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Mutational signature analyses in multi-
child families reveal sources of age-
related increases in human germline
mutations
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Whole-genome sequencing studies of parent–offspring trios have provided valuable insights into the
potential impact of de novo mutations (DNMs) on human health and disease. However, the molecular
mechanisms that drive DNMs are unclear. Studies with multi-child families can provide important
insight into the causes of inter-family variability in DNM rates but they are highly limited. We
characterized 2479 de novo single nucleotide variants (SNVs) in 13 multi-child families of Mexican-
American ethnicity. We observed a strong paternal age effect on validated de novo SNVs with
extensive inter-family variability in the yearly rate of increase. Children of older fathers showed more
C > T transitions at CpG sites than children from younger fathers. Validated SNVs were examined
against one cancer (COSMIC) and two non-cancer (human germline and CRISPR-Cas 9 knockout of
human DNA repair genes) mutational signature databases. These analyses suggest that inaccurate
DNA mismatch repair during repair initiation and excision processes, along with DNA damage and
replication errors, aremajor sources of human germline de novo SNVs. Our findings provide important
information for understanding the potential sources of human germline de novo SNVs and the critical
role of DNA mismatch repair in their genesis.

Family-based whole-genome or whole-exome sequencing studies pre-
dominantly from trios, i.e., parents and a single child, have enabled the
identification of de novomutations (DNMs) in humans1,2. DNMs are novel
changes in the DNA sequence of an individual that are not present in the
parents. DNMs can appear during gametogenesis, post-zygotically, or
during the postnatal life of the individual; however, only DNMs that are
present in the parental germ cells (i.e., germlineDNMs)will be passed on to
the next generation and affect all cells in the offspring. Improving our
understanding of the determinants of germline DNMs is critical because
they are drivers of evolution and human genetic disease3.

Germline DNMs play a major role in common neurodevelopmental
and psychiatric disorders such as intellectual disability, autism4,
schizophrenia5, and other diseases6. Developmental disorders caused by
DNMs have a prevalence of 1 in 200–500 births corresponding to ~400,000

affected children born globally per year7. Approximately 80%of transmitted
DNMs arise in the paternal germline2,8,9. Sequencing studies have demon-
strated that germline DNMs increase steadily with the age of the father at
conception2,3 and this association is referred to as the paternal age
effect (PAE)10.

Studies of human trio cohorts representing diverse populations and
ancestries have reported significant variation in both mutation rate and
PAE among human populations and that this variation is not heritable11.
This suggests that the environment may affect mutation rates more
significantly than previously thought11–13. For example, a study on an
Amish population, which experiences lower exposure levels of environ-
mental contaminants than populations in urban settings, showed a lower
mutation rate and PAE than other human populations11. The few studies
that have sequenced multi-child families have reported high variability in
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the rate of DNMs, even among families within the same population8,14,15.
These intriguing findings emphasize the need to study DNMs frommore
diverse populations to determine the factors contributing to differences
in the rate and spectrum of DNMs within and between human
populations.

Recent advances in cancermutational signature analyses have revealed
both endogenous and exogenous sources of mutagenesis in tumors and
provided new insights into factors that influence cancer development16.
Mutational signatures are distinct patterns of mutation accumulation that
reflect a combination of cellular processes, such as DNA replication errors
caused by endogenous factors, DNA repair deficiencies, and/or exposure to
exogenous/environmental mutagens17. Comparison of mutation profiles
against known signatures, some of which have proposed etiologies/anno-
tations, can provide insight into the potential underlying mutational
mechanisms within an observed catalog of mutations3,16,18. However,
mutational signature analyses have not been widely applied to germline
DNMs, and the molecular mechanisms involved in their genesis are still
largely unknown.

While the analysis of human germline DNMs with cancer-relevant
mutational signatures is informative, the use of more targeted mutational
signatures relevant to human germline DNMs may offer a more precise
assessmentof their potential etiology andunderlyingmechanisms.Recently,
Seplyarskiy et al.19 identified 14 distinct human germline mutation patterns
(originally named Component 1–14) corresponding to nine processes: five
DNA strand-dependent (represented by two components each) and four
DNA strand-independent. The authors provided a biological interpretation
for seven of these processes and found that they explained the variation in
mutation properties between loci19. Thus, these human germline signatures
represent a yet unexplored and critical resource to investigate the
mechanisms of human DNMs.

An important role for DNA mismatch repair (MMR) in the genesis
of human DNMs has been inferred from the high occurrence of muta-
tions at CpG sites due to spontaneous deamination of 5-methylcytosine
(5mC)20,21. However, mechanistic studies investigating which steps of the
MMR pathway are more critical for the formation of DNMs are lacking.
Recently, targeted CRISPR-Cas9-based knockouts (KO) of DNA repair
genes in isogenic human induced pluripotent stem cells (hiPSCs) cell
lines have generated a dataset of nine DNA repair-deficient mutational
signatures, including six MMR genes22. The availability of these novel
DNA repair KO signatures provides an opportunity to better define the
critical steps within the MMR pathway that are involved in the genesis of
human DNMs.

In this study, we combined the identification of de novo single
nucleotide variants (SNVs) in multi-child human families and exploited
three mutational signature databases to characterize inter-family varia-
bility in the PAE and the molecular mechanisms of germline mutations.
We used whole-genome sequencing analyses of 13 multi-sibling families
of Mexican-American ethnicity from the Insulin Resistance Athero-
sclerosis Family Study (IRASFS)23 to investigate the PAE in this growing
minority population in theUSA. Then, we used three existingmutational
signature datasets to identify signatures that explained the observed de
novo SNV spectrum: (1) the cancer-derived Catalogue of Somatic
Mutations in Cancer (COSMIC, v3.3) composed of 60 Single Base Sub-
stitutions (SBS) signatures with both known and unknown etiologies17;
(2) the germline-specific dataset comprising 14 SBS signatures with
proposed etiologies19; and (3) the dataset from targeted CRISPR-Cas9-
based KO of DNA repair genes in hiPSCs cell lines with nine SBS
mutational signatures22. The integration of the PAE analyses and
mutational signatures from three different signature databases allowed us
to identify several types of DNA damage and inaccurate MMR as major
contributors to the formation of SNVs and their accumulation with
paternal age. These findings expand our understanding of the potential
sources of human germline de novo SNVs and the critical role of DNA
MMR in their genesis as a function of paternal age.

Results
Identification and validation of SNVs
Thirteen multi-child families were selected from the Mexican-American
population of the IRASFS cohort24. On average, selected families had ~4
children (mean ± SD: 3.7 ± 1.2) with amean paternal age of 27.5 ± 6.4 years
at the time of birth with a minimum and maximum age of 16.4 and 41.2
years old, respectively (Fig. 1). Average paternal age difference between the
first and last childwas 9.3 ± 4.9 years (SupplementaryTable 1). After quality
control, we sequenced the genomes of 74 individuals, including 26 parents
and 48 probands, to a genome-wide median depth of ~30X. Here, we
focused our analyses on de novo SNVs (hereafter referred to as SNVs).

We used two distinct variant calling software tools to maximize the
identification of candidate SNVs (Supplementary Fig. S1): DeNovoGear
and GATK. DeNovoGear identified 123–387 candidate SNVs per child
(average: 237.6); while GATK identified 24–111 candidate SNVs per child
(average: 57.2). In total, 11,403 and 2729 SNVs were identified by DeNo-
voGear and GATK, respectively. Over 90% of the GATK-identified SNVs
overlapped with those of DeNovoGear (Supplementary Fig. S2A), which
generated an overall list of 11,590 candidate SNVs. Among these, ~600
SNVs that were observed more than once among all children were elimi-
nated from further analyses. Following targeted resequencing of 6118
candidate SNVs with successfully designed baits, 2479 SNVs were validated
(Supplementary Fig. S2B). This resulted in an average germline mutation
rate of 1.03 × 10−8 (95% CI: 0.96 × 10−8–1.1 × 10−8) per base pair per gen-
eration. We found an average (mean ± SD) of 51.6 ± 11.7 (range: 29–82)
validated SNVs per proband, which is in line with other published studies
(Supplementary Fig. S3), and 190.7 ± 78.6 (range: 88–342) validated SNVs
per family.

There is extensive inter-family variability in the PAE
Analysis of validated SNVs demonstrated a strong PAE overall. SNVs
increased with an estimated slope of 1.29 (95% CI: 0.83–1.74, p < 0.0001)
SNVs for each additional year of the father’s age at the time of child’s birth
(Fig. 2). Analyses of individual families showed a wide range of estimated
confidence intervals surrounding the slope point from an average of nearly
no change, i.e., 0.03 (95% CI: −0.1–0.2; IRASFS Family 03) to more than
6.52 (95% CI: 5.5–7.5; IRASFS Family 05) additional SNVs for each
increasing year of paternal age (Fig. 3). Interestingly, we observed one family
with four offspring (IRASFS Family 09) that had a negative PAE. In fact, the
number of validated SNVs in this family decreased from 51 to 41 from the
first child (p1; paternal age: 16.4 years) to the last child (p4; paternal age: 22.3
years), respectively, which resulted in a negative slope of −1.88 (95% CI:
–2.3–−1.4). Together, our analyses demonstrate extensive inter-family
variability in the PAE in this cohort.

The set of 2542 candidate SNVs that were identified by both DeNo-
voGear and GATK also showed a consistent PAE and inter-family varia-
bility in the slope of increase (Supplementary Fig. S4). Furthermore, when
sorted by the slope of increase, the bottom three (e.g., IRASFS Families 09,
03, and 02) and top three (e.g., IRASFSFamilies 04, 01, and 05) familieswere
the same aswhen the validated SNVswere used.However, sincenot all these
candidate SNVs could be re-sequenced and validated, separate data analyses
on this dataset are not presented.

Themajority of the validated denovoSNVshave a paternal origin
We investigated the parental origin of validated SNVs using read-based
phasing and a haplotype assembly approach. Additionally, we visually
verified the phasing result of each SNV using the Integrative Genomics
Viewer (IGV) to ensure accuracy.We determined the parental origin for an
average (mean ± SD) of 10.4 ± 1.7% validated autosomal SNVs per IRASFS
family (range: 7.1–13.2%). As expected, this analysis identified a significant
male bias in the contribution of SNVs with a 5.4:1 ratio of validated
paternal:maternal autosomal SNVs, and a mean of 78.6% (95% CI:
71.7%–85.6%) of autosomal SNVs with paternal origin (Fig. 4A). For one
family (IRASFSFamily04), all phasedSNVswereof paternal origin.Overall,
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we observed a PAE even when considering phased SNVs of paternal origin
only (Fig. 4B).

Mutation signature analyses identify mutational processes con-
tributing to de novo SNVs
Next, we analyzed the types of mutations that contributed to the validated
SNVs. In agreement with previous studies, transitions were more common
than transversions. The most common SNVs were C > T transitions, par-
ticularly at all four CpG sites (Fig. 5). ACG trinucleotides had the highest
numbers of mutations, followed by CCG, GCG and TCG, respectively.
T > C transitions were the next most commonmutations, especially within
the ApTpN trinucleotide context (i.e., ATA, ATG, and ATT). T > A
transversions were the least common mutations. We then separated the
validated SNVs into quartiles based on paternal age at the time of child’s
birth and generated a 96-trinucleotide spectrum for the children born from
the youngest and oldest fathers, below 24 and above 33.1 years of age,
respectively. A comparison of these spectra showed that the most apparent

difference was an increase in C > Tmutations at CpG sites, especially at the
CCG and TCG motifs, in children born from the oldest fathers (Fig. 5).

To explore the mutational processes involved in the formation of
SNVs, we first performed de novo signature extraction to identify the
mutational signature within our dataset. Next, to delineate potential
underlying mechanisms, we performed decomposition and fitting analyses
on the extracted signature with three published mutational signature
datasets starting with the COSMIC signatures.

The COSMIC analysis showed that the two known clock-like age-
relevantmutational signatures, SBS1 and SBS5,were the only two signatures
needed to explain the observed pattern of de novo SNVs. In fact, decom-
position of the extracted SNV signature showed that a combination of 85%
SBS5 and 15% SBS1 generated a reconstructed signature with a cosine
similarity value of 0.989 with the extracted one (Fig. 6A). SBS1 is due to
spontaneous deamination of 5mC, while SBS5 has an unknown etiology
(Fig. 6A). Repeating the analysis using the recently expanded repertoire of
cancer mutational signatures from the Genomics England Limited (GEL

Fig. 1 | Pedigrees of the 13 multi-child IRASFS families. Each IRASFS Family is
labeled with a sequential number 1–13.Within each family, fathers andmothers are
identified with the numbers 1 and 2, respectively, while each child is identified by the
letter p (proband) and a number representing the order of birth. The number under
each child represents the paternal age at the time of birth for that child. The youngest

and oldest paternal ages in this IRASFS cohort are 16.4 years old (IRASFS Family 9 -
proband #1) and 41.2 years old (IRASFS Family 10 -proband #5), respectively. Gray
circles indicate the individuals that were sequenced for this study. All other whole-
genome sequences were already available from IRASFS.
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Fig. 3 | Inter-family variability of the paternal age effect among the IRASFS
multi-child families. A Scatter plots of the numbers of de novo SNVs for each family
relative to the father’s age at each child’s birth, ordered by slope from the lowest (top
with blue color, IRASFS Family 09) to the highest rate (bottom right with red color,
IRASFS Family 05). Regression lines and 95% confidence intervals indicate the

predicted number of de novo SNVs as a function of paternal age using a Poisson
regression. B Slope ± 95% confidence interval (CI) of each IRASFS family sorted in
order of increasing slope as in A. The dashed vertical line indicates the paternal age
effect based on the combined data from all families (1.29 de novo SNVs/year, 95%CI:
1.44–1.57, p < 0.0001).

Fig. 2 | The distribution of validated de novo SNVs
in the IRASFS multi-child families and their cor-
relation with paternal age. The scatter plot repre-
sents the number of validated de novo SNVs in each
of the 48 children by paternal age at the time of birth.
Each color represents a specific IRASFS family. The
red line represents the slope of all validated de novo
SNVs and the shaded area is the 95% confidence
interval for the regression line.

Slope = 1.29 (95% CI: 0.83-1.74)
P < 0.0001
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2022)25 did not change the outcome. In fact, a combination of ~73% SBS5
and ~27% SBS1 generated a reconstructed signature with a cosine similarity
value of 0.972 with the extracted one.

Next, we investigated how the IRASFS-extracted mutational signature
could be decomposed and fitted using the human germline mutational
signatures19. This analysis showed that three human germline mutational
patterns, identified as human germline component 1, 3, and 10, generated a
reconstructed signature with a cosine similarity value of 0.954 with the
extracted one (Fig. 6B). Proposed mechanisms for these three components
are: asymmetric resolution of bulky DNA damage (component 1); repli-
cation errors (component 3); and 5mC deamination or erroneous replica-
tion over methylcytosine (component 10) (Fig. 6B). Our analysis revealed
that component 1, characterized predominantly by T > C transitions,
accounted for the highest proportion (~45%) of the SNVmutation pattern.
Component 10, which is characterized by C > T transitions at CpG motifs
(i.e., NpCpG; N =A, T, C, G) contributed ~37%, while component 3,
characterized by C > T transitions with no enrichment for a specific motif,
contributed ~18%.

To understand the origin of the bulky DNA damage suggested by
component 1, we compared the SNV mutation signature individually
against the compendium of mutational signatures of environmental che-
micals in hiPSCs26. This analysis showed that our SNVmutational signature
had the highest cosine similarity values with dimethyl sulfate (0.552), an
alkylating agent, and dibenzo[a,l]pyrene-diol-epoxide (0.527), a polycyclic
aromatic hydrocarbon that forms bulky DNA adducts.

We then compared the extracted SNVsignature to nine SBS signatures
derived fromhumanDNA repair geneKOs (i.e.,ΔEXO1,ΔMLH1,ΔMSH2,
ΔMSH6, ΔOGG1, ΔPMS1, ΔPMS2, ΔRNF168 & ΔUNG) plus the back-
ground (i.e., control hiPSCswithout anyKO) generated in a comprehensive
CRISPR-Cas9-based KO in hiPSCs isogenic cell lines22. Our extracted SNV
signature could be decomposed and best fitted with a combination of three
human DNA MMR repair genes: ΔEXO1 (~41%), ΔPMS1 (~35%) and
ΔPMS2 (~23%). The reconstructed signature had a cosine similarity value of
0.915with the extracted one (Fig. 6C). TheΔEXO1 signature is identified by
relatively high T > C transitions, especially at ATA and TTA motifs. The
ΔPMS1 signature is characterized predominantly by C > T transitions,
particularly at NpCpG sites, as well as its ACAmotif. TheΔPMS2 signature
is predominantly composed of T > C transitions, especially at ATA, ATG,
and CTG trinucleotides (Fig. 6C).

Finally, we attempted signature extraction, decomposition and fitting
using the two mutation spectra for the children born from the youngest
(Fig. 5B) and oldest (Fig. 5C) fathers to explore whether the contribution of
the identified signatures changed with paternal age. However, this analysis

generated reconstructed signatureswithmuch lower cosine similarity values
with the extracted signature than when the entire set of SNVs was used
(Supplementary Table 2). This finding was consistent for all three muta-
tional signature datasets. We interpret these results to mean that the
separation of the SNVs in quartiles resulted in an insufficient number of
mutations for robust signature extraction and reconstruction.

Discussion
We validated ~2500 de novo SNVs in 13muti-child families withMexican-
American ethnicity from the IRASFS cohort and provided possible
mechanisms for the genesis of humangermline SNVs.Weobserved a strong
PAEwith extensive inter-family variability and, as expected, themajority of
SNVs had a paternal origin. In addition, we found that C > T transitions at
CpG sites weremore common in children fromolder fathers. Our signature
analyses suggest that SNVs originated from several molecular mutagenic
processes, including deamination of 5mC, bulky DNA damage, replication
errors, and inaccurate MMR. Finally, we propose a model identifying the
critical role of DNA MMR in the genesis of SNVs as a function of
paternal age.

The analysis of diverse populations and ethnicities in genetic
studies27–29 is of great importance to identify factors that determine differ-
ences in susceptibility to genetic disorders (e.g., asthma, cancer, diabetes,
and atherosclerosis), responses to intervention therapies30, and environ-
mental exposures (e.g., air pollution31).We found that de novo SNVs exhibit
a strong PAE with significant variation amongMexican-American families
that are alignedwith two previous studies of different ethnicities (i.e. CEPH/
Utah cohort ofwhite-American ethnicity14 andMiddleEastern familieswith
heterogeneous ethnicity15). In addition, when the multi-child families from
these two previous studies and ours are sorted based on the increasing slope
of thePAE,weobserved a randomdistributionof the families, irrespectiveof
ethnicity (Supplementary Fig. S5). Therefore, it appears that the PAEand its
inter-family variability is a general characteristic of the human species that is
independent of ethnicity. Inter-individual variation in DNA replication
error rates,DNArepair efficiencies, and endogenous and exogenous sources
of DNA damaging compounds are likely the major determinants of the
observed variability in the PAE within and across diverse human
populations19,32,33.

To the best of our knowledge, we report the first instance of a family
(IRASFS Family 09) with a negative slope of−1.88 for the PAE.We believe
that this apparently unexpected observation is not indicative of a funda-
mental biological difference in this father but is a consequence of his young
age (22.3 years old at the time of the fourth child’s birth). In fact, the number
of validated SNVs observed in the four children is consistent with the range

Fig. 4 | The parent of origin of de novo SNVs in the
IRASFS families. A Box plots representing the
proportion of validated de novo SNVs that were
successfully phased to establish the parent of origin.
B Scatter plot with fitted regression line ± 95%
confidence interval of the distribution of phased de
novo SNVs in each of the 48 children based on the
paternal age at the time of birth. Maternally-based
SNVs are plotted according to the age of the father at
the time of child’s birth because maternal age was
not available.
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of SNVs observed in fathers of similar age (Supplementary Fig. S3). Sec-
ondly, both previous multi-family studies14,15 have several cases with
downward trends in the number of SNVs when limited to the first few
children. It is only because these families have children fathered at an older
age that the slope turned positive. Thus, we hypothesize that if IRASFS
Family 09 had a fifth or sixth child, this negative slope would disappear.
Overall, thesedata support the role of stochastic factors in theSNVmutation
rate and PAE variation34.

In agreementwith previous studies, we found that ~80%of the de novo
SNVs originated from the paternal genome. This has long been attributed to
DNA replication errors occurringmore frequently in themale germline due
to the higher number of cell divisions with respect to the female germline.
DNA replication errors have been considered the predominant source of
germline mutations3,20. However, recent human evidence points to the
importance of mutagenic processes that do not depend on cell division and
suggests that other mechanisms, such as sex-based differences in endo-
genous sources of DNA damage or DNA repair mechanisms, are also
contributing to the preferential generation of SNVs in the paternal
germline35,36.

The observed SNV mutation spectrum is the result of multiple
mutation mechanisms operating in the germ cells of the parents. Thus,
interrogation of its characteristics provides clues to its origin. The SNV
mutation spectrum in this study was characterized by high frequencies of
C > T transitions, which is the most frequent mutation in human
populations20 accounting for one-third of the SNVs responsible for her-
editary diseases37. The occurrence of C > T transitions, particularly at CpG

sites, immediately suggests spontaneous deamination of 5mC as the likely
culprit. The high mutagenicity of cytosines at CpG sites with respect to any
other nucleotide in the human genome is well known21. Cytosines in CpG
dinucleotides are often methylated. Spontaneous deamination of 5mC
generates thymine, while spontaneous deamination of unmethylated cyto-
sine produces uracil. Deaminated 5mC is less efficiently repaired prior to
DNA replication38 by the MMR repair machinery21,39 than uracil, which is
more efficiently repaired by base excision repair (BER)40. Thus, spontaneous
deamination of 5mC is more likely to result in a C > T transition at CpG
sequences39. Our findings are in agreement with studies in different
ethnicities3,8,9,14,15,20,38 demonstrating that this specific mutational pattern
appears to be independent of the human population background41. Fur-
thermore, the comparison of the 96-trinucleotide mutation spectra for the
children born from the youngest and oldest fathers in our IRASFS families
suggests that C > T mutations at CpG sites increase with paternal age.

A few studies8,12 have used mutational signature analyses of de novo
SNVs obtained from human families; these studies limited their analyses to
COSMIC signatures to reconstruct the observed mutation spectrum. Fur-
thermore, Kaplanis et al.12 conducted mutational signature analyses exclu-
sively on those trios with a hypermutator phenotype caused by pre-
conceptional paternal exposure to chemotherapy or because of DNA repair
defects. We have expanded on these studies by implementing a systematic
signature analysis using multiple signature databases to obtain further
insight into the mechanisms underpinning de novo SNV formation. Using
the COSMIC database17,25, we found that SBS1 and SBS5 are the two
mutational signatures that best reconstructed the pattern of de novo SNVs
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Fig. 5 | The 96-trinucleotide mutation spectrum of de novo SNVs in the IRASFS
cohort. Spectra are presented for:A de novo SNVs identified in all children from this
study; B children born from the youngest fathers (<24 years of age); and, C children

born from the oldest fathers (>33.1 years of age). For the analyses shown in
B, C, children were separated into quartiles based on the age of the fathers. Data are
presented as total counts of SNVs. Arrows indicate CpG sites.
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(cosine similarity = 0.99), as expected3,9,38. A combination of SBS1 and SBS5
is thought to contribute tomutation accumulation with age inmost normal
human somatic and germline cells36,42–44. Both SBS1 and SBS5 correlate with
the patient’s age in many cancer types and are known as clock-like
signatures38. However, they have different etiologies18,36,38. The mutational
process underlying SBS1 is the deamination of 5mC at CpG dinucleotides45.
SBS1 is largely cell division dependent and is strongly associated with late-
replicatingDNA, either because themutagenic process ismore active at this
time or because of reduced activity of replication-coupled repair mechan-
isms in late-replicating DNA46. In contrast, SBS5 has an unknown etiology

and is independent of cell proliferation rate38. SBS5 possesses replication-
and cell-cycle-independent characteristics45,47, and its mutational pattern
appears to be driven by exogenous factors accumulating over time, such as
continuous exposure to reactive oxidative species38,42,48. Overall, the COS-
MIC signatures identified age-related deamination of 5mC and replication-
independent processes as major contributors to de novo SNVs.

Fitting the human germline mutational signatures19 to our data
demonstrated that the SNV signature is best reconstructed (cosine simi-
larity = 0.95) by the human germline components 1, 10, and 3 in decreasing
proportions. Component 1 is replication-independent, strand-dependent,

Fig. 6 | Mutational signature analyses of validated de novo SNVs in IRASFS
families. Decomposition and fitting analyses of the de novo SBS mutational sig-
nature (SBS96A Original) extracted by SigProfilerExtractor from the validated de
novo SNVs using: A COSMIC SBS signatures; B human germline mutational sig-
natures; and C mutational signatures from targeted CRISPR-Cas9 Knockouts of

DNA repair genes in human iPSCs. For each mutational signature dataset, the left
panel shows the extracted signature, the fitted signatures with their percent con-
tribution, and the reconstructed signature with the cosine similarity value; the tile
plot on the right reports a visual representation of the identified proportion of each
signature and its etiology/annotation.
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correlateswith experimentally obtained transcription-coupled repair (TCR)
activity49, and is thought to be the footprint of asymmetric resolution of
bulky DNA damage19. Component 10 is characterized by CpG transitions
mediated by 5mC deamination or by erroneous replication over 5mC.
Lastly, Component 3 is the footprint of replication errors. While the con-
tributions of 5mC deamination and replication errors were expected, the
implication of bulky DNA damage in the genesis of a large portion of de
novo SNVs, as suggested by component 1, is striking for two reasons. First, it
provides additional support to the growing line of evidence that mutational
processes that are independent of cell division are important contributors
not only to somatic cell mutagenesis45,47 but also to human germline
mutagenesis18,33,50,51. Second, it suggests a critical role for exogenous expo-
sures in the genesis of de novo SNVs and provides support for the notion
that DNA damage, in addition to DNA replication and cell division2,3,20,52, is
an underappreciated source of new germline mutations18,33,35. Thus, the use
of the humangermline signatures suggests that germlinemutations inmales
arenot simplydue tomore cell divisionsbut alsodue to adifferent balance of
DNA damage versus DNA repair.

An important role for DNA damage and repair deficiency in germline
mutagenesis is emerging18,33. To address this fundamental aspect, we
leveraged the recent CRISPR screening using hiPSCs that identified SBS
signatures originating from KO of human DNA repair genes22. This
approach enabled us to identify a critical role for three MMR genes (PMS1,
PMS2, and EXO1) in human germline mutagenesis. We found that the
combinatorial signature resulting from these three MMR KO genes best
recapitulated (cosine similarity >0.9) the pattern of de novo SNVs extracted
from the IRASFS cohort. This result is aligned with the COSMIC and the
humangermline signature analyses that identifiedan important role of 5mC
deamination and replication errors in the genesis of human germline SNVs.
Furthermore, this finding is in agreement with several reports indicating
that the dominant mutational processes in the germline, whether origi-
nating from replication errors ormediated byDNAdamage, are expected to
produce mismatches10,33,53,54 and that MMR plays a critical role during
meiosis, gamete formation, and germline DNA damage repair55–57. Our
analysis further suggests that repair initiation and lesion excision are the
criticalMMRsteps involved in the formation of SNVs. In addition, a role for
Homologous Recombination repair is suggested since EXO1 is a critical
component of this pathway and has pleiotropic roles in DNA repair and
replication58,59.

We summarize the results from the mutation signature analyses in a
model describing the molecular mechanisms underlying the age-related
increase of de novo SNVs (Fig. 7). Our analyses support a central role for
MMR, particularly inefficiency in the initiation and excision steps of the
pathway, in the formation of SNVs. This is further supported by the

common identification of 5mC deamination and replication errors, as well
as the SBS1 signature, from human germline signature and COSMIC sig-
nature analyses, respectively. In addition, the high contribution of the
humangermline signaturewith a footprint of bulkyDNAdamage suggests a
role for inadequate nucleotide excision repair (NER) in human germline
SNV formation.However, this could not be computationally tested since no
NER-associated signatures were available due to the cellular lethality
resulting from knocking out human NER genes22. Finally, we identified a
very high contribution of the age-related SBS5 signature to de novo SNVs.
Although its etiology is yet to be elucidated, it shares high similarity with the
signature of ΔEXO1 and ΔRNF168, a ubiquitin ligase that functions as a
chromatin modifier during DNA damage repair60 in hiPSCs22. Due to the
wide-ranging roles played by these proteins, it is likely that SBS5 has a
complex etiology and originates from multiple repair pathways that deal
with exogenous and endogenous DNA damage. Consistent with other
studies51,61,62, ourmodel shows that replication errors are not themain driver
of de novo SNVs. Rather, our model proposes that declines in the efficiency
of DNA repair pathways with age63–65, together with an accumulation of
endogenous and exogenous DNA damage, ultimately lead to increases in
human de novo SNVs with advancing paternal age.

As in the other two multi-child family studies14,15, we observed inter-
family variation in the PAE, suggesting variation in the underlying
mechanisms. We attempted to examine whether mutational signature dif-
ferences among the IRASFS families contributed to the observed variability
in the PAE. These analyses did show some inter-family differences, espe-
ciallywhenusing the germline andDNArepairKOsignatures; however, the
reconstructed signatures had average cosine similarity values among the 13
families of 0.892, 0.775, and 0.809 for COSMIC, germline, and DNA repair
KOs, respectively (Supplementary Table 2). Overall, 46% of cosine values
obtained when using the germline and DNA repair KO signatures were
below the threshold (i.e., 0.8) that was considered to occur purely by
chance66, which greatly reduced the confidence in the observed differences.

Variation in human germline mutation spectra has been attributed to
population-specific genetic factors or environmental exposures. For
example, an increased rate of TCC > TTC mutations in people fromWes-
tern Eurasia and South Asia was ascribed to differences in the rate or
efficiency of repair of deaminated methylated guanine67. Therefore, our
findings are likely driven by inter-individual variation in endogenous pro-
cesses and exogenous environmental factors. One possible mechanism for
such variation could be epigenetics. It is well documented that epigenetic
factors canmodulateDNA repairmechanisms68–70 and alter the footprint of
the mutation process in cancers71–73. In addition, genomic and epigenomic
features such as recombination rate, replication timing, DNase hypersen-
sitivity, GC content, nucleosome occupancy, simple repeats, and the

Fig. 7 | Proposed model for human germline de
novo SNV formationwith increasing paternal age.
DNA damage incurrred from environmental expo-
sures and cellular processes associated with normal
physiological processes and aging are shown at the
top. Themolecular signatures identified by querying
the three signature databases are shown below, the
type of DNA damage. Arrows connect the damage/
signatures to the DNA repair pathway that is
responsible for repairing that specific DNA damage.
(see discussion for a full description). Dashed arrows
indicate the processes that are suggested to be
involved based on these analyses. 5mC 5-methyl-
cytosine, EXO1 Exonuclease, MMR mismatch
repair pathway, NER Nucleotide excision repair
pathway, PMS1 PMS1 Homolog 1, Mismatch
Repair System Component, PMS2 PMS1 Homolog
2, Mismatch Repair System Component, SBS1
COSMIC single base substitution signature 1, SBS5
COSMIC single base substitution signature 5.
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trinucleotide context can all influence de novo SNVs74. Exploration of the
role of epigenetics on inter-family variability in the PAE is an area that
requires further study.

There are limitations to the signature analyses that we have conducted.
First, the majority of the available SBS signatures have proposed etiologies
that are yet to be experimentally validated andmaynot necessarily represent
unique mutational processes. Thus, the identification of a specific signature
contributing to a mutational pattern does not establish causation between
the proposed signature etiology and the observed mutations. Second, we
were limited tomutational signatures for the fewDNA repair KOgenes that
were viable in the hiPSCs model22. Although it is unlikely that a wider
interrogation of DNA repair pathways would have significantly diminished
the central role of MMR, it is possible that a role for NER or BER in the
genesis of de novo SNVs would have been better defined. Finally, the range
of paternal age between the first and last child in our cohort was limited (i.e.,
~10 years), which could have impacted our ability to identify changes in the
contribution of mutational signatures to the de novo SNVs with increasing
paternal age.

Conclusion
We exploited mutational signatures from both cancer and non-cancer
datasets to provide a comprehensive picture of the mechanisms involved
in the genesis of human germline SNVs with advancing paternal age.
Although some of the conclusions from these signature analyses reca-
pitulate previous findings (e.g., the role of 5mC deamination in muta-
genesis), they also provide new insight into the etiology of SNV
formation. Specifically, our analyses suggest that an age-related increase
in DNA replication errors during spermatogenesis is not sufficient to
explain the etiology of de novo SNVs. Rather, accumulation of both
endogenous and exogenous DNA damage and inaccurate DNA damage
repair mechanisms are potential sources of human germline de novo
SNVs that are impacted by paternal age. In particular, our analyses show
an important role for bulky DNA damage and inefficiency of the MMR
initiation and lesion excision complexes in the formation of SNVs. Our
findings suggest that variations in these processes contribute to the
extensive inter-family variability of the PAE.

Methods
Study cohort
The IRASFS cohort is a population-based cohort designed to investigate the
genetic and epidemiologic basis of glucose homeostasis and abdominal
adipositywith a focusonMexican-derivedparticipants23. Broadly,Mexican-
American families were recruited from two clinical centres including San
Antonio, TX, and San Luis Valley, CO, in 1999–2002 as an extension of the
original IRAS cohort recruited in 1992–199475. The overall cohort was
relatively healthy and devoid of severe Mendelian diseases. Individual-level
genetic data and ADMIXTURE analysis indicated homogeneity across the
cohort76,77. Specific to the 13 families studied here, and mirroring the larger
cohort78,79, subjects were mostly female (64.6%) with an average age of 47
years, overweight (27.20 kg/m2) and with a near-optimal lipid level
(104.24mg/dL).

The use and handling of human samples in this study were approved
by the Research Ethics Board of Health Canada and the Public Health
Agency of Canada under protocol REB 2016-001H. For the IRASFS cohort,
all study protocols were approved by the Institutional Review Board of each
participating clinical and analysis site, and all participants provided written
informed consent. All ethical regulations relevant to human research par-
ticipants were followed.

Whole-genome sequencing, data pre-processing
We studied 13 multi-child families from a Mexican-American popula-
tion (26 parents and 48 siblings) of the IRASFS cohort24. WGS for the
majority of the IRASFS individuals were already available80. Here, we
performed WGS on nine maternal samples (Fig. 1). Briefly, 300 ng of
high-quality gDNA were extracted from blood, and libraries were

prepared using TruSeq DNA PCR-Free Library Prep Kit (Illumina Inc,
San Diego, CA, USA). The samples were sequenced using the Illumina
HiSeq X Ten instrument byMacrogen (Rockville, MD, USA), targeting a
mean depth of 30X (paired-end, 150 bp reads), and the raw reads were
aligned to GRCh38 reference genome using BWA-MEM v0.7.17, sorted
and indexed with SAMtools V1.8. The aligned reads were filtered to
remove duplicate reads resulting from clonal amplification of the same
fragments during library construction and sequencing using Picard
MarkDuplicates. Base quality recalibration and local realignment were
carried out using Genome Analysis Toolkit (GATK) (V 4.0.11.0) best
practices workflow (Supplementary Fig. S1).

Identification of candidate de novo SNVs, quality control, and
filtering pipeline
We focused on SNVs and did not include indels in our analyses. To
identify candidate SNVs from the WGS data, we implemented two dis-
tinct computational methods and variant caller software (Supplementary
Fig. S1). The first was based on DeNovoGear (V 1.1.1-308-g3ae70ba), a
piece of purpose-built software used to detect somatic and germline
SNVs, that identified 11,403 candidate SNVs with its default parameters.
The second software was GATK (V 4.0.11.0), the industry standard for
identifying SNVs and indels in germline DNA, which identified 2729
SNVs; however, over 90% of these SNVs were also detected by DeNo-
voGear (Supplementary Fig. S2A). First, we removed variants within
low-complexity regions or simple repeats based on UCSC genome track
browser data. Then, we removed SNVs that had >10% reads in either
parent to ensure that the child possessed a unique genotyped allele absent
from both parents. Following the high read count filter, we removed
SNVs that did not have at least two forward & reverse reads supporting
the SNVs. We required the aligned sequencing depth in the child and
both parents to be ≥12 reads, Phred-scaled genotype quality (GQ) to be
≥20 in the child and both parents, and no reads supporting the allele in
either parent. Among the 11,590 candidate SNVs that resulted from
merging the DeNovoGear and GATK dataset, 595 SNVs were identified
in several children and were eliminated, resulting in 10,955 unique SNVs
(Supplementary Fig. S2B).

Targeted resequencing of de novo SNVs and quality control and
filtering pipeline
The targeted resequencing validation was performed on the unique candi-
date SNVs (n = 10,955). Baits were designed for >55% of these unique
candidate SNVs (n = 6118) (Supplementary Fig. S2B). Targeted sequencing
of the custom panel was designed with SureSelect DNA Design (Agilent
Technologies), and resequencing was performed on the pulldown library
following SureSelect XT HS low input Target Enrichment System (Agilent
Technologies). The library was sequenced using the Illumina HiSeq 4000
platformwith a high coverage depth of ~300X (paired-end, 150 bp reads) at
McGillUniversity andGénomeQuébec InnovationCenter. The targeted re-
sequenced candidate SNVs underwent data pre-processing as described
above. The read counts within capture bait targets was calculated on the
SNV pre-processed BAM files by SAMtools Mpileup V1.8. The SNVs were
called by BCFtools V1.8. Regions 5 bp up/downstream of de novo SNVs
calls were summarized using GATK V4.0.11.0 VariantsToTable to collect
depth metrics for reference and alternate alleles before further data pro-
cessing in R. SNVs with a parental alternate allele fraction (AAF) > 10%
were excluded. Furthermore, the remaining candidate SNVswere retained if
theymet the following criteria: AAF in the proband>0.3 and read depth>10
(Supplementary Fig. S1).

Identification of parent-of-origin
The main phasing analysis was performed with Unfazed81 (https://github.
com/jbelyeu/unfazed), which applies a novel extended read-based phasing
method to determine the parental gamete of origin of SNVs from paired-
end Illumina DNA sequencing reads. Unfazed uses variant information for
a sequenced trio to identify the parental gamete of origin by linking phase-
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informative inherited variants to mutations using read-based phasing.
Additionally,WhatsHap82, a read-based phasing for long reads, was used to
complement our phasing results. All phased SNVs were visually validated
with IGV.

SBS mutational signature analyses of de novo SNVs
We applied de novo extraction decomposition and refitting using SigProfiler
tools18. Initially, the 96-trinucleotidematrix of counts of SNVswas generated
by SigprofilerMatrixGenerator v1.1. under default parameters but using hg38
(GRCh38). For de novo signature extraction, the optimal de novo SNVs
mutational signature was extracted using SigProfilerExtractor (v.1.0.18)66.
Then, the de novo SNV extracted signature was decomposed and fitted to
several SBS mutational signature datasets as the reference signatures.

During refitting, the extracted signature obtained by SigProfilerEx-
tractor was used as the input for signature decomposition using several
published SNV mutational signature sets: (1) the Catalog of Somatic
Mutations in Cancer (COSMIC)17 (https://cancer.sanger.ac.uk/signatures/
sbs/) version 3.3.1 (2780 WGS from PCAWG); (2) the mutational sig-
natures from human germline identified in the TOPMed cohort19; and, (3)
the SNVsmutational signatures identified using KO of humanDNA repair
genes via targeted CRISPR-Cas9 method in isogeneic hiPSCs22.

All signature matrix generations, decompositions, and assignments
were performed using the SigProfiler suite, including R wrapper packages of
SigProfilerMatrixGenerator and the Python version of SigProfilerExtractor66.
ForCOSMICmutational signatures,weused the 79 SBS signatures contained
inCOSMICV3.3.1. (https://cancer.sanger.ac.uk/signatures/downloads/). For
the germline-specific SNVsmutational signature,weused the14 components
of the germline mutational signature matrix data from Seplyarskiy et al.19

(http://pklab.med.harvard.edu/ruslan/spacemut/tracks_update/TOPMed_
10kb_spectra_sdnorm.txt); however, we performed some data wrangling
(such as removing the non-transcribed strand) in the format of mutation
types to ensure the compatibility with the SigProfiler tools. Finally, the nine
SBS mutational signatures obtained from targeted CRISPR-Cas9 KO of
human DNA repair/replications genes in hiPSCs were obtained from the
published data by Zou et al.22 in “Data availability” section Mutation calls
(https://doi.org/10.17632/ymn3ykkmyx).

Statistics and reproducibility
Weanalyzed 13multi-child familieswith an average of ~4 children (range: 2
to 6 children; mean ± SD: 3.7 ± 1.2). All statistical analyses were performed
in R v.4.0.2. R packages “Stats” v.4.2,1 and “Lme4” v.1.1-35.1 were used to
estimate the slope confidence intervals and p values of the age-related
increases in SNVs. Plotting was performed with base R. Some figures were
generated by Microsoft Office Professional Plus 2019 (Visio, Excel and
PowerPoint).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Code availability
The workflow used to perform signature analyses is available on github at
https://github.com/hashoja/SNVs_DNMs_IRASFS and at Zenodo under
https://doi.org/10.5281/zenodo.13864620.

Data availability
Whole-genome sequencing data from the IRASFS cohort described in this
study is available in the Sequence Read Archive under Bioproject access
number PRJNA1166126. All 2479 validated SNVs are listed in Supple-
mentary Data. Source data for charts/graphs presented in the main figures
can be found in Supplementary data. All other data are available from the
corresponding author upon reasonable request.
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