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Our study develops a generative adversarial network (GAN)-based method that generates faithful 
synthetic image data of human cardiomyocytes at varying stages in their maturation process, as a 
tool to significantly enhance the classification accuracy of cells and ultimately assist the throughput 
of computational analysis of cellular structure and functions. Human induced pluripotent stem cell 
derived cardiomyocytes (hiPSC-CMs) were cultured on micropatterned collagen coated hydrogels 
of physiological stiffnesses to facilitate maturation and optical measurements were performed for 
their structural and functional analyses. Control groups were cultured on collagen coated glass well 
plates. These image recordings were used as the real data to train the GAN model. The results show 
the GAN approach is able to replicate true features from the real data, and inclusion of such synthetic 
data significantly improves the classification accuracy compared to usage of only real experimental 
data that is often limited in scale and diversity. The proposed model outperformed four conventional 
machine learning algorithms with respect to improved data generalization ability and data 
classification by incorporating synthetic data. This work demonstrates the importance of integrating 
synthetic data in situations where there are limited sample sizes and thus, effectively addresses the 
challenges imposed by data availability.

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising tool 
for drug testing, disease modeling, and tissue replacement for cardiovascular medicine due to their unlimited 
and personalized, patient-specific source. HiPSC-CMs are now generated in vitro from personalized cell sources 
with high throughput and purity at a clinically relevant scale, but a major hurdle halting their advancement 
to clinical research phase comes from their immature, embryonic state. Embryonic cardiomyocytes undergo 
significant developmental changes during postnatal stages, including subcellular structural development, 
improved calcium handling and changes in action potential profile1–6. The current protocols generate hiPSC-
CMs at embryonic or early fetal stages and thus, the generated cells lack many attributes of adult cells that 
are desirable for drug screening, modeling of adult-onset diseases, or replacing cells lost to disease. Therefore, 
many studies have been invested in developing methodologies and tools to accelerate maturation of hiPSC-
CMs via biophysical or chemical stimuli such as mechanical loading7–9 or electrical stimulation10–12, optical 
stimulation13,14, biochemical and biophysical cues15–17, but the throughput and scalability of current experimental 
designs and analysis methods are still limiting in scope to manufacture mature hiPSC-CMs at scale and at speed. 
The standard state-of-art approaches to evaluate the structural or functional state of cardiomyocytes are mostly 
based on video recording and microscopy image analysis18–20, but the key unresolved challenge is acquiring large 
sets of image data and high throughput means to process, analyze, and classify image features.

The ability to manufacture mature hiPSC-CMs at scale and at speed will utterly transform traditional health 
care to one with greater focus on regenerative medicine and cell therapies. It also has the potential to shift the 
pharmaceutical industry as the use of novel human cell-based assays supports the industry-wide mandate to reduce, 
refine, and replace animal testing. Core innovations to achieve this will come from scalable and reproducible 
maturation of hiPSC-CMs through low-cost and high throughput means and development of a standardized 
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and robust framework for conducting cellular measurements and analyses. Analysis of cellular systems have 
faced many challenges due to high degrees of complex variabilities and lack of sufficient experimental data, 
but integration of artificial intelligence (AI) and computational modeling has forged a paradigm shift towards 
high throughput analysis and physical principle-based, data-driven accurate predictions. Towards this effort, 
we herein introduce a generative artificial intelligence method that generates synthetic hiPSC-CM image data 
that closely resembles the real hiPSC-CM image data in order to enlarge the dataset used for high throughput, 
comprehensive analysis on classifying maturation features with respect to specific experimental conditions.

Machine learning models are renowned for their exceptional performance when handling intricate and high-
dimensional data with diverse attributes. These models possess the ability to uncover the inherent features present 
in large datasets even in the absence of an understanding of the underlying mechanism governing the system. 
This ability proves particularly valuable for analyzing complex systems that lack mathematical descriptions 
of their dynamics, such as the maturation process of fetal to adult cardiomyocytes. The broad application of 
machine learning models encompasses various cell classification tasks – for instance, the classification of cancer 
cells21–27. Convolutional neural network (CNN) is an algorithm type that is useful for such cell classification 
applications due to its ability to extract intrinsic features and patterns from images and therefore, eliminates 
the need for laborious and manual image analysis. However, a large and diverse training dataset is typically 
required for machine learning models to ensure accurate and reliable classification and be able to grasp the 
full complexity of the cellular system dynamics. Data limitation in size and scope can create biases in machine 
learning models and lead to overfitted outcomes. Training on a small or biased dataset can render a model with 
limited ability to make autonomous predictions with a new and varied data set.

Generative AI offers a viable solution for limited experimental datasets by creating synthetic data that 
reproduces the characteristics of real data. It was not until 2014 that the introduction of generative adversarial 
networks (GANs) enabled producing high-quality data of human facial features that are convincingly authentic28. 
The GAN algorithm employs two neural networks - a generator and a discriminator - to generate synthetic data 
that closely resembles the original data. The generator creates artificial data while the discriminator attempts to 
differentiate between the synthetic data and the real data. The two networks engage in an adversarial training 
process: the generator is trained to produce synthetic data that progressively approximates the original data, and 
the discriminator learns to distinguish fine features between the two. This adversarial training process is capable 
of enhancing the model’s resilience to adversarial attacks and perturbations in a different dataset. In recent years, 
GAN models have shown applications in cancer cell classifications29–32 and neural cell classifications33. However, 
to the best of our knowledge, GAN has not yet been utilized in the context of cardiac cellular systems.

Here, we present the development of a GAN-based approach for generating high-fidelity synthetic data that 
replicates hiPSC-CMs cultured in different microenvironments. This includes synthetic hiPSC-CM images 
and videos that accurately capture the dynamic behavior of cardiomyocytes, as shown in Fig. 1. To train the 
GAN model, a micropatterned hydrogel platform was designed to culture hiPSC-CMs and provide biophysical 
stimuli to facilitate their maturation, and the control group was cultured in traditional glass well plates. Cells 
were cultured for 14 days, and optical recordings were collected every other day to analyze their structural 
and functional behavior over time. Recordings and images collected from day 2, 6, 14 without further image 
processing or augmentation were used for the GAN application here.

We combined the synthetic cell images produced by the GAN model with the experimental dataset to train a 
CNN model that can classify hiPSC-CMs at various maturation stages. Cross-validation is a widely used method 
to evaluate the versatility of machine learning models. However, when dealing with limited datasets, such as in 
the case of hiPSC-CMs systems, performing cross-validation alone on a limited dataset that lacks population 
and diversity does not provide sufficient evidence for generalization on the entire data domain. To address this 
limitation, we prepared an unseen domain dataset that consists of data from a different cell batch but under the 
same culture conditions and thus, shares similar characteristics with the training data but not fully represented 
by it.

Results
Generation of synthetic images and videos of hiPSC-CMs
Figure 2 presents a visual comparison among the generated images of hiPSC-CMs on day 2, day 6, and day 14, 
and the corresponding real images of hiPSC-CMs. The results demonstrate that our GAN model is capable of 
reproducing distinct characteristics observed in human cardiac cells at different stages of culture on a maturation 
promoting scaffold. Specifically, the synthetic images generated by our GAN model successfully capture the 
varying patterns exhibited by human cardiac cells at different culture timepoints. For instance, the day 2 synthetic 
images exhibit a sparse distribution of cells, small cell surface areas, and distinct boundaries between cells. On 
the other hand, both the real and synthetic images on day 14 exhibit a dense distribution of cells, elongated 
cellular shapes, and larger cell surface areas. These observations demonstrate the ability of our GAN model to 
generate synthetic images that accurately replicate the diverse characteristics of human cardiomyocytes during 
their maturation process.

Figure 3 presents a motion video example of a synthetic human cardiomyocyte with a resolution of 64 × 64 in 
greyscale. This synthetic video is compared to a real video that depicts the contractile motion of a single aligned 
hiPSC-CM shown in Fig. 3B. The displayed figure showcases the progression of a single artificially generated 
cardiomyocyte from a relaxed state (Fig. 3Bi) to a contraction state (Fig. 3Bii), and subsequently returning to 
the relaxed state (Fig. 3Biii). Notably, these synthetic frames closely mimic the beating dynamics observed in 
the real hiPSC-CM video shown in Fig. 3A. This visual comparison highlights the capability of our model to 
generate synthetic cardiomyocyte videos that faithfully reflect the spatiotemporal dynamics exhibited by real 
cardiomyocytes.
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Principal component analysis of the generated cell images
Principal Component Analysis (PCA) is a widely adopted methodology used to analyze massive datasets 
that encompass a substantial number of dimensions or features per observation. This method eases data 
interpretability while retains critical information, thereby enables effective visualization of multidimensional 
data. This is accomplished by applying linear and orthogonal transformation of data into a new coordinate 
system where variation in the data can be described with fewer dimensions compared to the original data. In 
numerous studies, the first and second principal components have been frequently applied to construct a two-
dimensional representation of the data and thus, enabled effective visual identification of clusters that consist of 
closely related data points34.

To quantitatively assess the ability of our proposed GAN model to generate synthetic cell images that exhibit 
similar features to the authentic ones, we conducted principal component analysis (PCA) to examine the 
distribution of the underlying main components in both real and synthetic image data. The results are illustrated 
in Figs. 4 and 5. Figure 4A represents the first two principal components obtained from the experimental dataset 
of 691 samples that were also used to train the GAN model. The analysis reveals that while the images from day 
14 exhibit a distinct distribution of features, there is an overlap between the day 2 and day 6 data, indicating 
that these two classes share similar yet discernible features. Figure 4B showcases the PCA results of each real 
and synthetic data, including the real data samples shown in Fig. 4A and the synthetic dataset of 960 samples 
generated by the GAN model. The findings demonstrate that for each class of cell images, the synthetic data 
samples display overlapping distributions with the real data, indicating that our GAN model effectively generates 
synthetic images that capture similar features to the real ones. Figure 4C displays the PCA results of the seen real 
data, fake data, and the unseen real data. While most of the unseen data features are covered by the seen real data, 
some of the unseen data exhibit outlier features, which can pose challenges for classification models that solely 
rely on real data with limited sampling. However, this scenario is often encountered in cardiac cellular systems.

A comprehensive analysis of the principal component analysis (PCA) results for various classes and types of 
data is presented in Fig. 5. The comparison provides detailed insights into the distribution of features. In Fig. 5B, 
C, and D, it is observed that the features of the unseen data are more densely distributed in synthetic images 
compared to the authentic images. This observation suggests that the GAN model successfully captures the most 
significant and prominent features from the original data. Additionally, Fig. 5B and C reveal that the synthetic 
data exhibits an expanded feature distribution in the first principal components compared to the authentic data. 
This expansion allows the synthetic data to cover a wider range of features, including those that may not be 
prominent in the original data due to limitations in sample size and diversity. These findings demonstrate the 
ability of our proposed GAN model to successfully generate synthetic cell images that exhibit similar features 

Fig. 1.  Overview of the GAN model to improve classification of hiPSC-CM maturation level. Morphology 
images and contractility recordings (seen domain) are collected to train the GAN model to generate high-
quality artificial data composed of cell images and contractile recordings. Relevant synthetic images trained 
from the seen domain then are mixed with the real data to train the cell classifier to improve its classification 
accuracy in both the seen and the unseen domains. Fake videos are obtained by training the GAN model with 
time series images of individual hiPSC-CMs.
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to the authentic ones and thus, improve the data analysis cost and accuracy by aiding in sampling power. The 
GAN model demonstrates its ability to extract important features from the real data, while also introducing 
novel features that may not be fully reflected in but based on the original data. This ability to generate synthetic 
data with greater diversity and broader feature coverage greatly enhances the effectiveness and practicality of 
our GAN model. This PCA results underscore the challenges and biases of working with limited real data when 
constructing a classifier with strong generalization potential, especially as the unseen data may contain outlier 
features. Thus, integrating synthetic data becomes crucial in situations where the availability of experimental 
data is limiting.

Visualization of the cell classifier feature maps
To validate the function of our proposed cell classifier, we present the feature maps generated by the trained 
classifier, which provide a visual representation of the learned CNN features within the classifier. Figure  6 
represents both the input images (i) and the resulting four-channel output from the last CNN layer, and each 
filter mask result is displayed in (ii-v). Specifically, Fig. 6A and B correspond to day 2 cell images, Fig. 6C and 
D represent day 6 cell images, and Fig. 6E and F depict day 14 cell images from the control group. In the feature 
map figures, regions that appear brighter indicate a higher activation or presence of the learned feature. While 
the feature map represents an intermediate outcome of the entire classifier, it offers insights into the internal 
mechanisms of the CNN within the classifier. For instance, the results from the first filter mask in Fig. 6A(ii) 

Fig. 2.  Comparison of real control group hiPSC-CM images and the generated hiPSC-CM images. (A-C) 
Real images of control group hiPSC-CMs cultured for 2 days (A), 6 days (B), 14 days (C). Synthetic images of 
hiPSC-CMs that correspond to a 2-day culture (D), 6-day culture (E) and 14-day culture (F).
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exhibit a strong correlation with the most prominent regions in the cell images, many of which correspond to 
dead cells. Conversely, the results from the second filter mask in Fig. 6F(ii) demonstrate a strong correlation with 
the alignment of each cell. These two features play critical roles in distinguishing different classes of hiPSC-CMs 
solely based on their graphical characteristics. These findings elucidate how our proposed CNN classifier can 
capture the intricate features of hiPSC-CMs and facilitate the accurate classification of cells into various culture 
stages.

Fig. 4.  Principal component analysis of the real and fake data.

 

Fig. 3.  Authentic and synthetic videos of a beating maturity-enhanced single hiPSC-CM. (A) The real time 
series image of a single beating hiPSC-CM, shown in 256 × 256 pixel resolution. (B) The synthetic time series 
image of a single beating virtual hiPSC-CM, shown in 64 × 64 pixel resolution. Each image is taken at an 
interval of 0.5 s from time series (i) to (iii) in both A and B.
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Ablation test
To validate the accuracy of our CNN cell classifier, we conducted a comparison with models that share 
similar structures. These include a 5-layer fully connected model, a reduced-size CNN with fewer layers, and 
a significantly larger CNN model that follows the same structure as our discriminator, which is commonly 
employed in other studies30. The results are presented in Table 1. All models were trained using a mixed dataset 
of real and fake samples and were tested on both seen and unseen domain samples. It is worth mentioning 
that our proposed model demonstrates nearly the highest accuracy across all testing scenarios, except for the 

Fig. 5.  Principal component analysis (PCA) of the real data, fake data, and the unseen data of different cell 
classes. (A) The first three PCA of (i) day 2 (ii) day 6 and (iii) day 14 hiPSC-CMs. (B)-(D) Hex plot with 
marginal distributions to show the first two principal components of (B) day 2, (C) day 6, (D) day 14 of the (i) 
small real data set, (ii) synthetic data, (iii) unseen data.
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discriminator-structure model, which exhibits higher accuracy in the seen domain tests. However, the difference 
is insignificant since both methods achieve extremely high accuracy in seen domain tests. Nevertheless, our 
proposed model significantly outperforms the others in the unseen domain tests. Consequently, we didn’t select 
the discriminator structure for the cell classification task here.

The disparity between our proposed model’s performance and the others’ performance in the unseen domain 
tests can be attributed to two reasons. Firstly, our proposed model does not consider the entire image as input. 
Instead, it selects a random crop of size 96 × 96 from the original image during each training epoch. This approach 
ensures that our model learns the features of neighboring pixels from fragmented images, thereby enhancing its 
performance when encountering new data. This is particularly crucial in the case of intact hiPSC-CM images 
in which cells are closely packed, lack orderly alignment, and vary in cell features from one image to another. 
This is in contrast to other cell classification tasks that involve distinguishing single cell types, where each cell is 
positioned at the center of the image to maintain fixed feature positions. This also accounts for our selection of 
random crops during each training epoch of the GAN model. Consequently, utilizing a discriminator structure 
that takes the entire image as input would compromise the model’s ability to handle perturbations in novel 
data. Second, the presence of a substantial number of parameters in the discriminator can increase the risk of 
overfitting the CNN model when trained on a small dataset.

Classification of hiPSC-CMs with different methods and data sets
To evaluate the performance of our proposed model, we conducted a comparative analysis against other state-
of-the-art methods, including Random Forest, KNN, SVM and Naive Bayes. Each method was trained using a 
small dataset of seen domain real samples as well as a mixed dataset comprising both real and synthetic samples. 
In order to assess the generalization ability of each method, both seen real data and unseen real data were used 
for testing. The experiments were conducted with different combinations of training and testing data, and each 
combination was repeated for 10 cycles. The classification results obtained from the GAN model were compared 

Fig. 6.  Feature maps of the cell classifier. (A)(B): (i) The input data and the (ii-v) four channel CNN filter 
feature maps of day 2 control cell images. (C) (D): (i) The input data and the (ii-v) four channel CNN filter 
feature maps of day 6 control cell images. (E)(F): (i) The input data and the (ii-v) four channel CNN filter 
feature maps of day 14 control cell images.
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with those of the other methods, and the accuracy of each method is displayed in Fig. 7 and summarized in 
Table 2.

The results demonstrate that our CNN classifier achieves the highest classification accuracy in both tests 
that used real data (84.7%) and mixed data (92.9%) respectively for training. Furthermore, it is observed that 
the accuracy of the seen domain data tests consistently surpasses that of the unseen domain tests, except for 
the random forest method trained with both real and synthetic data. This observation reinforces the challenge 
of building a generalized model when working with limited training datasets. Importantly, nearly all of the 
methods exhibit improved accuracy when synthetic data generated by the GAN model is incorporated into 

Fig. 7.  Classification results of our CNN classifier and other state-of-art machine learning algorithms. (A) The 
(i) total accuracy of seen domain test and unseen domain tests (ii) accuracy of seen domain results (iii) unseen 
domain results for each classification method.

 

Table 1.  Ablation test on models that share similar structures.
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the training. This finding underscores the GAN model’s ability to generate high-quality synthetic data and 
the rationale behind augmenting the dataset with synthetic samples with respect to sample size and diversity. 
Overall, these results validate the superior performance of our proposed CNN classifier and emphasize the 
potential benefits of leveraging synthetic data to enhance classification accuracy, particularly when working with 
limited training datasets.

To demonstrate the improved classification accuracy from using a larger scale and diverse set of data, 
we assessed the classification accuracy of each cell class. The performance of the classifier with different 
combinations of training and testing data was visualized with heatmaps in Figs. 8 and 9. In Fig. 8, we present the 
classification results of our proposed CNN classifier trained on three different datasets: a small training dataset 
that consists of real samples (Fig. 8A), a larger dataset that consists of real samples (Fig. 8B), and a mixed dataset 
containing both real and synthetic samples (Fig. 8C). Comparing Fig. 8A and B, it is evident that utilizing a 
larger real dataset leads to improved classification accuracy in both seen domain and unseen domain tests. This 
improvement can be attributed to the increased number of samples, allowing for a more comprehensive coverage 
of the distinctive characteristics exhibited by the different cell classes. Generative samples are relatively easy to 
obtain due to advancements in generative models like GAN. Comparison between Fig. 8B and C also reveals 
improved performance of the unseen data test. This finding verifies that the incorporation of synthetic data 
generated by the GAN model results in a more reliable and diverse dataset, which can better handle potential 
perturbations in different domain data and extend the classifier’s potential to generalize beyond the original seen 
domain. However, when comparing Fig. 8B and C, we observe that there is no significant improvement in the 
accuracy of seen data tests. This finding suggests that the seen data tests already achieve a high level of accuracy, 
leaving little room for further improvement.

The heatmaps depicted in Figs. 8 and 9 demonstrate that the highest accuracy is achieved in distinguishing 
hiPSC-CMs images cultured for 14 days, while the classification of day 2 and day 6 cell images often led to 
misclassification between these two classes. This observation aligns with our earlier PCA results illustrated in 

Fig. 8.  Summary of prediction results of our GAN based classifier.

 

Table 2.  Summary of classification results of different combinations of the training and testing data.
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Fig. 7, where the day 2 and day 6 data exhibited overlapping distributions of the main principal components, 
whereas the day 14 data displayed a distinct distribution pattern.

Overall, these observations demonstrate that increasing the size of the real dataset and augmenting it with 
synthetic data from the GAN model contribute to improved classification accuracy, particularly in scenarios 
involving unseen domain data. By leveraging a combination of real and synthetic data, our proposed CNN 
classifier exhibits enhanced robustness and adaptability, making it capable of accurately classifying cells even in 
challenging situations.

Discussion
Here, we present the development of a Generative Adversarial Network (GAN) model to generate high quality 
synthetic data that replicates intact and maturity-enhanced hiPSC-CMs. Synthetic cardiac cell images were 
generated using the GAN model and combined with an authentic experimental dataset to train a Convolutional 
Neural Network (CNN) model. The performance of the model was evaluated using an unseen domain dataset, 
and the results demonstrate that incorporating synthetic data significantly improves accuracy of classifying cells 
into distinct temporal stages in the maturation process. Principal Component Analysis (PCA) confirmed the 
GAN model’s ability to extract important features and introduce novel characteristics that may have been hidden 
in the original data. However, using this generative approach to augment datasets still has some limitations such 
as: (1) the potential introduction of biases and artifacts, which can compromise the integrity and generalizability 
of the model; (2) limited effectiveness in scenarios with scarce or imbalanced data because the quality of generated 
data heavily depends on the diversity and volume of the original training data. The proposed CNN model 
outperformed four conventional machine learning algorithms such as random forest, KNN, SVM and Naive 
Bayes, and the improvement of the model’s generalization ability by incorporating synthetic data is verified in 
each of these state-of-art models. However, CNNs often require extensive data augmentation to generalize well 
across varied spatial configurations to prevent overfitting. They are also computationally intensive, demanding 
significant resources for training and inference, particularly with deep architectures and large datasets. The 
analysis emphasizes the difficulties in developing a classifier that can classify samples with limited training data. 
It also demonstrates the importance of integrating synthetic data in situations where there are limited samples 
and thus, effectively addresses the challenges imposed by data availability.

Methods
Generative Adversarial Network (GAN) Model development to generate synthetic image 
data
The GAN model employed in this study consists of a generator and a discriminator as shown in Fig. 1. The 
generator applied upsampling techniques to a random noise vector input, and generated synthetic images that 
closely resembled the original, real image. In contrast, the discriminator functioned as a binomial classifier, 

Fig. 9.  Summary of prediction results of other classifiers.
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downscaling input cell images to discern between real and fake samples. The core of the GAN model lay in its 
adversarial training approach, wherein the generator and discriminator alternated undergoing iterative updates 
and compete with each other. The discriminator was trained to minimize a binary classification loss function, 
while the generator was trained to maximize the probability of the discriminator misclassifying the generated 
samples. The objective function is described in the following equation:

	
min
Gθ

max
Dφ

Lθ ;φ =
∑

(logDφ (x) + log (1−Dφ (Gθ (z))))

In order to facilitate balanced competition between the generator and discriminator, and otherwise promote 
impartial learning during adversarial training, the networks were designed with a symmetric structure. The 
generator consisted of four layers of transposed 2D CNNs, while the discriminator consisted of four layers of 2D 
CNNs. Both networks incorporated batch normalization and rectified linear unit (ReLU)/Leaky ReLU activations 
between each layer. The generator concluded with a Tanh activation function, while the discriminator utilized a 
Sigmoid function. Details of the generator and discriminator structure can be found in Table 1. The adversarial 
training optimized both neural networks, enhancing the model’s robustness for generalization and defense of 
subtle perturbations in the data.

The GAN model was trained with the objective of producing high-quality artificial hiPSC-CMs data, which 
included both synthetic images and videos. These generated cell images were combined with authentic data to 
form the training dataset for the cell classifier model. The inclusion of synthetic cell images served the purpose of 
improving the scale and diversity of the dataset, which in turn enhanced the accuracy of computational analysis 
for classifying hiPSC-CM images into various stages of maturation.

Cell classification framework
The cell classifier architecture was constructed with a layered structure that consists of five layers – including 
three CNN layers and two fully connected (FC) layers (Fig. 10). To investigate the impact of integrating synthetic 
data into the training dataset, three distinct datasets were curated for the training of the classifier. These datasets 
included a relatively small authentic dataset, a larger authentic dataset, and a dataset that combined both 
authentic and synthetic images. The cell classifier underwent testing with both seen and unseen data to evaluate 
the GAN model’s ability to generate synthetic images that contain detailed features of the cardiac cells that were 
not sufficiently represented in the experimental dataset due to limited sampling. Since the GAN model was only 
trained with the seen domain data, this evaluation was intended to demonstrate the GAN model’s ability to 
generate artificial images that contained features beyond what was present in the original dataset.

To validate the effectiveness of the proposed model, the classification outcomes were compared against 
four conventional machine learning algorithms: Support Vector Machine (SVM), Random Forest, K Nearest 
Neighbors (KNN), and Naive Bayes. To assess the generalization ability they each achieved from the incorporation 
of synthetic data, each conventional machine learning model was trained using both real and synthetic datasets. 
Subsequently, those models’ ability to generate synthetic images with novel features were evaluated using both 
seen and unseen domain testing data.

Fabrication of micropatterned hydrogel scaffolds to facilitate maturation of hiPSC-CMs
To generate maturation-enhanced hiPSC-CMs, they were cultured on a micropatterned, collagen IV coated 
photosensitive hydrogel with controlled mechanical properties. A 10% (w/v) gelatin methacrylate (GelMA) was 
combined with 0.5% Irgacure 2959 photoinitiator to generate photo-crosslinked hydrogels. Sterility was ensured 
via sterile 0.2 μm porous rapid filtration. These hydrogels were casted in a custom Teflon mold and sealed with 
glass to polymerize under 365 nm 8mW/cm2 UV light and subject to varying crosslinking times to generate 
a stiffness gradient of 10 kPa, 30 kPa, and 60 kPa. Polydimethylsiloxane (PDMS) stamps with micropatterns 
including 20 μm x 140 μm 40 μm x 280 μm, 75 μm x 525 μm, and 45 μm x 225 μm size rectangular patterns were 
fabricated using traditional photolithography and soft lithography (Fig. 11A). Plasma-activated PDMS stamps 
were coated with collagen IV protein and stamped onto the 10% GelMA hydrogel scaffolds (Fig. 11B). For the 
positive control groups, hiPSC-CMs were cultured on collagen IV coated MatTek glass well plates.

Fig. 10.  Schematic to show the relationship of the training data and the testing data for the cell classifier.
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Optical measurements of cardiomyocyte structure and function
Commercially available human iPSC-derived cardiomyocytes (iCell2 cardiomyocytes, 01434) were obtained 
from Cellular Dynamics International Inc. (CDI, Madison, WI, USA). Cryopreserved iCell2 cardiomyocytes 
were rapidly thawed, then diluted in iCell2 plating medium and seeded onto standard 6-well and 96-well plates 
(Thermo Fisher Scientific) coated with 0.1% gelatin (Sigma Aldrich) for the control groups and on 10% GelMA 
hydrogel scaffolds coated with collagen type IV proteins for the maturation enhancement group (Fig.  11C). 
After 4 h post seeding, the plating medium was changed to a maintenance medium and then changed every 48 h 
thereafter. Cell cultures were maintained in the incubator at 37 °C and 5% CO2, 86% humidity. The hiPSC-CMs 
were cultured for two weeks and characterized every other day using a Nikon TE2000 inverted microscope to 
record the cellular morphology and beating dynamics at 10 frames per second. To assess contractile motion of 
hiPSC-CMs, movement was quantified using a custom MATLAB script, which measured pixel displacements 
of contracting cells over contraction and relaxation. For each video frame, the mean magnitude of displacement 
was measured to yield an average contractile movement. Normalized contractile motion was calculated foreach 
video as the mean of all peak contraction values observed in a 20 s period (Fig. 11D).

Generation of seen domain and unseen domain data
Videos of day 2, day 6 and day 14 hiPSC-derived cardiomyocytes were collected to represent the different stages 
of the cardiomyocyte maturation process. Images were extracted and randomly cropped from these videos 
to obtain 300 × 300 pixel of RGB cell images. The collected real images were separated into two groups: cells 
cultured in one maturation-promoting scaffold included in the seen domain, and cells cultured in another 
scaffold included in the unseen domain. Both groups of cells were cultured under the same conditions, and 
the same separation process also was done for the control group. The seen domain dataset was utilized for the 
training of the GAN and cell classifier, as well as for testing the accuracy of the cell classifier. The unseen domain 
data was employed for testing the generalization ability of the cell classifier.

Fig. 11.  (A) Various micropatterns generated via lithography. (B) Immunostaining of collagen IV coated 
patterns (scale bars: 100 μm) (C) HiPSC-CMs cultured on collagen IV micropatterned GelMA hydrogel 
scaffold that demonstrate mature morphology (scale bar: 100 μm) (D) Motion vector analysis of contractility.
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Implementation and training of GAN model
All of our GAN and cell classification models were implemented through Pytorch on a standard workstation 
(Intel(R) Core(R) CPU i9-9980 XE CPU 3.00 GHz, 18 CPU cores, 8GB NVIDIA GeForce TRX 2080Ti). The 
Adam optimizer was employed to minimize the loss of the GAN model and a standard error back-propagation 
algorithm was used, with β 1=0.5 and β 2=0.999. A batch size of 64 was used, and the learning rate was set to 
0.0002. The cell classifier underwent training for 2000 epochs. The weights were controlled with weight norm 
regularization to avoid overfitting.

To generate synthetic images, a dataset of 691 seen domain images was utilized. This dataset consisted of 229 
images from day 2, 227 images from day 6, and 235 images from day 14. These images underwent transformations 
such as random cropping, random flipping, and resizing, resulting in images with a resolution of 128 × 128 pixels 
and RGB channels. The generator component of the GAN model took a noise vector of size (64,1) as input and 
generated an image of size (3,128,128) as output. The discriminator, on the other hand, took an image of size 
(3,128,128) as input and output a probability indicating whether the input image was genuine or artificial. The 
GAN model was trained for a total of 2000 epochs to generate 320 images for each class of cardiomyocytes.

To generate synthetic videos that replicate the beating dynamics of cardiomyocytes, a dataset comprising 
124 groups of single cell time-series images was collected. Each group consisted of five consecutive frames, each 
being an RGB image of size 256 × 256 captured at a frame rate of 5 frames per second (FPS). These collected 
images underwent several transformations, including random cropping, random flipping, grayscale conversion, 
and resizing, resulting in each group containing five consecutive single-channel cell images of size 64 × 64. The 
generator component of the GAN model took a noise vector of size (64,1) as input and generated an output 
vector of size (5,64,64). On the other hand, the discriminator took a vector of size (5,64,64) as input and output 
a probability indicating whether the input vector represented a genuine beating cell or an artificial beating cell. 
The GAN model was trained for 2000 epochs using this setup. The generated vector of size (5,64,64) was further 
transformed into a short synthetic video that replicated the beating of a single cardiomyocyte.

Implementation and training of the cell classifier
The cell classifier architecture was structured with three convolutional neural network (CNN) layers followed by 
two fully connected (FC) layers. Each CNN layer had a kernel size of 3 and produced output channels of 32, 16, 
and 4, respectively. Following each CNN layer was a 2D maximum pooling layer with a size of (4,4). The two FC 
layers had sizes of 64 and 3 respectively, and the classifier concluded with a SoftMax activation layer. The input 
to the classifier was cardiac cell images, either real or artificial, with dimensions of (3,96,96) that randomly were 
transformed from the image training dataset with each image of size (3,128,128). The output of the classifier is a 
vector of length 3, which indicates the probabilities of each class for the input image.

To examine the impact of synthetic images generated by the GAN model, three distinct training datasets 
were prepared. The first dataset was the original training dataset used for training the GAN model, consisting of 
691 real cell images from days 2, 6, and 14. The second dataset combined the images from the first dataset with 
an additional 960 real images (320 per cell class), resulting in a total of 1651 real cell images. The third dataset 
combined the 691 real images with 960 synthetic images (320 per cell class), resulting in a total of 1651 mixed 
real and fake cell images. The relationship among these three training datasets is depicted in Fig. 10. During 
training of the cell classifier, the Adam optimizer with β 1=0.9 and β 2=0.999 was utilized with a batch size of 
64. The learning rate was set to 0.0005. The cell classifier underwent training for 1000 epochs.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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