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Abstract

One of the key challenges of k-means clustering is the seed selection or the initial centroid 

estimation since the clustering result depends heavily on this choice. Alternatives such as k-

means++ have mitigated this limitation by estimating the centroids using an empirical probability 

distribution. However, with high-dimensional and complex datasets such as those obtained from 

molecular simulation, k-means++ fails to partition the data in an optimal manner. Furthermore, 

stochastic elements in all flavors of k-means++ will lead to a lack of reproducibility. K-means 

N-Ary Natural Initiation (NANI) is presented as an alternative to tackle this challenge by using 

efficient n-ary comparisons to both identify high-density regions in the data and select a diverse 

set of initial conformations. Centroids generated from NANI are not only representative of the 

data and different from one another, helping k-means to partition the data accurately, but also 

deterministic, providing consistent cluster populations across replicates. From peptide and protein 

folding molecular simulations, NANI was able to create compact and well-separated clusters as 

well as accurately find the metastable states that agree with the literature. NANI can cluster 

diverse datasets and be used as a standalone tool or as part of our MDANCE clustering package.
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Introduction

Molecular Dynamics (MD) simulations serve as a computational microscope into intricate 

biological processes, yet the challenge arises when extending their scope to encompass 

longer timescales and larger systems. Unfortunately, the post-processing analysis of MD 

trajectories has struggled to keep pace with this demand, particularly evident in available 

clustering techniques, which is essential for unraveling protein dynamics and enhanced 

sampling techniques.1 Clustering, an unsupervised machine-learning method, identifies 

patterns within a dataset by organizing similar samples based on a similarity measure.2,3 

When clustering structures obtained from MD simulations there are several metrics that 

can be used, but it is quite common to use root-mean-square deviation (RMSD) as the 

clustering metric.4–6 The RMSD is typically used in pair-wise manner, where the RMSD 

of a conformation is calculated to every other conformation in the ensemble, leading to 

O(N2) scaling of the clustering calculation. There are also many clustering algorithms, but 

choosing one often involves a stark trade-off: conventional algorithms such as k-means7,8 

prove efficient but fall short in identifying subtle metastable states, whereas more robust 

methods like density-based clustering (e.g. DBSCAN,9,10 density peak11) incur significant 

computational overhead.2,12,13 In this contribution, we present the first module of our 

Molecular Dynamics Analysis with N-ary Clustering Ensembles (MDANCE) software 

package based on n-ary similarity (that is, using the notion of comparing multiple objects at 

the same time).14–20 Overall, MDANCE is aimed to provide great flexibility, new clustering 

algorithms, and novel tools to process the clustering results and to assess the overall quality 
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of the clustering process. In the first installment of MDANCE, we will be introducing 

k-means N-ary Natural Initiation (NANI), an initialization method for k-means.

K-means is widely known to be the most popular clustering algorithm in the community for 

its straightforward approach. It was first proposed by Stuart Lloyd in 1957 and formalized 

by James MacQueen in 1967; now, it has become a central component of unsupervised 

learning for pattern recognition and data science. The input for k-means requires two 

parameters: the number of clusters and an initial estimate of the centroids. Beginning with 

initial centroid estimates, the algorithm proceeds by assigning each data point to the nearest 

centroid and recalculating the centroids for each cluster iteratively until convergence, in 

which the computed centroids remain the same, and data points stay within their respective 

clusters. When applied to large datasets from Molecular Dynamics, it proves to be efficient 

as it has a time complexity of O(k × N × i), k for the number of clusters, n for the number of 

points, and i for the number of iterations.21

Despite its efficiency, the K-means algorithm can struggle to identify metastable states 

due to one or more of the following issues: poor selection of the number of clusters (k), 

problems with the initial centroid estimation, and the clustering of non-convex shapes. The 

selection of k is a required input parameter for the algorithm. However, determining k can 

be challenging given the multidimensional and complex nature of most datasets, so the 

number of metastable states is often determined a priori.22 A larger k can result in finer 

partitioning of the data, which can identify some of the metastable states; however, this risks 

the accuracy of the cluster population and transition probabilities between clusters.23 The 

initial centroid estimation is also important because subsequent points are assigned based 

on these estimates. Therefore, many different initialization methods (e.g. k-means++24,25) 

were proposed to predict the best centroids for initialization (See Theory Section). However, 

all the existing centroid estimation algorithms are stochastic, which makes it challenging 

to assess the validity of the results. Lastly, k-means is not designed to identify non-convex 

cluster shapes since it is a partitioning cluster algorithm; the resulting cluster shapes tend 

to be uniform and globular and will usually not adapt arbitrary cluster shape.26–29 Another 

algorithm similar to k-means is k-medoids,30 which is similar to K-means except that 

the data points are assigned to the nearest medoid. Therefore, pairwise comparisons are 

performed to determine the similarity between every point to determine the least dissimilar 

object, making the algorithm less sensitive to outliers.2 Due to the pairwise comparisons and 

inefficiency with high-dimensional data, it has a time complexity of O(k × N2 × i).31 Since it 

is not as efficient as k-means, k-medoids will not be investigated in this study.

N-Ary Natural Initiation (NANI) is our proposed initialization technique for k-means with 

advantages of being fully deterministic, selecting the most diverse structures, and including 

a pipeline to determine the most optimal number of clusters. The main advantages of NANI 

are its efficient scaling, deterministic character, and ability to identify more compact and 

well-defined clusters over realistic MD simulations. Because all the initialization methods 

available are stochastic, NANI is an attractive option for producing reproducible results. A 

critical component of the NANI algorithm is diversity selection, which will be elaborated 

in the Theory Section. The extended similarity-based diversity selection can select a more 

diverse set of structures from a trajectory than k-means and hierarchical agglomerative 
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clustering in O(N) time complexity.18 Lastly, the choice of number of clusters is not 

trivial, especially in a multidimensional dataset, where the user might even need knowledge 

about the system to make this decision.32 A pipeline has been established to make this 

decision to require minimal presumptions. A process involves screening through a range 

of k’s, and utilizing clustering quality metrics to determine the most optimal k. Through 

these additions, k-means clustering can obtain robust results even for multidimensional and 

complex datasets.

Theory

Tools

Alignment.—The most intuitive representation of an MD trajectory is the spatial 

coordinates of atoms in the trajectory. However, this can be challenging because 

configurations need to be aligned to some reference(s) to compensate for the effect of 

rotations and translations during a simulation and the decision of what reference(s) to 

align to can impact the data analysis significantly.33,34 Here, we explore two possibilities 

to handle the alignment: the traditional alignment to a single reference conformation, and 

the Kronecker version of the alignment proposed by McCullagh et al.35 Typically (at least 

for coordinates from MD trajectories), the optimal rotation for minimizing the differences 

between two sets of coordinate vectors in Cartesian space has used either the procedure 

of Kabsch36 or a quaternion-based method.37,38 The Kronecker method is somewhat 

different, consisting of a global alignment where weight is distributed according to the 

variance of the atoms’ coordinates. Specifically, the Mahalanobis distance35 of the total 

set of conformations is minimized. However, after this, the distance between the individual 

conformations is measured using standard techniques. When using Cartesian coordinates the 

first step in the clustering process is to perform this alignment in order to set the position 

and orientation of every conformation in a univocal reference frame. This is critical to any 

k-means variant, since we need to be able to rank distances obtained in the same footing. 

For example, let us say that we have two cluster centroids, A and B, and a conformation 

X that we need to assign to one of these clusters. To do this it is paramount that the 

distances X-A and X-B are consistent with each other, that is, X, A, and B must retain their 

relative positions when calculating their relative separations. This is lost if we align X to A 

to calculate their separation, and then align X to B to perform the same calculation. Any 

iterative alignment procedure will lead to distances calculated in two unrelated reference 

frames, so there is no clear way to rank the separation of X from the tentative cluster 

centroids. This is why the alignment should only be performed once before starting the 

k-means clustering. It is also important to notice that one can bypass the need to perform 

the alignment if instead of Cartesian we use a complete set of internal coordinates. (That 

is, an arbitrary set of internal coordinates is not on itself enough to overcome this issue, 

but carefully selected internal coordinates provide a univocal frame of reference in which to 

perform the clustering.) In the SI we include a short proof-of-principle example of NANI 

based on internal coordinates to highlight the broad applicability of our method (Fig. S12).

N-ary Similarity.—Traditionally, we quantify the similarity of objects using pairwise 

functions, that is, taking two objects at a time. The problem with this approach is that 
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when we want to study N objects we need to compute the similarity between every possible 

pair of objects in the set, which demands O(N2) computational effort. We have recently 

shown how it is possible to define n-ary functions to quantify similarity and differences 

(either through extended or instant similarity indices),14,15,17 and that can take an arbitrary 

number of inputs at the same time and evaluate their similarity with a much more attractive 

O(N) scaling. While most of the applications of these metrics have been in cheminformatics 

and drug design problems, here we use some of the basic principles to study conformational 

ensembles of different biomolecules. For instance, a fundamental condition required by all 

n-ary indices is that the objects to be compared must be represented by vectors with the 

same length (e.g., with the same number of components). This means that we can arrange 

all the items to be compared in a 2D array (e.g., the ”representation matrix”), with each row 

representing an element to be analyzed. Then, the key insight that allows the n-ary indices to 

turn this into an O(N) problem is realizing that we just need to generate a vector containing 

the sums of the elements of each column of the representation matrix (or, at most in the 

case of real continuous inputs, also the vector containing the sum of the squares of each 

element in a given column). The vector of column sums is all that is needed to quantify how 

related are all the elements in the set. There are several recipes to do this, depending on the 

type of similarity index that one desires to use (the original paper on extended similarity 

included dozens of examples on how to generate n-ary indices14,15). In particular, in the case 

of MD simulations, it is customary to use the RMSD to calculate how separated the two 

conformations are. In the next section, we show how to obtain an n-ary measure that closely 

resembles the RMSD behavior, yet allows comparing N structures in O(N).

Mean Squared Deviation.—For a system with M atoms and D coordinates, let us denote 

the ith frame by F (i). Then, the RMSD between the ith and jth frames, F (i) = q1
(i), q2

(i), …, qD
(i) ,

F (j) = q1
(j), q2

(j), …, qD
(j)  (where qk

(i) represents the kth coordinate of the ith frame), is calculated 

as:

RMSD(i, j) =
∑k = 1

k = D (qk
(i) − qk

(j))2

M

(1)

Similarly, we can define the Mean Squared Deviation (MSD) between two frames as:

MSD(i, j) =
∑k = 1

k = D qk
(i) − qk

(j) 2

M

(2)

The key difference between these two magnitudes comes when calculating their average 

over N > 2 frames. For instance, in the case of the RMSD, it is clear that this will demand 

O(N2) scaling:
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RMSD = 1
N2 ∑

i = 1

N
∑

j = 1

N
RMSD(i, j)

= 1
N2 ∑

i = 1

N
∑

j = 1

N ∑k = 1
k = D qk

(i) − qk
(j) 2

M

(3)

However, this is not the case for the MSD:

MSD = 1
N2 ∑

i = 1

N
∑

j = 1

N
MSD(i, j)

= 1
MN2 ∑

i = 1

N
∑

j = 1

N
∑

k = 1

k = D
qk

(i) − qk
(j) 2

= 2
MN2 ∑

k = 1

k = D
N ∑

i = 1

N
qk

(i) 2 − ∑
i = 1

N
qk

(i)
2

(4)

Notice that in the last equation, we only need ∑i = 1
N qk

(i) 2 and ∑i = 1
N qk

(i), and since they 

both scale as O(N), the overall MSD calculation has a much more attractive linear cost 

(while also bypassing the cumbersome square root calculation). As noted in the previous 

sub-section, this is the critical step in the calculation of any n-ary index, and hence the 

critical difference between the RMSD and the MSD.

Complementary Similarity.—Calculating the medoid of a set scales in O(N2), or O(N 
log N) at best. However, using complementary similarity, we can identify the medoid 

in O(N).20 The complementary similarity is based on the idea of the n-ary similarity; it 

calculates the n-ary similarity of a set without a given element. Therefore, the medoid will 

correspond to the highest complementary MSD (cMSD) as the set is more dissimilar overall 

without the most representative member. Likewise, outliers will correspond to low cMSD, 

since removing them contributes to making the set more compact. The complementary 

similarity will determine the ranking of how representative or outlier a member of the set is, 

from most representative (medoid) to most outlier-like.

Diversity Selection.—Another useful tool in n-ary similarity is sampling representative 

structures from a set. It picks the first points using complementary similarity to find the 

medoid. It then picks the most dissimilar point from the selected point(s) at every iteration. 

That is, at any given point, we pick the point that minimizes the overall similarity of the 

selected set, as measured by an n-ary function.

Clustering

K-means is a partitioning clustering algorithm that assigns points to the closest centroid. It 

iterates by recalculating the centroid and reassigning points. Other than the determination of 

the number of clusters, initial centroid prediction is critical as the clustering is susceptible 
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to modifications in the labeling with different centroid estimations. Therefore, a diverse 

set of initial centroids is required for better results than random initialization. Some of the 

available initialization methods (illustrated in Figs. 1 and 2), including our proposed NANI, 

are presented below:

Vanilla k-means++ is the original version of k-means++.24 The algorithm begins by initially 

picking a random point from the set. It will then pick the next point using a weighted 

probability distribution of distance from the selected point and will favor selecting the 

point with the maximum distance from the selected point. It will continue for k number of 

clusters. Since the algorithm has stochastic elements, results will vary every time.

Greedy k-means++ follows the same algorithm as its vanilla version, except it runs multiple 

local trials of initialization and picks the best one for k-means clustering. The greedy version 

can perform better than the vanilla variant, but this is not guaranteed to be always the 

case24,39 and it is the default setting for initializing k-means in scikit-learn.40 This algorithm 

provides good results for simple and well-separated systems. However, its limitation is 

apparent in noisier data (See Fig. 3).

CPPTRAJ Initialization starts from a random point and selects the farthest point from the 

selected points.41 It then iterates for k number of clusters.

N-Ary Natural Initiation (NANI) NANI first uses the medoid algorithm to stratify the data 

into high-density regions and then performs a diversity selection (Max_nDis, ECS_MeDiv) 

to pick well-separated centroids.15 The diversity selection starts with the medoid of the 

dataset. It iterates the data to find the object with the lowest similarity between the candidate 

and the existing set of centroids. This procedure is inspired by k-means++, but with the 

key difference that the first point is chosen in a completely deterministic way. MDANCE 

includes two NANI variants: div_select is the closest one to the standard k-means++, in 

the sense that the last k − 1 centroids are chosen from all the remaining points in the set. 

On the other hand, the comp_sim version of NANI is even more efficient, since we use all 

the complementary similarity values to stratify the data, and then do the diversity selection 

of the remaining k – 1 centers only over a high-density fraction of the initial points. A key 

insight here is that using the n-ary complementary similarity algorithm to stratify the data 

ensures that this algorithm retains the attractive scaling of traditional k-means.

It is important to remark that all the methods discussed in this section only differ on how 

they select the initial k points. That is, after this selection, they all proceed in the same way, 

alternating assignment and update steps. In the former, points are assigned to their closest 

centroid (hence why it is paramount that all the distances are calculated in an univocal 

reference frame, as noted in the alignment section above). Then, centroids are updated to 

reflect the new assignments. These two steps are alternated until some convergence criterion 

is reached.

Finally, the bulk of this paper is dedicated to the comparison of NANI with other k-means 

alternatives. However, due to the popularity of Hierarchical Agglomerative Clustering 

(HAC) methods in the MD community, we include a short comparison of NANI and 

average and complete HAC in the SI. The highlight of this comparison is the difference 
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in computational resources needed to perform these analyses. While the HAC study of the 

HP35 simulation described in the next section took more than 2 days, NANI only required 

85 seconds to complete this task.

Systems and Software

2D Datasets.

The model 2D data was obtained from scikit-learn single-labeled generated dataset. The 

blob disk, nine diamonds, and ellipses were extracted from Veenman et al, Salvador et al, 
and Bandyopadhyay et al, respectively.42–46

β-Heptapeptide

The topology and trajectory files correspond to publicly available data and were assessed 

through GitHub.47,48 The atom selection follows Daura et al,49 Lys2 to Asp11, with N, Cα, 

C, O, and H atoms. The terminal and side chain residues were ignored to minimize noise in 

the clustering. The single-reference alignment was done after aligning to the 1000th frame. 

Also, we performed the Kronecker alignment as a comparison.

β-Hairpin

This system was adapted from a stabilized β-hairpin system proposed here.50 Orn-8 was 

substituted with Lys-8 due to lack of ornithine parameters in the force field; this substitution 

was tested previously51 and was found to have minimal impact on the conformational 

stability. Subsequent MD simulations indicated that the peptide was often kinetically trapped 

due to strong salt-bridging interactions between Arg-1 and Glu-4; for the purpose of 

facilitating ensemble convergence, we introduced an R1Q substitution. Neutral capping 

groups (ACE, NHE) also were introduced at the termini to further reduce the possibility 

of strong electrostatic traps. This modified system was then relaxed to stabilize the initial 

structure before eight independent MD simulations of ~9 μs each were generated at 420K 

(~70 μs total). The ensuing ensemble was very diverse, with backbone RMSD’s ranging 

from under 1 angstrom to over 10 angstrom and featuring ~11,000 folding and unfolding 

events. ~65,000 equally spaced coordinate sets were extracted for analysis. All clustering 

on this system used the backbone atoms (Cα, C, and N) and all frames were aligned to the 

1000th frame that was extracted.

HP35.

Analysis was performed on a 305 μs, all-atom simulation of Nle/Nle mutant of the 

C-terminal subdomain of the Villin headpiece (also known as HP35) from D. E. Shaw 

Research.52 This simulation was conducted at a temperature of 360 K and consists of 1.52 

million frames with a frame separation of 200 ps. All frames in the simulation were aligned 

to the 5000th frame in the simulations and frames before the 5000th frame were discarded 

as a relaxation phase. The backbone atom selection encompassed the following atoms: N of 

residue 1, CA, C, N of residues 2 to 34, and N from residue 35; this selection is consistent 

with previous studies of HP35. A sieve was applied on every 20th frame, resulting in a total 

of ~89,000 frames for clustering.
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NuG2.

An analysis was conducted on a dataset comprising four independent all-atom simulations 

of NuG2, a mutant variant of Protein G. The simulations, with a cumulative duration of 

1.15 milliseconds (5.78 million frames with a frame separation of 200 ps), were conducted 

at a temperature of 350 K and carried out by D. E. Shaw Research.53 All frames in the 

simulation were aligned to the 5000th frame in the simulations and frames before the 5000th 

frame were discarded as a relaxation phase. The atom selection encompasses the backbone 

atoms (CA, C, and N) of residues 1 to 56; this selection is consistent with previous studies 

of NuG2. A sieve was applied on every 65th frame, resulting in a total of ~76,000 frames for 

clustering.

MDANCE.

The NANI code is available as one of two modules in the MDANCE package. MDANCE 

contains basic functionality in a Behind The Scenes (BTS) module that handles I/O 

functions, interfacing with packages like AMBER54 and MDAnalysis,55,56 along with 

several alignment options. The NANI module handles the initial seed selection procedure 

for both the comp_sim and div_select variants, but it can easily be modified to include 

other selection criteria. While the applications in this paper are centered around the use 

of the MSD as n-ary difference measure, MDANCE gives the user the option to use from 

other n-ary indices, like extended versions of popular cheminformatic metrics like Tanimoto, 

Russel-Rao, etc. The MDANCE GitHub repository can be found here: https://github.com/

mqcomplab/MDANCE.

Results and discussion

2D Datasets

Clustering evaluation metrics assess the quality of the resulting clusters. Clustering 

evaluation metrics are separated into internal and external measures; internal measures do 

not use ground-truth labels, whereas external measures require ground-truth labels. Internal 

measures are primarily used for complex data where a ground-truth label is unavailable. 

Several indicators were studied to identify the most optimum metric for identifying the 

number of clusters in a dataset.

V-measure score57 calculates how accurately the clustering labels match the ground truth 

based on two criteria—homogeneity and completeness. The dataset is divided into classes 

and after clustering, the algorithm separates the dataset into clusters. Homogeneity measures 

the purity of the cluster if all the members in a cluster contain only members with the same 

class label. Completeness measures if all the members with the same class label are in one 

cluster. These two criteria will calculate a V-measure score between 0 to 1. A V-measure 

closer to 1 indicates greater accuracy to the ground truth labels. This metric is an external 

measure, which requires ground truth labels as input. Therefore, the V-measure will not be 

used for simulation data since there are no known cluster labels.

Calinski-Harabasz index58 (CH, also known as variance ratio criterion) is a clustering 

evaluation metric that quantifies the separation between clusters and the compactness within 
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clusters. CH is a ratio of between-cluster dispersion and within-cluster dispersion. Between-

cluster dispersion is a sum of squares between each cluster centroid and the centroid of the 

dataset. Within-cluster dispersion is the sum of squares between samples in the data and 

their respective cluster centroids. A high CH value indicates well-separated clusters. CH 

index is an internal measure, which is solely based on the dataset and clustering results and 

does not use ground-truth labels in the calculation, which makes it a candidate for a metric 

for quantifying simulation data.

Both the Calinski-Harabasz index (CH) and Silhouette score are popular cluster evaluation 

metrics for measuring cluster quality in the community.1,32 Silhouette score59 is also an 

internal clustering measure and calculates intra- and inter-cluster distances. For every data 

point, the algorithm calculates the average distance to all other points in that cluster (a) and 

also calculates the average distance to all the points in the nearest cluster (b). The score is 

calculates using silhouette score = (b – a)/ max(a, b). Values range between −1 to 1, with 

−1 meaning the point is clustered poorly, values close to 0 meaning the point is close to a 

border with another cluster, and 1 meaning the point is well-clustered. Because silhouette 

score typically requires a pairwise matrix, it is O(N2) and the slowest out of all mentioned 

metrics.

Average mean squared deviation (MSD) only takes into account the clustering labels and the 

coordinates and determines how compact clusters are, in which a lower MSD would be a 

tighter cluster. Similar to RMSD, mean squared deviation determines the similarity between 

frames. Average MSD calculates the similarity of clusters using the n-ary framework. This 

metric is the least computationally intensive out of all the clustering quality metrics.

Similar to CH and Silhouette score, the Davies-Bouldin index (DBI)60 is an internal 

clustering measure and quantifies similarity within and between clusters. DBI is a ratio 

between intra-cluster and inter-cluster similarity. The intra-cluster similarity is the average 

distance between points in a cluster and the centroid of the cluster. The inter-cluster 

similarity is the distance between the cluster centroids. A lower DBI value indicates clusters 

that are far apart and tightly packed.

Not only is k-means NANI (comp_sim and div_select) both a deterministic seed 

selector, but it also results in more compact and well-defined clusters with linear scaling 

comparable to k-means++. In our 2D results, k-means NANI was able to correctly identify 

the clusters of noisy data (See Fig. 3) because it begins with the medoid and only selects 

from high-density regions. Fig. 4 shows measures of the robustness of different clustering 

techniques using average MSD, CH index, DBI index, number of iterations, and V-measure 

score. div_select is similar to the initialization used in CPPTRAJ because both choose 

the farthest point from the already selected points. Since div_select only sometimes 

surpasses the other variants and usually takes more iterations compared to comp_sim, 

only comp_sim will be investigated in the simulation data. On the other hand, comp_sim 

surpassed k-means++ variants in all clustering metrics, further motivating its use as a seed 

selector for k-means clustering. Therefore, from now on, whenever we refer to NANI, we 

are implicitly referring to the comp_sim variant.
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Application to Peptide Systems

A key part of our clustering pipeline is the incorporation of the previously discussed 

indicators to quantify the quality of the final clustering. This is critical to identify the 

optimum number of clusters in the data. In all cases, we performed a scan over different 

values of k, which is especially necessary when analyzing realistic MD simulations. Then, 

different clustering quality metrics will be explored to identify the most ideal metrics for the 

clustering pipeline hereinafter.

The Calinski-Harabasz index (CH) measures how well-separated clusters are and the trend 

for CH is that a larger index would indicate an optimal number of clusters. However, all 

the graphs exhibit the same behavior as shown in Fig. 5 with changing different variables 

(systems, alignment method, initialization technique). It seems unlikely that two clusters 

would be the most optimal number of clusters in every case; however, CH tends to favor a 

small number of clusters due to its bias for convex shapes. Overall, the behavior of NANI 

and the two k-means++ variants is very similar, with the CPPTRAJ algorithm consistently 

resulting in lower CH values. Also note the variations on the CPPTRAJ and k-means++ 

results, especially for the β-hairpin and HP35 systems. As far as the quality of the clusters 

goes, there does not seem to be an increase in the separation of clusters when we use the 

Kronecker alignment (with the β-heptapeptide and β-hairpin even showing a better behavior 

for the single reference alignment).

The Silhouette score is another metric to measure similarity within and between clusters. A 

similar issue with this metric is that it favors a smaller number of clusters due to its bias 

for convex clusters. A bigger issue with the Silhouette and CH indices is that their change 

from one k value to another does not seem to be a good indicator of the optimum number 

of clusters in the set. This is particularly evident in the case of CH, with the values just 

monotonically increasing with decreasing k values. A similar pattern is followed by the 

Silhouette score, which is more evident for the β-hairpin and HP35 cases, as shown in Fig. 

6. There, the score just tends to either remain essentially constant over a range of k values 

or just tends to increase. The β-heptapeptide system highlights a particularly pathological 

Silhouette behavior, with the single reference and Kronecker alignments presenting totally 

opposed trends for this score. Given that the β-hairpin simulations were conducted at the 

highest temperatures, and thus are expected to boast higher conformational plasticity, this 

seems to indicate that the silhouette score is not appropriate to identify the optimum k values 

for these simulations.

The average mean squared deviation (MSD) would indicate how compact a cluster is. MSD 

follows the trend of a decreasing concave-up shape due to the nature of an increasingly more 

dissimilar cluster as it grows and a more similar cluster as it is smaller. Just like for the 

CH index, the MSD values tend to change monotonically, so at first sight, they do not seem 

suitable to identify optimum k values, as shown in Fig. 7. However, interestingly, in several 

cases, we could correlate the changes in the slope of the MSD graphs with the behavior of 

optimum k values of other indicators, chiefly, the Davies-Bouldin index analyzed in the next 

section. When NANI was applied to the Molecular Dynamics trajectory, the compactness 

was greater than that of k-means++ as demonstrated by the average MSD values.
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Davies-Bouldin index (DBI) is the metric that works the best for the most number of 

systems. DBI measures both the intercluster and intracluster distance and a lower DBI would 

indicate an optimal number of clusters. This is usually the case for simple systems, but 

with high-dimensional and complex datasets this can sometimes be misleading because DBI 

tends to favor a small number of clusters, the minimum value is not always the optimum 

number. Moreover, for most indicators designed to quantify the quality of the clustering, it 

can be argued that their local behavior is more important than their absolute values. (This 

has been recently emphasized by Hocky, McCullagh, et al.61) While this is in principle 

true for any of these indices (and, in a sense, can be seen as the rationalization behind 

the ”elbow method”), it is more useful in the case of the DBI. Once again, the almost 

perfectly monotonic behavior of the CH index renders this approach useless. On the other 

hand, the quasi-constant behavior of the Silhouette index over intervals of k values, coupled 

with an almost monotonic increase for some systems, also makes this a relatively difficult 

criterion to adapt in that case. Therefore, we introduced another criterion for measuring 

the optimal DBI—the maximum second derivative DBI. The maximum 2nd derivative of 

DBI with respect to the number of clusters is the local minimum of the two steepest 

slopes, which can often indicate the most optimal value before it rises and drops back to 

global minima, which is due to DBI’s bias for convex clusters. In other words, the 2nd 

derivative criterion allows users to distinguish ”unusually stable” k values, while tending 

to be more robust towards the bias for particular cluster shapes. From Fig. 8, DBI proves 

to be a more robust metric compared to CH and silhouette score as the topology of the 

graph is different for different systems, while also remaining easily quantifiable, and without 

presenting obvious biases towards a particular range of k values. Comparing the DBI for the 

different initialization methods, the CPPTRAJ method gives the highest DBI would indicate 

a weaker initialization method than the other three since it is farthest from the desired low 

values. However, both vanilla and greedy k-means++ methods were not as robust as NANI 

as there were great fluctuations in the DBI values between runs. Since all methods contain 

elements of probability and randomness, they are not as robust as the deterministic NANI 

methods because they will give a different optimal number of clusters every time the user 

executes the methods. This pathological behavior is shown in Table 1, where we present the 

results of three replicates of Greedy, Vanilla, and CPPTRAJ k-means. Notice that for all the 

peptide systems, and independently of if the optimum k is selected with the absolute value or 

the 2nd derivative of DBI, different runs tend to give different values for the optimum value 

of k. NANI not only gives the DBI values in every replicate, but it also gives DBI values of 

the same quality, if not better in several instances, than those of the k-means++ variants. It is 

important to highlight that the lack of reproducibility of the other k-means implementations 

goes beyond ”merely” identifying different numbers of clusters. The relative importance of 

certain conformations and the main representatives of each cluster is also altered from one 

run to the other, as shown in Fig. S13 in the SI section.

To further highlight NANI’s performance, we dissected the HP35 simulations in more 

detail, given the recent interest in this system as a benchmark for other clustering methods. 

In the application to HP35, the number of clusters was determined to be seven using 

single-reference alignment and calculated using NANI as the seed selector. In the overlaps 

(See Fig. 9, it shows that NANI was able to identify seven metastable states of HP35 with 
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cluster populations consistent with a previous study (using more computationally demanding 

clustering methods) in which six metastable states were reduced to a four-state model 

consisting of a native state N (53% of the population), a native-like state N’ (14%), an 

intermediate state I (18%), and an unfolded state U (15%).35 As shown in Fig. 10, NANI 

obtains similar populations for N (66%), N’ (8%), I (9%), and U (17%). (We assigned all 

the structures in each NANI cluster to the same state.) The results are consistent for both 

the ”condensed” version of the results (corresponding to k = 4), or the optimal configuration 

with k = 7. N’ is the partial unfolding of helix 3.35,62 In all cases, the N’ conformation 

was found to be the least populated. N1 and N2 are two conformations in the folded state 

(N) except for the orientation of helix 1 (See Fig. 11), but both are highly tight clusters, 

representative of the native folded structure of HP35; overall, the N state is the most 

populated cluster. Three clusters corresponded to the unfolded state (U), with uncoiling 

observed in U1, U2, and U3. U2 has a unique orientation of helix 1 and 3 with both turning 

away from helix 2. U1 has a more defined structure in helix 3 than in U3. The intermediate 

structure is observed to have decreased variance from the unfolded states, with defined 

structures in all three helices but not yet completely folded.

Kronecker alignment has some limitations compared to single-reference alignment (See Fig. 

S10) because it is unable to recognize the N’ state. This is surprising since this alignment 

was able to find this conformational basin when combined with Shape-GMM clustering. 

This seems to indicate that for a simple method, like k-means NANI, the single reference 

alignment might be a more convenient starting point.

NuG2

NuG2 has a complex protein-folding mechanism as it has two β-sheets and an α-helix, 

and can follow two different pathways to fold.63 Given the results of the previous section, 

the clustering for NuG2 only uses the single-reference alignment. The same trend from 

the peptide section is also observed in NuG2 clustering: NANI can generate compact and 

well-defined clusters as shown in the lower MSD and DBI values (See Fig. 12). The 

results from all flavors of the k-means++ predecessors fluctuated greatly between replicates, 

significantly altering the number of clusters per run. Once again, the standard CPPTRAJ 

k-means implementation resulted in the highest MSD and DBI values and the lowest CH 

values, while also showing a significant variance in the final results, like the k-means++ 

flavors. The number of clusters was determined to be fifteen calculated using NANI as the 

seed selector. The folded structure was the predominant cluster at 45%, eight intermediate 

structures were identified at 39%, three pre-folded structures were found at 10%, and lastly, 

three unfolded structures were observed at 5% (See Fig. 13). It is remarkable that an 

algorithm as simple and efficient as NANI was able to find metastable states corresponding 

to both folding pathways. In our previous studies on this system, we showed that traditional 

hierarchical agglomerative clustering (HAC) methods failed to identify several intermediate 

conformations along the folding process.20 Only a variant of HAC that used an n-ary linkage 

criterion (and was based on a contact map representation of NuG2) was able to distinguish 

between these states. However, as with every HAC algorithm, this (at best) scales as O(N2), 

so it is markedly less efficient than k-means NANI. The dominant folded structure revealed 

well-overlapped structures in the cluster, with the lowest variances. In all the intermediate, 
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a partial unfolding of the β3/4 strands is observed; due to this unfolding, many different 

conformations were adapted by β3/4 (See Fig. 14). In all the pre-folded states, all β3/4 

and the α-helix were partially unfolded; moreover, β1/2 was also observed to have greater 

variance in the structure compared to the structures in the intermediate states. Unfolded 

states uncovered a complete unfolding of all three secondary structures in the protein.

Conclusion

NANI is a robust seed selector for k-means that surpasses most publicly available seed 

selectors such as k-means++ and the seed selector for CPPTRAJ k-means. Its advantage 

comes from its reproducibility as a deterministic algorithm, which gives the same optimal 

number of clusters and cluster population at each run. Furthermore, as shown in the lower 

DBI and average MSD values, it excels at creating tight and well-defined clusters. When 

applied to model 2D systems, the comp_sim version of NANI (the one that chooses 

centroids only from previously stratified data) highlighted the cause of the potential issues 

found in the traditional k-means++ and CPPTRAJ implementations. That is, the diversity-

picking algorithms applied to the whole set of points tend to select initial centroids in 

the boundary of the set, which are typically low-density regions. Hence, even though it is 

expected that the final centroids are well-separated, they will also be found in regions with a 

higher density of frames. This is more evident with the standard CPPTRAJ implementation, 

which is the one that most aggressively tries to maximize the separation between initial 

centroids, which seems to cause the optimization of the k-means objective function to 

be stuck into local minima where the final centroids are not optimally distributed. Both 

k-means++ initializations tend to correct this behavior by using a probabilistic diversity 

exploration mechanism. In this way, they de-emphasize the role of very distant points and 

allow themselves to potentially select guesses in the high-density zones. However, this 

introduces further randomness in the final results. NANI combines the best of these worlds, 

by trying to maximize the diversity of the initial centroids but limiting the exploration of 

a pre-stratified subset of the data, that is more likely to contain only regions with a higher 

density of points. The study of even simple peptide systems showcased one of the key 

issues of any clustering study: identifying the optimum number of clusters in the data. We 

considered several popular clustering evaluation metrics for doing so, including the CH 

index and Silhouette score. The former showed an almost perfect monotonically increasing 

tendency with decreasing number of clusters, while the latter was either virtually constant 

over ranges of k values, or also monotonically increasing (or, in the case of the β-hairpin, 

its results varied wildly depending on the alignment). On the other hand, the DBI clustering 

evaluation metric proved to be more amenable to interpretation. While it can also show a 

marked bias towards very small k values, we found two ways to work around this issue. 

First, the overall non-monotonic behavior of this index means that if one restricts the scan 

of k values to not include very small k values (k = 2, 3, 4), it is possible to identify a 

physically meaningful number of clusters. Moreover, if one decides to follow the local 

behavior of the DBI index, instead of its absolute value, and uses the 2nd derivative as 

a way to gauge the relative stability of the k values, it is also possible to determine the 

optimum k values. Finally, on the matter of preferred k values, while the absolute values of 

the average MSD cannot be used for this purpose, we noted that the 2nd derivative of the 
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MSD values correlates with the ideal k values found using the DBI index. Given the ease 

of calculation of the MSD compared to the DBI, it seems reasonable to perform an MSD 

scan analysis over extended ranges of k’s, and then only perform the DBI calculations for 

the k values identified through the MSD analysis. This seems like a convenient strategy to 

aid in speeding up the post-processing of the clustering results, which we will explore in a 

forthcoming contribution.

The MD simulations also served to highlight some of the key advantages of NANI. Above 

all, NANI offers a reproducibility that is not attainable with the other k-means algorithms. 

While the probabilistic nature of the k-means++ methods does not have a great impact 

on the final results for model 2D systems, this quickly changes even for simple MD 

simulations. The CH, MSD, and Silhouette scores profiles for both k-means++ flavors 

showed marked differences from one run to the other, and this was particularly evident for 

the DBI. This is especially concerning since, as discussed before, DBI seems to be the 

more robust at the time of determining the ideal k for the given simulation, i.e. different 

k-means++ runs can lead to different answers about the number of clusters present in the 

data. The CPPTRAJ k-means also shows great variability, but it is also accompanied by 

overall lower quality indicators of the considered scores. This indicates that even if we 

were to use some deterministic criterion to choose the initial centroid in the CPPTRAJ 

algorithm, choosing the remaining k – 1 initial centers doing a diversity screening over all 

the frames will lead to picking centers in very low-populated regions in the data, which 

is a sub-optimal choice. (This agrees with the comparatively sub-par performance of the 

div_select algorithm on the model 2D systems.) NANI then offers a fully deterministic 

alternative, with overall performance on par (if not better) than the k-means++ alternatives. 

We also studied two different alignment paradigms: the traditional single-reference, and the 

Hocky and McCullagh Kronecker alignments.35 We observed that single-reference tends to 

produce more compact clusters (as measured by the average MSD), while the Kronecker 

method tends to result in better-separated clusters (as quantified by the DBI). In general, 

both alignment methods have strengths and weaknesses, and it is certainly desirable to 

explore their relative performance when compared in conjunction with other clustering 

algorithms. In the present case, we tend to slightly favor the combination of single-reference 

with k-means because this was the combination that allowed identifying the previously 

reported metastable states for the HP35 and NuG2 systems. It is reassuring to see how 

NANI was able to not only find the previously identified N, N’, I, and U states of HP35 but 

also with relative populations in good agreement with those found by more complex (and 

time-consuming) algorithms. The same success was found for the NuG2 protein, with NANI 

being able to identify several metastable states across multiple folding pathways that were 

absent even in the (markedly) less efficient hierarchical studies.

This study introduced NANI as the first installment of our MDANCE clustering package, 

which can be used as a standalone software or part of our clustering package. Aside 

from introducing novel clustering algorithms, a pipeline for clustering analysis is also 

available for determining the most optimal number of clusters for the dataset. In forthcoming 

contributions, we will expand on the functionality of MDANCE, and we will add more 
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clustering algorithms to this package based on the use of n-ary similarity and difference 

functions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(a) Initialization scheme for all k-means++ flavors. (b) Initialization scheme for k-means++ 

NANI.
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Figure 2: Four centroid selection algorithms for k-means initialization.
(a) Vanilla k-means++ (b) Greedy k-means++ (c) CPPTRAJ (d) NANI. Pink boxes indicate 

stochastic steps and blue boxes indicate fully deterministic steps. After these initialization 

setups, assignment and update cycles are performed until convergence.
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Figure 3: 
k-means NANI on a sample 2D data with a known number of clusters (7). A different color 

represents a different cluster label. (a) True Labels. (b) k-means clustering with centroids 

initialized by k-means++ and took 12 iterations to converge resulting in 0.85 V-measure 

score. (c) k-means clustering with centroids initialized by k-means NANI and took 11 

iterations to converge resulting in 0.80 V-measure score.
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Figure 4: 
Cluster characteristics of different seed selectors on a sample 2D data from Fig. 3. (a) 
Average MSD of the clusters using different seed selectors (↓). (b) Calinski-Harabasz index 

(↑). (c) Davies-Bouldin index (↑). (d) Number of iterations (↓). (e) V-measure score (↑).

Chen et al. Page 23

J Chem Theory Comput. Author manuscript; available in PMC 2024 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Calinski-Harabasz index (y-axis) vs. cluster number (x-axis) of different seed selectors 

applied on three peptide systems. Error bars represent the standard deviation over three 

replicates. (a) β-hairpin single-reference aligned (b) β-heptapeptide single-reference aligned 

(c) HP35 single-reference aligned (d) β-hairpin Kronecker aligned (e) β-heptapeptide 

Kronecker aligned (f) HP35 Kronecker aligned
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Figure 6: 
Average Silhouette score (y-axis) vs Number of clusters (x-axis) of different seed selectors 

applied on three peptide systems. Error bars represent the standard deviation over three 

replicates. (a) β-hairpin single-reference aligned (b) β-heptapeptide single-reference aligned 

(c) HP35 single-reference aligned (d) β-hairpin Kronecker aligned (e) β-heptapeptide 

Kronecker aligned (f) HP35 Kronecker aligned
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Figure 7: 
Average mean squared deviation (y-axis) vs Number of clusters (x-axis) of different seed 

selectors applied on three peptide systems. Error bars represent the standard deviation 

over three replicates. (a) β-hairpin single-reference aligned (b) β-heptapeptide single-

reference aligned (c) HP35 single-reference aligned (d) β-hairpin Kronecker aligned (e) 
β-heptapeptide Kronecker aligned (f) HP35 Kronecker aligned
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Figure 8: 
Davies–Bouldin index (y-axis) vs Number of clusters (x-axis) of different seed selectors 

applied on three peptide systems. Error bars represent the standard deviation over three 

replicates. (a) β-hairpin single-reference aligned (b) β-heptapeptide single-reference aligned 

(c) HP35 single-reference aligned (d) β-hairpin Kronecker aligned (e) β-heptapeptide 

Kronecker aligned (f) HP35 Kronecker aligned
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Figure 9: 
Structural overlaps for HP35 in four states: folded (N), partially folded (N’), intermediate 

(I), and unfolded (U). Helix 1, 2, and 3 are in green, cyan, and yellow, respectively.
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Figure 10: 
(a) Cluster population for HP35 in four states: folded (N), partially folded (N’), intermediate 

(I), and unfolded (U). (b) Individual cluster population.
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Figure 11: 
Another view of the structural overlaps for HP35 in two folded (N) states.
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Figure 12: 
Indicators of different seed selectors applied on NuG2. Error bars represent the standard 

deviation over three replicates. All use the single-reference alignment. (a) Calinski-Harabasz 

index (b) Silhouette score (c) Average mean squared deviation (d) Davies–Bouldin index
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Figure 13: 
(a) Cluster population for NuG2 in four states: folded (F), intermediate (I), pre-folded (P), 

and unfolded (U). (b) Individual cluster population.
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Figure 14: 
Structural overlaps for NuG2 in four states: folded (F), intermediate (I), pre-folded (P), and 

unfolded (U). β1 and β2 strands are colored blue, the helix is colored white, and β3 and β4 

strands are colored pink.
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Table 1:

Optimum number of clusters over for the studied systems, as determined by running three replicas of the 

Greedy, Vanilla, and CPPTRAJ algorithms. Top: k values determined from the absolute minimum of the DBI 

index. Bottom: k values determined from the 2nd derivative of the DBI index. In all cases, only k values bigger 

or equal to 5 were considered.

Algorithm/System β-heptapeptide β-hairpin HP35

Absolute DBI values

NANI 6/6/6 16/16/16 7/7/7

Greedy 15/23/17 20/18/12 7/7/7

Vanilla 5/27/5 18/15/11 7/5/7

CPPTRAJ 5/6/30 15/11/9 5/12/5

2nd Derivative of DBI values

NANI 8/8/8 9/9/9 10/10/10

Greedy 8/15/17 20/12/12 7/17/7

Vanilla 14/8/13 11/11/11 7/18/7

CPPTRAJ 20/6/15 15/8/6 8/19/10
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