating 

their potential involvement in hepatic fibrosis.201 Similar 

findings were reported in cirrhotic human liver.202 During 

human liver fibrosis, a TREM2+CD9+ monocyte-derived 

macrophage population with profibrotic characteristics in-

creases.202 

As previously stated, various immune cell populations 

are involved in SLD pathogenesis, and the roles of addi-

tional immune cell subsets, such as NK cells and ILCs, are 

still unknown. The hepatic inflammatory environment seen 

during SLD might result from coordinated immune cell in-

teractions. Nevertheless, the detailed pathogenesis of SLD 

with this comprehensive immune response has not been 

extensively investigated.

In summary, various immune cells, including B cells, 

plasma cells, dendritic cells, conventional CD4+ and CD8+ 

T cells, innate-like T cells, platelets, neutrophils and mac-

rophages play crucial roles in the development of MetALD 

and MASLD. Targeting the immune mechanisms of Met-

ALD and MASLD holds significant therapeutic potential, 

and numerous clinical studies are required to investigate 

potential targeted therapies.

Immune cells in HCC

SLD is the primary risk factor for the development of 

HCC, due to alterations in the immune cell environment 

caused by liver inflammation as mentioned earlier.203,204 In 

a mouse model of HFD-induced SLD and HCC, CD8+ T 

cells and NKT cells contribute to hepatic steatosis and 

damage, ultimately resulting in the progression of SLD to 

HCC. Notably, the depletion of CD8+ T cells and NKT cells 

does not worsen the advancement of SLD, which could 

serve as a foundation for preventing HCC development.162

In addition, CD8+ T cells protect IgA-deficient MUP-uPA 

mice fed an HFD from SLD-induced HCC. CD8+ T cells 

have a limited ability to promote the progression of SLD, as 

HCC resistance is associated with a decrease in depleted 

CD8+ T cells. Subsequently, PDL1 blockade improved T 

cell dysfunction in MUP-uPA mice fed an HFD, resulting in 

enhanced anti-tumor immune function and reduced tumor 

incidence. Therefore, CD8+ T cells play a crucial role in an-

ti-tumor effects in HFD-fed MUP-uPA mice. Additionally, 

Cd8a-deficient mice exhibit a higher tumor burden in other 

SLD-induced HCC models. This study suggests that de-

spite the high tumor burden, the improvement of SLD se-

verity by CD8+ T cells is limited, which may also contribute 

significantly to their anti-tumor effect. In summary, in other 

models, the role of CD8+ T cells in promoting SLD patho-

genesis may mask their superior anti-tumor ability.205 

In the SLD-enhanced HCC mice model, CD4+ T cells 

have been proven to inhibit the development of HCC. In 

this model, fatty acids induce CD4+ T cell apoptosis 

through mitochondrial ROS production, while ROS clear-

ance limits CD4+ T cell loss and reduces tumor burden.206 

The impact of CD4+ T cells on tumor growth is attributed to 

their ability to initiate tumor-specific immune responses, 

rather than their ability to contribute to the progression of 

MASH. Furthermore, in another SLD-enhanced HCC mod-

el, the opposite effect of CD4+ T cells has been demon-

strated. Additionally, TH17 cells that produce IL-17A promote 

the development of SLD towards HCC through IL-17A-in-

duced signaling in myeloid cells. In this study, TH17 cells 

accelerate the progression of SLD disease rather than 

playing a role in anti-tumor immune responses, resulting in 
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a faster transition from SLD to HCC.158,207 Therefore, de-

pending on the model used for the transition from SLD to 

HCC, CD4+ T cells can regulate the transition from SLD to 

HCC through different mechanisms. 

Innate immune cells can also affect SLD induced HCC. 

Neutrophils accelerate the development of SLD by releas-

ing NETs. Restricting the production of NETs reduces in-

flammatory factors related to SLD and inhibits SLD-in-

duced HCC, where the reason is the limited development 

of SLD.193 The mechanism of other myeloid cells such as 

KCs in SLD induced HCC has not been studied and still re-

quires a lot of research to explore.

Innate immune cells can also influence SLD-induced 

HCC. Neutrophils accelerate the development of SLD by 

releasing NETs. Limiting the production of NETs decreases 

inflammatory factors associated with SLD and hinders 

SLD-induced HCC, as the restricted SLD development is 

the cause.193 The role of other myeloid cells, such as KCs, 

in SLD-induced HCC has not been investigated and neces-

sitates further research.

POTENTIAL THERAPEUTIC MODULATIONS

Targeting inflammatory responses

Chronic inflammation is a key factor in the development 

of MetALD and MASLD, indicating that regulating inflam-

matory response is a promising therapeutic strategy for im-

proving disease progression in MetALD and MASLD (Table 

2). Since many immune cells, including NK cells, neutro-

phils, and KCs, as well as inflammatory mediators, includ-

ing TNF-α, TLR4 and IL-1β, play multiple functions in liver 

damage and regeneration, comprehensive treatment strat-

egies are required rather than just promoting or inhibiting 

inflammatory responses.208 Corticosteroids, such as pred-

nisone, are now frequently utilized as first-line anti-inflam-

matory medications in patients with severe ASH. Predni-

sone, however, raises the risk of bacterial and fungal 

infections and is ineffective in the majority of patients.209

In MetALD, two randomized controlled trials with anti-

TNF medications, such as enalapril and infliximab, display 

unsatisfactory results, and the anti-TNF group has a higher 

number of deaths in patients with severe ASH.210,211 In 

MASLD, pentoxifylline (PTX) as a methylxanthine deriva-

tive inhibits several pro-inflammatory cytokines like TNF-α, 

which exhibits lipid peroxidation inhibition, oxidative stress 

reduction, and peroxyl and hydroxyl radical scavenging 

properties.212,213

The effects of anti-IL-1 on individuals with ASH are being 

studied in two current randomized clinical trials. In the first 

trial, patients with severe ASH are being treated with kana-

mycin monoclonal antibodies from the IL-1β antibody family 

to see if they are safe and effective. After 28 days of thera-

py, the primary outcome was histological improvement in 

liver biopsy ASH (NCT03775109). The other research 

(NCT04072822) primarily assesses the impact of anakinra 

as an IL-1 receptor antagonist on the 90-day death rate in 

individuals suffering from alcohol-associated hepatitis.209

TLR receptors are expressed on the surface of macro-

phages, dendritic cells and epithelial cells. The inflamma-

tion of MetALD may originate from initiating TLR response. 

In animal models, HA35, a tiny and specific-sized hyal-

uronic acid molecule, suppresses the ethanol-induced 

TLR4 signaling pathway in KCs.214,215 A randomized con-

trolled trial on the effects of HA35 on the change of skeletal 

muscle mass in patients with ASH is registered, but patient 

recruitment has not started (NCT05018481). TLR receptors 

is crucial for MASLD as well.216 Long-acting JKB-121 is a 

tiny chemical that works well as a weak antagonist at the 

TLR4. It has recently been established that vitamin D is a 

hormone that has anti-inflammatory, antifibrotic, and immu-

nomodulatory effects.217 Well-designed studies have inves-

tigated the possibility that vitamin D alleviates MASH 

(NCT01623024). 

Targeting bile acid dysregulation provides hepatoprotec-

tive effects by exerting anti-inflammatory and antioxidant 

effects and by regulating lipid metabolism. Drugs including 

farnesoid X receptor (FXR) agonists, peroxisome prolifera-

tor-activated receptor alpha (PPARα) agonists, ursodeoxy-

cholic acid, and its derivatives have entered different phas-

es of clinical trials, and some of them have shown 

promising therapeutic effects. For example, a phase II ran-

domized clinical trial using obeticholic acid, an FXR ago-

nist, in patients with ASH was conducted. However, the 

clinical trial is terminated because of hepatotoxicity associ-

ated with obeticholic acid (NCT02039219). Obeticholic acid 

as a steroidal FXR agonist improves fibrosis and key char-

acteristics of MASLD in a phase III trial (NCT02548351).218 

However, it induces mild to moderate pruritus, HDL-C low-
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ering, LDL-C increasing, and a potential for drug-induced 

liver toxicity.219 EDP-305, another potent steroidal FXR ag-

onist, is being developed. A phase IIa trial (NCT03421431) 

indicates that EDP-305 reduced ALT levels and liver fat 

Table 2. Immunological modulation in SLD pathogenesis

Modulation Targeting/ Formula Candidate Diseases Reference

Targeting hepatocyte 
death

Oxidative stress N-acetylcysteine MetALD 222

Metoprolol MetALD 223

S-adenosylmethionine MetALD 224, 225

Selonsertib MASLD 226

Vitamin E MASLD 227, 228

Betaine MASLD 230

Ursodeoxycholic acid MASLD 231

Liver regeneration G-CSF MetALD 232, 233

F-652 MetALD 234

Bavachinin MASLD 235

Targeting inflammatory 
responses

Inflammatory factor Prednisone MetALD 209

TNF Infliximab MetALD 210

Enalapril MetALD 211

PTX MASLD 213

212

TLR JKB-121 MASLD 217

Vitamin D MASLD 217

HA35 MetALD 214, 215

IL-1 Anakinra MetALD 209

FXR Obeticholic acid MetALD NA

Obeticholic acid MASLD 218

EDP-305 MASLD 220

LPS HA35 MetALD 214

IMM-124E MASLD 221

Targeting gut microbiota Lactobacillus rhamnosus GG Probiotics MetALD 238

Lactobacillus rhamnosus R0011 and Lactobacillus 
acidophilus R0052

Probiotics MetALD 239, 240

Streptococcus thermophilus, Bifidobacterium and 
Lactobacillus

Probiotics MASLD 244

Inulin-type fructans Prebiotic MASLD 246

Oligofructose Prebiotic MASLD 245

Vancomycin, gentamicin and meropenem Antibiotics MetALD 241

Cidomycin Antibiotics MASLD 247

Rifaximin Antibiotics MASLD 248

Amoxicillin Antibiotics MetALD 242

Lachnospiraceae and Ruminococcaceae FMT MetALD 250

Healthy donor microbiome FMT MetALD 251

FMT MASLD 252

SLD, steatotic liver diseases; MetALD, metabolic dysfunction-associated alcoholic liver disease; TLR, toll-like receptors; IL, interleukin; 
FXR, farnesoid X receptor; LPS, lipopolysaccharide; FMT, fecal microbiota transplantation.
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content. Its adverse events are the same as those of 

obeticholic acid, like pruritus, nausea, vomiting, diarrhea, 

headache and dizziness.220 

Reducing LPS inhibits the activation of inflammatory cells 

and releases inflammatory mediators, which has a positive 

effect on improving MetALD. The ability of the antioxidant 

HA35 to reduce liver damage by preventing LPS from flow-

ing out of the intestine has been demonstrated in animal 

models.214 Oral administration of IMM-124E, an anti-LPS-

enriched bovine colostrum, is suggested to alleviate chron-

ic inflammation, liver damage, and insulin resistance asso-

ciated with MASLD in mice models and a small cohort of 

patients with biopsy-proven MASLD.221

Targeting hepatocyte death

Hepatocyte injury plays an important role in the progres-

sion of MetALD and MASLD, and treatment for hepatocyte 

injury is considered promising therapies (Table 2). Long-

term exposure to ethanol can lead to depletion of glutathi-

one, making hepatocytes more susceptible to oxidative 

stress. Oxidative stress is one of the key mechanisms 

leading to hepatocyte damage in MetALD. Nevertheless, 

individual classic antioxidant molecules such as N-acetyl-

cysteine or metoprolol are not effective against severe 

forms of ASH.222,223 One of the reasons for the failure of 

these antioxidant therapies in ASH might be the absence 

of particular mitochondrial antioxidant effects. S-adenosyl-

methionine may be a viable treatment option for MetALD, 

since this molecule can restore glutathione in mitochondria 

and ameliorate steatosis in animals.224,225 More clinical tri-

als are needed to determine the efficacy of mitochondrial-

targeted antioxidants in treating ASH. However, there is 

currently a scarcity of therapeutic modulations that target 

these hepatocyte death patterns. Because of the link be-

tween several types of cell death and MetALD, blocking a 

single cell death mechanism may not be enough to amelio-

rate ASH. In a phase II clinical trial, selonsertib (GS-4997), 

an oral inhibitor of apoptosis signal regulated kinase-1 en-

zyme, has no advantages over prednisone alone in the 

treatment of severe ASH (NCT02854631).226 Some clinical 

studies targeting apoptosis are increasing in MASLD. GS-

4997 reduces liver fibrosis in the phase II trial. However, a 

phase III trial suggests that selonsertib had no anti-fibrotic 

effect in patients with bridging fibrosis or compensated cir-

rhosis due to MASLD.227,228 Therefore, the anti-MASLD clin-

ical research of GS-4997 is terminated. Antioxidants such 

as vitamin E, betaine and ursodeoxycholic acid show a 

better clinical perspective in MASLD.229-231 For example, vi-

tamin E alleviates MASLD progression as well as improved 

hepatic steatosis and lobular inflammation, but without ef-

fect on the development of fibrosis.229

It is difficult to inhibit hepatocyte mortality, thus encour-

aging liver regeneration is seen as a complementary thera-

peutic strategy. Granulocyte colony-stimulating factor (G-

CSF) is a potent growth factor that accelerates liver cell 

regeneration in severe ASH. The meta-analysis results 

show that G-CSF is associated with a reduction of over 

70% in mortality rate in ASH patients at 90 days.232,233 In 

addition, IL-22 is a key anti-inflammatory cytokine that pro-

tects the liver and promotes regeneration. Currently, a 

phase II open-label clinical trial is now being conducted to 

investigate the impact of IL-22 agonists (F-652) on individu-

als with ASH. F-652 is a recombinant fusion protein con-

taining human IL-22 and human IgG2 fragments, and its 

mechanism of action is identical to that of natural IL-22. 

Based on MELD and Lille scores, F-652 is associated with 

high improvement rates, increased liver regeneration mark-

ers and decreased inflammatory markers.234 In MASLD, 

bavachinin is proven to possess liver-protecting effect 

against MAFLD, which binds to the pocket of PCNA facili-

tating its interaction with DNA polymerase delta and pro-

regeneration effect.235

Targeting gut microbiota

In recent years, with the continuous improvement of un-

derstanding in the impact of intestinal pathophysiology, the 

gut microbiota has become the main target for studying the 

modulations of MetALD and MASLD (Table 2).236,237

Probiotics and antibiotics from early clinical studies have 

shown promising results in MetALD. For example, two on-

going randomized clinical trials are investigating the impact 

of probiotics on ASH patients. The first trial is currently be-

ing conducted to test the efficacy and safety of probiotics 

mainly Lactobacillus rhamnosus GG in patients with mod-

erate ASH. The main endpoint is the change in MELD 

score after 30 days (NCT01922895).238 Another study is 

evaluating the effects of probiotics mainly Lactobacillus 

rhamnosus R0011 and Lactobacillus acidophilus R0052 
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on liver enzyme, endotoxin, and cytokine levels in ASH pa-

tients after 7 days (NCT02335632).239,240 Antibiotics also al-

ter the gut microbiota. However, using a mixture of antibiot-

ics such as vancomycin, gentamicin and meropenem, 

there was no improvement in hepatitis and systemic inflam-

mation.241 A multicenter, double-blind randomized con-

trolled trial evaluated the efficacy of a combination of corti-

costeroids and antibiotic amoxicillin in the treatment of 

severe ASH (NCT02281929), and the results are yet to be 

confirmed.242 At present, the role of conventional antibiotics 

in ASH management has not been determined.

Probiotics, prebiotics and antibiotic affect the gut micro-

biota in MASLD. VSL#3 as probiotic mixture is used for 

MASLD in clinical studies, which is a mixture of eight differ-

ent bacteria such as Bifidobacterium longum, Bifidobacte-

rium infantis, Bifidobacterium breve, Lactobacillus aci-

dophilus, Lactobacil lus bulgaricus, Lactobacil lus 

plantarum, Lactobacillus casei and Streptococcus ther-

mophilus.243 In a randomized controlled trial, the 4-month 

supplement of VSL#3 activated GLP-1, and improved fatty 

liver and body mass index in obese children with MASH 

(NCT01650025).244 Prebiotics contain no living microorgan-

isms and nondigestible food ingredients that selectively 

promote the proliferation of gut microbes. Oligofructose 

and inulin-type fructans as common prebiotics, increased 

the abundance of Bifidobacterium spp, and significantly 

improved hepatic steatosis and NAS (NCT03184376 and 

NCT03042494).245,246 The treatment with cidomycin, as a 

non-absorbable antibiotic, indicates its potential to alleviat-

ing the severity of MASLD by intestinal microbiota modula-

tions.247 Besides, rifaximin as a non-absorbable, broad-

spectrum and gastrointestinal-specific antibiotic displayed 

effective and safe in biopsy-proven MASH (NCT02884037 

and EudraCT 2010-021515-17).248 

Fecal microbiota transplantation (FMT) might be an op-

tion for rebuilding a healthy gut microbiota. In preliminary 

research and an open-label experiment, FMT in patients 

with severe ASH from healthy donors increased survival 

and liver function by reducing gut microbiota, which con-

tributes to the development of ASH. These studies demon-

strate that the donor microbiota can change the recipient 

microbiota and improve MetALD without complications, 

even in individuals with severe ASH.249 Cytolysin-secreting 

E. faecalis strains are an important factor contributing sig-

nificantly to hepatocyte damage and mortality in individuals 

with severe alcoholism. Individuals with alcoholism had 

much higher numbers of E. faecalis in their feces than non-

alcoholics or individuals with alcohol-related illnesses. In-

terestingly, the overall quantity of E. faecalis, not just the 

presence of cytolysin-positive strains, may be important in 

the severity of liver disease and subsequent mortality.250 In 

severe ASH, FMT improves 90-day survival and reduces 

infections by positively regulating microbial communities 

such as pathogenic taxa and anaerobes, making it a viable 

option to prednisolone treatment. Importantly, this ap-

proach provides a way to precisely edit the gut microbio-

ta.251 

Clinical investigations have revealed that FMT may have 

a therapeutic impact on MASLD. In a randomized clinical 

study, FMT successfully improved the therapeutic benefits 

on MASLD patients, and its clinical efficacy was greater in 

lean MASLD patients than in obese MASLD patients.252 

The changes in gut microbiota composition caused by FMT 

further lead to plasma metabolites such as phenylacetyl-

carnitine in MASLD patients’ extensive changes in phenyl-

acetylcarnitine, phenylacetylglutamine and choline-derived 

metabolites and liver DNA methylation profiles.253 Notably, 

other clinical trials evaluating the treatment of MASLD pa-

tients with FMT are presently underway (NCT02469272).

PERSPECTIVES

SLD are important chronic liver disorders that affect peo-

ple worldwide, and their pathogens involve multiple mecha-

nisms. Immunity plays a crucial role in promoting the pro-

gression from SLD to more severe forms of liver injury, 

such as steatohepatitis, cirrhosis and HCC. Immunity in-

volves multiple mechanisms in the progression of SLD, 

mainly affecting intestinal disorders, the adipose-liver axis, 

accelerating hepatocyte death and affecting immune cell-

mediated inflammatory processes. Additionally, multiple 

immune cells are involved, including B cells, plasma cells, 

dendritic cells, conventional CD4+ and CD8+ T cells, innate-

like T cells, platelets, neutrophils and macrophages. Some 

immunological modulations targeting hepatocyte death, in-

flammatory responses and gut microbiome are constantly 

increasing. The immunological modulations mainly include 

N-acetylcysteine, selonsertib, F-652, prednisone, pentoxi-

fylline, anakinra, JKB-121, HA35, obeticholic acid, probiot-
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ics, prebiotics, antibiotics and FMT. However, our under-

standing of the immunological signals that drive SLD is 

incomplete, and further research is needed to better under-

stand the involvement of specific immune cell subsets in 

these diseases. Future research to identify these key im-

munity drivers will not only enhance our understanding of 

the etiology of SLD but also discover new effective thera-

peutic interventions for treating MetALD and MASLD. We 

look forward to more clinical trials targeting immunological 

mechanisms for SLD in the future.
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