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CONSPECTUS: The mystery of the origins of life is one of the
most difficult yet intriguing challenges to which humanity has
grappled. How did biopolymers emerge in the absence of enzymes
(evolved biocatalysts), and how did long-lasting chemical
evolution find a path to the highly selective complex biology that
we observe today? In this paper, we discuss a chemical framework
that explores the very roots of catalysis, demonstrating how
standard catalytic activity based on chemical and physical
principles can evolve into complex machineries. We provide
several examples of how prebiotic catalysis by small molecules can
be exploited to facilitate polymerization, which in biology has
transformed the nature of catalysis. Thus, catalysis evolved, and
evolution was catalyzed, during the transformation of prebiotic
chemistry to biochemistry. Traditionally, a catalyst is defined as a substance that (i) speeds up a chemical reaction by lowering
activation energy through different chemical mechanisms and (ii) is not consumed during the course of the reaction. However,
considering prebiotic chemistry, which involved a highly diverse chemical space (i.e., high number of potential reactants and
products) and constantly changing environment that lacked highly sophisticated catalytic machinery, we stress here that a more
primitive, broader definition should be considered. Here, we consider a catalyst as any chemical species that lowers activation energy.
We further discuss various demonstrations of how simple prebiotic molecules such as hydroxy acids and mercaptoacids promote the
formation of peptide bonds via energetically favored exchange reactions. Even though the small molecules are partially regenerated
and partially retained within the resulting oligomers, these prebiotic catalysts fulfill their primary role. Catalysis by metal ions and in
complex chemical mixtures is also highlighted. We underline how chemical evolution is primarily dictated by kinetics rather than
thermodynamics and demonstrate a novel concept to support this notion. Moreover, we propose a new perspective on the role of
water in prebiotic catalysis. The role of water as simply a “medium” obscures its importance as an active participant in the chemistry
of life, specifically as a very efficient catalyst and as a participant in many chemical transformations. Here we highlight the unusual
contribution of water to increasing complexification over the course of chemical evolution. We discuss possible pathways by which
prebiotic catalysis promoted chemical selection and complexification. Taken together, this Account draws a connection line between
prebiotic catalysis and contemporary biocatalysis and demonstrates that the fundamental elements of chemical catalysis are
embedded within today’s biocatalysts. This Account illustrates how the evolution of catalysis was intertwined with chemical
evolution from the very beginning.
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■ INTRODUCTION
Prebiotic chemistry established the molecular keystones of
biology, paving a path to life.5−7 In today’s biology, cells
maintain a complex array of coordinated and simultaneous
processes that are dependent on highly evolved anabolic and
catabolic enzymes. Enzymes are essential keystones of life,
acting as biocatalysts and regulators of cellular activity.
Enzymes are made from biopolymers, such as proteins and
nucleic acids. Most enzymes are proteins composed of
polymerized amino acids linked via peptide bonds. Protein
enzymes are responsible for replication and transcription,
conducted by DNA and RNA polymerases. A few selected
enzymes are based on RNA and are called ribozymes. For
example, the RNA-based functional core of the ribosome
catalyzes peptidyl transfer.8 Enzyme activities are controlled to
enable synchronicity and coordination between hundreds to
thousands of concerted chemical processes, which proceed
within extremely short time scales (ranging from 10−7 to 1 s).9

Enzymes, such as proteases and glycosidases, increase rates of
hydrolysis by orders of magnitude, thus enabling fast recycling
of building blocks for the synthesis of new biopolymers.10

Uncatalyzed hydrolysis of biological molecules would take
hundreds of thousands of years.

This astonishing array of coordinated catalytic machineries is
the product of billions of years of evolution during which
enzymes became increasingly complex, capable of lowering
activation energies,11−13 regulating reaction rates, and choreo-
graphing chemical transformations across chemistry, time, and
space.14 The complexity of enzymes is evident in their
structures and functions, giving rise to high specificity,
selectivity, and efficiency. Remarkably, this huge diversity of
enzymes is emergent on only 20 amino acid monomers that
form proteins that catalyze over 3400 different reactions (with
distinct Enzyme Commission numbers) in humans.15 At the
same time, ribozymes are emergent on only four nucleotides.16

The origin of such intricate, sophisticated, and precise
biopolymers from prebiotic chemistry is beyond our current
understanding. It is important to note that evolution is a
nonlinear process;17 drawing direct connections between
extant biology and the origins of life is impossible.

Enzymes are products of pre-Darwinian and Darwinian
evolution. Stringent selection during all evolutionary
phases18−20 appears to have enabled these advances. During
early evolution, small molecules in primordial soups or on land
surfaces evolved into more complex molecules.21−32 Among
hundreds of thousands of potential prebiotic molecules only a
few survived and were chosen for incorporation into
contemporary biopolymers.33−38 It seems unlikely that most
small molecules of extant biology were available in the
prebiotic inventory.17 Instead, many are likely to be products
of prebiotic or biological evolution.

Figure 1. Ester−amide exchange in model prebiotic reactions and in biochemical reactions. (a) Drying amino acids with hydroxy acids makes esters
that convert into peptide bonds by an attack of an amine group of an amino acid on an ester. (b) In the peptidyl transferase center of the ribosome,
the amine group on an amino acid attacks an ester on the nascent polypeptide linked at the 3′ end of a tRNA, converting an ester into a peptide
bond. Modified with permission from ref 47. Copyright 2020 American Chemical Society.
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During chemical evolution, the diversity of the small
molecules was reduced. This reduction in small molecule
diversity was compensated by the increasing complexity of
biopolymer sequences. Nonetheless, vestiges of the ancestral
chemical processes were preserved. For example, during
translation, amino acids are activated by their esterification
to tRNAs. The nascent polypeptide, linked as an ester at the 3′
end of a tRNA, is transferred in the peptidyl transferase center
of the ribosome to the amino group of an amino acid
monomer linked as an ester at the 3′ end of another tRNA
(Figure 1).39 The chemistry of translation resembles the
chemistry of dry-down reactions of hydroxy acids and amino
acids.40−46 In these systems, monomers link to form esters that
are converted via ester−amide exchange to amides. The
products are depsipeptide oligomers, which contain both
amide and ester bonds (Figure 1).1,41,45,46 Amide bond
formation is enabled through the activation of carboxylic
acids during esterification reactions with hydroxy acids, as
carbonyl esters serve as good electrophiles for nucleophilic
attack by an amine group on the amino acid to form a peptide
bond.

Recent data support models in which initial steps in the
origins of life were based on chemical and physical selection. In
these models, environmental conditions and an inventory of
small prebiotic molecules dictated the initial course of chemical
evolution. Because the Earth spins on its axis, land surfaces
undergo diurnal cycling in temperature and water activity.
Lower frequency seasonal cycles are superimposed on higher
frequency diurnal cycles. In a dynamic and constantly changing
environment, chemical systems are perpetually out of
equilibrium. Some chemical species will selectively combine
by condensation−dehydration reactions during a dry phase
and then selectively break apart by hydrolysis during a wet
phase, over and over.

In this Account, we focus on small-molecule catalysis of
kinetically controlled prebiotic reactions. A catalyst, in
traditional definitions, increases the rate of a reaction but is
not consumed or produced over the net reaction. However, the
traditional definition required reconsideration after the
discovery of ribozymes. Many ribozymes catalyze phospho-
diester self-scission.48 These ribozymes are consumed by the
reaction that they catalyze and, thus, violate the traditional
definition of a catalyst. Yet, they are properly considered to be
catalytic. Similarly, species such as hydroxy acids catalyze the
formation of peptide bonds and, in some cases but not all
instances, can reside within the product (a depsipeptide).
Similarly, hydroxy acids should be considered to be catalytic in
the formation of peptides. Hence, it is likely that many
prebiotic small molecule catalysts were altered, consumed, or
produced during chemical evolution. Hence, the term
“catalysis” is used here to describe chemical processes that
involve intermediates that confer reduced activation energies.
A catalyst is defined as a reaction participant that reduces the
free energy barrier to form products by changing the reaction
mechanism. This definition of a catalyst does not consider
regeneration of the catalytic molecule at the end of the
reaction.

Here we focus on condensation−dehydration reactions
under the conditions of oscillating water activity. These
systems are simultaneously kinetically controlled and near
equilibrium (but never at equilibrium). Because the systems
are kinetically controlled, condensation product distributions
are dictated by activation energies. Because the reactions are

near equilibrium, their directions alternate between formation
and degradation as the water activity oscillates. A subset of
building blocks is selected over the others to form oligomers.
These systems are driven by a dynamic environment
characterized by relentless changes in the environmental
conditions. The chemical systems undergo (i) chemical
selection; (ii) catalytic transformation; and (iii) increases in
complexity. In this Account, we demonstrate how prebiotic
catalysis could have evolved and promoted chemical evolution,
leading to increasing complexity and some of the core
processes of contemporary biocatalysis.

■ ORGANIC CATALYSIS USING SIMPLE PREBIOTIC
MOLECULES

Chemical progression and the rise of selectivity during the
origins of life present some of the most challenging questions
in the chemical sciences. We describe a model in which
solubility, intrinsic rates of condensation, intrinsic rates of
hydrolysis, catalysis, recalcitrance, and oscillating water activity
are selected for some chemical species over others. One level of
selection is the rate of direct oligomer formation. A second
level of selection is the catalytic efficiency of oligomer
formation. A third level of selection is the kinetic trapping of
oligomers. Additional levels of selection were also important.
Selection was progressive; production of one species enables
production of a second species, etc. Direct formation of
peptide bonds is prevented by high activation energies.45,49,50

Several approaches to overcome the high energetic cost
required for peptide synthesis include mineral-mediated
catalysis51−54 that involves the adsorption of the amino acid
onto the mineral surface and the formation of the zwitterionic
amino acid51,53 and the use of high-energy molecules such as
condensing agents.55,56 In an alternative route that is discussed
in this Account, the condensation of hydroxy acids to form
ester bonds enables the production of peptide bonds. Esters
catalyze amino acid condensation by lowering activation
energies by about 3 kcal/mol for the formation of amide
bonds through the process of ester−amide exchange.45 Once
formed, peptide bonds are kinetically trapped. Peptide
oligomers exhibit slow hydrolysis rates49 and offer the
possibility of recalcitrant assemblies.57

The exploration of chemical spaces is facilitated by the
differential incorporation of various monomers into oligomers.
We have investigated the roots of differential oligomerization
of proteinaceous and non-proteinaceous amino acids. For
example, we sought to understand whether α-amino acids are
favored over β-amino acids for incorporation into depsipep-
tides.58 Since both alpha amino acids and beta amino acids
were prevalent on prebiotic Earth,59 prebiotic prevalence was
probably not the reason for the selection of alpha amino acids
in today’s proteins. We examined the oligomerization of both
α- and β-amino acids in the presence of hydroxy acids in
single-step dry-down reactions and during dry-wet cycles. Four
amino acids were studied: glycine (α-amino acid), alanine (α-
amino acid), β-alanine (β-amino acid), and β-aminobutyric
acid (β-amino acid), as well as the analogous hydroxy acids.
The results show that α-hydroxy acids more readily catalyze
peptide bond formation than β-hydroxy acids. This selectivity
is most likely driven by 6-membered cyclic lactone
intermediates that participate in ring-opening polymerization.
α-Hydroxy acids form 6-membered cyclic lactone intermedi-
ates and thus are superior catalysts for peptide bond formation
compared to the corresponding β-hydroxy acids.
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The degree to which α-amino acids were incorporated into
oligomers was typically lower than that of β-amino acids
overall. These results are consistent with the finding that β-
glutamic acid polymerizes more efficiently than its alpha
analogue in the presence of 1-ethyl-3-(3-(dimethylamino)-
propyl)carbodiimide (EDAC).60 In terms of a mechanistic
explanation, the nucleophilicity of the amine group of beta
amino acids is expected to be greater than that of alpha amino
acids due to attenuation of electron withdrawal by the
carboxylic acid in beta amino acids versus alpha amino acids.
Moreover, the carboxylic acids of beta amino acids, with higher
pKa’s, are also better electrophiles than those of the alpha
analogues. The conversion of α-amino acids to oligomers was
typically greater during wet−dry cycling than during a single-
step dry-down reaction. By contrast, β-amino acids were
typically converted to a greater extent under single-step dry-
down conditions compared to wet−dry cycling (Figure 2).

Moreover, prolonged wet−dry cycling for 8 weeks resulted in
gradual enrichment of α-amino acids in the resulting
depsipeptides to a greater degree compared to the correspond-
ing β-amino acids, suggesting greater evolvability of alpha over
beta amino acids in depsipeptides. For instance, a mixture of
alanine and lactic acid produced oligomers with up to 11-mers,
from which 7-mers were alanine. The corresponding mixture of
β-aminobutyric acid and lactic acid produced up to 6-mer
products, 3 of which were β-aminobutyric acid.57,61,62 Various
mechanisms and selection pressures might have affected the
selection leading to alpha amino acids in biology. For example,
α-amino acids were found to form dimers in the presence of
trimetaphosphate while the β- and γ-amino acids did not,
suggesting that oligomerization of α-amino acids is favorable
via other mechanisms.63 Recalcitrance might also play a role in
the selection, as Brack has shown that proteinaceous peptides
exhibit greater resistance against hydrolysis compared to non-
proteinaceous amino acids, a phenomenon that was attributed
to the stable structures formed by the proteinaceous amino
acids.57,61,62 However, comparison of recalcitrance between

alpha- and beta-peptide backbones has not been demonstrated
thus far.

Peptide bonds form preferentially between proteinogenic
and non-proteinogenic cationic amino acids. Non-proteina-
ceous cationic amino acids such as ornithine (Orn) and 2,4-
diaminobutyric acid (Dab) are thought to have been abundant
on early Earth.64−68 Proteinaceous cationic amino acids are not
considered prebiotic, even though some evidence of the
possibility of abiotic synthesis or delivery has been
established.25,69−71 We studied the propensity of several
proteinaceous and non-proteinaceous cationic amino acids to
undergo copolymerization with hydroxy acids into cationic
depsipeptides via dry-down reaction.1 The presence of an
amine group on the side chain of some of the investigated
amino acids allows the condensation−dehydration of the
amino acids at two amine group positions, resulting in two
possible bonds: a canonical bond at the alpha-position and a
noncanonical bond at the side chain. In a simple dry-down
reaction of glycolic acid with either of the explored amino
acids, we found that the proteinaceous amino acids, lysine (L-
Lys), histidine (L-His), and arginine (L-Arg), react to a greater
extent to form depsipeptides compared to the tested non-
proteinaceous cationic amino acids. Furthermore, Lys reacted
in a regioselective manner to produce alpha-amide products
with not more than 12% amidation of the epsilon side-chain
amine (Figure 3). Yet, the non-proteinaceous amino acids
exhibited lower yields and no regioselectivity toward alpha-
amidation. Moreover, the non-proteinaceous amino acids Orn
and Dab underwent competing cyclization to produce lactam
products.

Proteinogenic cationic amino acids also link preferentially
over non-proteinogenic amino acids under competitive

Figure 2. During wet-dry cycling, oligomerization of α-amino acids is
favored over oligomerization of β-amino acids. Differences between
amino acid conversion percentage under dry-down conditions and
wet−dry cycling are illustrated. Positive values indicate greater extent
of conversion under dry-down conditions, while negative values
indicate greater extent of conversion under wet−dry cycling.
Reproduced with permission from ref 58. Copyright 2022 MDPI,
Basel, Switzerland.

Figure 3. Depsipeptides containing proteinaceous cationic amino
acids are formed via dry-down reactions of mixtures of hydroxy acids
and cationic amino acids. (A) Examples of possible products of dry-
down reactions of glycolic acid (glc) with lysine (Lys) are shown; Lys
is preferentially amidated on the α-amine over the ε-amine. The
percentages of products shown were determined by 1H-NMR
analyses. (B) A mixture of glc with Lys was dried at 85 °C for 7
days, and the resulting depsipeptides were analyzed by positive-mode
ESI-MS. All labeled species correspond to [M + H]+ ions.
Reproduced with permission from ref 1. Copyright 2019 U.S.
National Academy of Sciences.
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conditions with both classes in a common reaction vessel. For
instance, in a reaction containing both L-Lys and L-Dab, Lys
was incorporated preferentially over Dab into the depsipeptide
oligomers. Remarkably, the presence of Lys resulted in an
increase in the overall conversion of Dab compared to the
corresponding binary mixture, while the presence of Dab
resulted in a slightly reduced consumption of Lys but with
greater regioselectivity toward alpha-amidation. These results
indicate that even in a more realistic scenario in which
competitive reactions occur, proteinogenic cationic amino
acids are chemically preferred in peptide bond formation.

Thiols, by forming thioesters upon reactions with carboxylic
acids, can catalyze the formation of peptide bonds during wet−
dry cycling. De Duve suggested a general role for thiols and
thioesters in the origins of life, based on prebiotic availability
and abundance in contemporary metabolism.72 It has been
proposed that thiols were available on the early Earth when it
was reductive due to impacts of iron-rich asteroids that
transiently reduced the entire atmosphere.73 Sulfurous
compounds such as hydrogen sulfide and disulfur may have
been produced by volcanoes.74 In biology, thioesters enable
the anabolism and catabolism of peptides, fatty acids, sterols,
and porphyrins. Thiols and thioesters are directly involved in
catalysis. Thiol proteases catalyze peptide bond hydrolysis by
forming thioester low energy intermediates.75 We recently
demonstrated that simple mercaptoacids can catalyze the
reverse reaction, condensation−dehydration of amino acids,
through nearly identical low energy thioester intermediates
(Figure 4). The mercaptoacid route to peptide bonds offers
significant advantages over the hydroxyacid route because
mercaptoacids are reactive over a wider range of temperatures
and pH conditions than hydroxy acids.

Formation of peptide bonds can be catalyzed by
mercaptoacids that undergo thioesterification, followed by
thioester amide exchange. Amide bond formation is enabled
through activation of carboxylic acids during thioesterification
reactions with mercaptoacids, as carbonyl thioesters serve as
good electrophiles for nucleophilic attack by an amine group
on the amino acid to form a peptide bond. During the
exchange reaction, the hydroxy acid or mercaptoacid catalysts
are released. Both hydroxy acids and mercaptoacids share a
bifunctional core structure with a single difference of hydroxyl
group in hydroxy acids compared to the thiol group in
mercaptoacids. The replacement of the oxygen atom by the
less electronegative sulfur in mercaptoacid results in a better
nucleophile due to the greater polarizability of the sulfur atom.
In terms of catalysis mechanism, both hydroxy acids and
mercaproacids facilitate peptide bond formation by sequential
steps by which either ester or thioester bonds are formed and

further transformed into peptide bond by ester−amide
exchange or thioester−amide exchange reactions (Figure 4).

We explored reactions involving the mercaptoacid thio-
glycolic acid (tg) and the amino acid alanine (Ala).2 These
mixtures produced amide products, as verified by FTIR and
NMR. HPLC and NMR demonstrated that 83% of Ala was
incorporated into oligomers after a week-long single-step dry-
down at 65 °C. Thioester dimers of tg formed at initial stages
and were consumed at later stages to produce peptide
oligomers such as tgAlaAla. The reaction mechanism involves
ring-opening polymerization of a cyclic intermediate thiazine-
dione. The robustness of the reaction was assessed at various
temperatures and pH levels. Products were observed at all
tested pHs, with Ala conversion of 42% (at pH 7.0), 71%
(6.5), 89% (5.5), and 90% (3.5). Some products were
observed in high water activity solution, albeit at lower levels
than in dried reactions.

In the path to peptide bonds, mercaptoacids such as tg
appear to be more efficient catalysts than hydroxy acids.
Mercaptoacids are robust catalysts across a wider range of
conditions and at lower temperatures. Thioesters are more
reactive toward nucleophiles such as amines, compared to
oxoesters analogues, due to the loss of delocalization energy as
a result of poor S−C π overlap.76 This difference translates into
relatively low activation energies for thioester−amide exchange
at lower proton concentration, lower temperatures, and higher
water-activity. In summary, fine selection of peptide bond
formation is enabled through simple catalytic routes using
prebiotically plausible small organic molecules under a variety
of environmental conditions.

■ SYNERGY AND COOPERATION BETWEEN
ORGANIC AND INORGANIC COMPOUNDS

Metal ions play significant roles in extant biology, mediating
the activities of various proteins, including nitrogenases and
hydrogenases,77−80 stabilizing folded RNA,81 and contributing
to ribozyme catalysis.82,83 The catalytic role of metals and
organometallic complexes in extant biology points toward
ancient roots and significance of metals in prebiotic
chemistry.84 Notably, it appears that most Earth-abundant
metals are involved in biocatalysis,85 in particular 3d-transition
metals such as iron, zinc, nickel, copper, and manganese. From
a kinetic perspective, 3d-transition metals form labile
complexes with their ligands, allowing rapid association−
dissociation and ligand exchange,86 which can be essential for
catalytic activity.

It is likely that transition metals participated in prebiotic
chemistry by promoting homogeneous or heterogeneous
catalysis. For instance, metal ions could have affected the
synthesis of primordial peptides.87−93 We sought to determine

Figure 4. Proposed acyl substitutions during peptide bond formation (amidation) through thioester−amide exchange. Under dry conditions,
mercaptoacids condense to form thioesters, which are converted to amide bonds in the presence of amino acids. Reproduced with permission from
ref 2. Copyright 2022 Springer Nature.
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the effects of transition metals on depsipeptide formation from
mixtures of hydroxy acids and amino acids. We focused on
histidine (His) and glycolic acid (glc) as model amino and
hydroxy acids. His is involved in several metalloenzymatic
elements such as the copper−histidine brace94,95 or zinc finger
proteins.96 Thus, its role in enzymatic activity may be a
product of prebiotic evolution. In dry-down reactions of His
and glc, Zn2+ caused an increase in incorporation of His into
long depsipeptides, but at overall lower conversion (Figure 5).
In the absence of Zn2+, 42% of His monomers were converted
into products while only 22% were converted in the presence
of Zn2+. This effect was prominent at Zn2+:His 1:1 molar ratio,
while at greater Zn2+:His ratios, oligomerization was inhibited,
suggesting nonproductive association of Zn2+ with His. Zn2+

did not affect the depsipeptide formation of other amino acids,
suggesting high ligand specificity. The effects of other metal
ions on oligomerization of His and glc under similar dry-down
conditions were also investigated. The transition metals Cu2+

and Co2+ had effects similar to those of Zn2+ on His
incorporation into depsipeptides. Other metal ions either had
no effect, as in the case of Na+, K+, and Mg2+, or reduced the
production of His-containing depsipeptides (e.g., Ca2+). The
association of His with transition metal ions was confirmed by
circular dichroism measurements, indicating a sharp transition
of His spectra during the addition of Zn2+, Cu2+, or Co2+. The
association was attributed to the association of the imidazole
moiety of His with these metal ions (Figure 5). Indeed, the
hydroxy acid analogue of His exhibited similar oligomerization
trends in the presence of Zn2+.97

As with other elements of today’s biology, cooperative
interactions of metal ions and organic compounds may have
initiated before the emergence of life. Contributions of metal
ions and minerals have been proposed to protopeptide and
proto-RNA98 synthesis and in the emergence of prebiotic
catalysts in general.99

■ KINETICALLY DRIVEN SELECTION THROUGH
COMBINATORIAL COMPRESSION

The study of the origins of life is challenging due to sparse
information, model-dependence, high complexity, and ana-
lytical challenges. We are faced with uncertainties in molecular
inventories, environmental conditions, reaction pathways,
selective mechanisms, and the general nature of prebiological
chemical evolution. It is thought that the prebiotic milieu was
rich in molecules that reacted and linked to each other in
various ways.

To follow evolutionary trends in complex mixtures during
wet−dry cycling, we investigated changes over time (and
cycles) of a mixture containing 9 components (referred as
‘MFP Set 3’).3 The mixture was subjected to either single-step
dry-down for 72 h or 15 iterative dry-wet cycles at 45 °C (each
cycle was 48 h, one month total) under anaerobic conditions.
Analysis of reaction products was monitored by HPLC, NMR,
and LC-MS. We focused on global systematic trends and
calculated the rate of chemical change, Rc, as the average
concentration differences between consecutive dry-wet cycles.
The rate of chemical change was high at the beginning of the
wet−dry cycling experiment, gradually declined by the fifth
cycle, and stabilized at a nonzero value for the duration of the
cycling. The data are consistent with a model in which the
system continuously evolved and did not converge, or reach a
steady state, throughout the course of the experiment.

Complex chemical mixtures undergoing chemical trans-
formations tend to combinatorically explode, when a large
number of ways that reactants can combine leads to large
numbers of different chemical products.100,101 To our surprise,
we observed relatively few product species after 15 cycles. The
system did not “explode”, and the number of products was
significantly lower than the theoretical number of product
species. We used the phrase “combinatorial compression” to
describe a phenomenon in which few select product species are
generated from numerous diverse reactants. To investigate the
phenomena of combinatorial compression, we studied how the
number of reactants affected the number of products. A variety
of initial mixtures with 2-components, 3-components, 4-
components, 5-components, 6-components, 9-components,
or 25-components were nested in such a way that subset
mixtures omit reactants from parent reaction mixtures but
exclude reactants not found in the parent mixture. Each 2-, 3-,
4-, 5-, or 6-component mixture was a subset of the 9-
component mixture (MFP Set 3), which is a subset of a 25-
component mixture. Contrary to expectations, we found that
the identity of products but not the number of products
changed as the number of reactants increased or the identity of
the reactants changed. Specifically, upon reinitiation of a
reaction with the addition of new reactants, new products
appear while others disappear. We call this disappearance
product subtraction. For example, the 9-component initial
mixture exposed to 15 dry-wet cycles at 45 °C gave 30
products while the 25-component mixture gave 34 products.
Only 20 product species were common between the two initial
mixtures. Ten products were subtracted by increasing the
number of reactants from 9 to 25.

Figure 5. Zinc increases the yield of long His-containing depsipeptides in dry-down reactions. Histidine (His)monomer was dried with glycolic
acid (glc) at a 1:1 molar ratio at 85 °C for 7 days in the presence or absence of Zn2+ at a 1:1 molar ratio (His:Zn2+). Analysis of samples via C18-
HPLC showed a dramatic increase in the yield of longer oligomers in the presence of Zn2+. A possible coordination complex between Zn2+ and two
His monomers is also shown. Reproduced with permission from ref 97. Copyright 2021 The Royal Society of Chemistry.
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We found that the balance between combinatorial explosion
and compression is governed by subtle changes in the
temperature. At low temperatures, combinatorial compression
dominates, while at high temperatures, combinatorial explosion
is observed. For varying subsets of components, as the
temperature exceeds 45 °C, the number of products
dramatically increases in correlation with the initial number
of components. By contrast, at temperatures of 45 °C or lower,
the number of products remains restricted and is hardly
affected by the initial number of reactants.

Combinatorial compression appears to be kinetically
controlled and is dominated by the presence of species that
we term “compressors”. The basis of combinatorial compres-
sion is discussed in a subsequent theoretical investigation.102

Compressor molecules are relatively reactive species that can
be depleted by numerous pathways in a connected system.
These molecules are reactants in chemical reactions that have
either significantly lower activation energy or lower Gibbs free
energy than other available reactions. In principle, the
phenomenon of combinatorial compression can be either
kinetically or thermodynamically dominated, enabling the
selection of certain products over others.102

The compression of the chemical space appears to be related
to compression in reaction trajectories. We defined population
as the number of molecules of a chemical species, trajectory as
population change over wet−dry cycles, and synchronicity as
similarity of trajectories of multiple species. We used a
clustering algorithm to partition the trajectories into well-
defined synchronous groups. The populations of the
intermediate and product molecules are coordinated.

Our work provides a possible framework for understanding
chemical evolution. In our model, selection is dictated in part
by kinetics: select reactants form intermediates, overcoming
low activation energies. During cycling, these intermediates are
consumed and are either hydrolyzed or chemically transformed
into products with greater durability and lower reactivity. For
example, reactive species form esters or thioesters, which
undergo ester−amide exchange or thioester−amide exchange
to produce depsipeptides, thiodepsipeptides, or peptides. Over
cycles, ester and thioester bonds disappear and amide bonds
accumulate in the form of peptide-rich oligomers.

■ WATER: THE GLUE OF CHEMICAL EVOLUTION
AND CATALYSIS

Biology, from molecules to ecosystems, is defined by water.
Estuaries and rain forests are among the most productive
ecosystems on Earth. Cells are around 65% by volume or 70%
by weight water.103 Water is a requisite of life as we know it.104

Water is implicated in every process crucial to life, including in
metabolism as reactants, intermediates, and products, and as
the medium, actively fostering folding and assembly of
biopolymers.105−109 It is impossible to think about biology
without water.

Water is a powerful solvent for ions and polar substances
and is a poor solvent for nonpolar substances.110 Water causes
amphipathic molecules (with both polar and nonpolar
functionalities) to form elaborate structures and proteins to
fold. Water provides environmental support allowing the
“activation” of enzymes by assembly.

Water shields charged species from each other.111 Electro-
static interactions between ions are highly attenuated in water.
The electrostatic force between two ions in solution is
inversely proportional to the dielectric constant of the solvent.

The dielectric constant of water (80.0) is very large, over twice
that of methanol (33.1) and over five times that of ammonia
(15.5). Water solubilizes salts, because the attractive forces
between cations and anions are significantly reduced by water.

Water is a biological catalyst in a formal sense. Biological
building blocks are recycled in net reactions of protein
synthesis and hydrolysis, RNA synthesis and hydrolysis, and
ATP synthesis and hydrolysis. Water molecules are consumed
and produced during recycling, decreasing the activation
energies of the reactions. The reactions of water, in turn, are
catalyzed by other species. Acids catalyze reactions of water by
forming hydronium ions during acid catalysis, and bases
catalyze reactions of water by forming hydroxide ions during
base catalysis.

We have conducted a comprehensive survey of water
chemistry in metabolism, enzymatic activity, and cell division
that demonstrates the centrality of water chemistry in biology.4

The Krebs Cycle illustrates the significance of water chemistry
(Figure 6) and other water functions. Water (i) drives folding
of enzymes to functional native states; (ii) is a product in
condensation−dehydration and a reactant in hydrolysis; (iii)
associates with and stabilizes transition states; (iv) is a source
of catalytic hydronium ions and hydroxide ions; (v) reacts with
carbon dioxide to change bulk proton concentration; and (vi)
coordinates metal ions112 and mediates metal−ion interactions
with enzymes, substrates, intermediates, transition states, and
products. In translation, water molecules assist ribosomal
catalysis of peptidyl transfer by stabilizing the transition state
via the formation of a six-member ring with a water molecule
assisting proton transfer from the alpha-amine to the carbonyl
oxygen.113

Enzymes are biocatalysts that catalyze and regulate a wide
range of reactions. Our survey of the Enzyme Commission
(EC) Database revealed that about one-third to half of
enzymatic reactions either produce or consume water
molecules.4 Enzymes that chemically transform water represent
a plurality of enzymes in the EC database.

Water molecules are repeatedly transformed and recycled
during metabolic activity. We calculated the lower limit of the
frequency of chemical transformation of water during
replication of E. coli. The calculation accounted for water
transformations in protein synthesis and oxidative phosphor-
ylation, under oxic conditions in minimal medium. Water
molecules that are used mechanistically but not chemically
transformed or that are transformed in other metabolic
processes were omitted. The results show that approximately
88% of the water molecules in E. coli are chemically
transformed by protein synthesis alone. Oxidative phosphor-
ylation transforms 278% of water molecules in E. coli; the
average water molecule is chemically recycled multiple times.
Overall, the average water molecule in E. coli is chemically
transformed at least 3.7 times during one cycle of replication.
We conclude that water is the most prevalent metabolite in
cells and accounts for more than 99% of all metabolites by
molarity.

The diverse roles of water in extant biology suggest that it
dictated the course of chemical evolution long before biology.
In our model, chemical evolution required continuous
chemical change, harvesting of energy from the environment,
selection, increasing complexity, and self-assembly.57 Water
was the prebiotic milieu and the reactive matrix. Building
blocks were selected based on their solubility in water and
ability to chemically react with water. The fittest building
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blocks underwent oligomerization and hydrolysis: both are
directly related to water activity. Hydrolysis is an essential
element of chemical evolution. Selective pressure produces
chemical bonds, formed by condensation but resistant to
hydrolysis. In our model, this selective pressure induces supra-
molecular assemblies, which are recalcitrant (resistant to
hydrolysis in the assembled state).57 Selection based on
water chemistry in a dynamic environment leads to an
increased proficiency in self-assembly and general complexity.

The environment of ancient Earth was in constant flux.
Diurnal cycles were modulated by seasonal cycles that were
randomly perturbed by impacts and solar flares. In our model,
building blocks underwent oscillating condensation−dehydra-
tion and hydrolysis reactions. Wetting and drying on land
surfaces drove oscillating condensation−dehydration reactions
and hydrolysis. Oligomers that formed in the dry phase and
avoided hydrolysis in the wet phase survived and persisted.57

The environment was always dynamic and never at
equilibrium. These systems were governed by a combination
of kinetic and thermodynamic effects.

Water is the conductor of evolution and the piece that holds
biological constituents together. The multifunctionality of
water is evident in all aspects of evolution. Water contributed
to complexification as contemporary biology evolved via its
multifunctionality. It seems likely that water drove and enabled
chemical reactions, fostered efficient autocatalytic machineries,
and conferred structure and functionality.

■ CONCLUSIONS AND OUTLOOK
In this Account, we focused on the catalytic routes that may
have led to the emergence of life and the emergence of
contemporary biocatalysts: enzymes. Enzymes are complex
machinery capable of catalyzing specific and selective chemical
reactions with tremendous efficiency. Enzymes are products of
long-term evolution driven by simple catalytic elements.

We suggest that environmental conditions on Early Earth
provided the infrastructure for the straightforward evolution of
chemical catalysis. Condensation−dehydration of reactive
building blocks was accomplished in dry environments. The
new, highly energetic intermediates and Earth transition metals
catalyzed the formation of more resistant chemical bonds,

Figure 6. Chemical transformations of water during the Krebs cycle. In this cycle, eight enzymes (green text) catalyze a series of reactions that in
total consume three water molecules, produce one water molecule, protonate three water molecules, and convert an acetyl group into two carbon
dioxide molecules. Unprotonated water molecules are red spheres and protonated water molecules are blue spheres. Water molecules that are
mechanistically involved in the reactions are indicated by green spheres. Reproduced with permission from ref 4. Copyright 2021 Springer Nature.
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contributing to further chemical selection. The dynamic
environment of low- and high-water activity prevented the
chemical systems from ever reaching equilibrium. Combined,
these processes drove the complexification of the system. The
keystone of chemical evolution is water, dictating the nature of
chemical reactions and maintaining a dynamic chemical
landscape. We stress that fundamental elements of chemical
catalysis are embedded in today’s biocatalysts, illustrating how
chemical evolution tells the story of the evolution of catalysis.

Our approaches to understanding the origins of life are
guided by the presumption that the transition from geo-
chemistry to biology on the ancient Earth was driven by
experimentally accessible processes in environments that were
not exceptional or impenetrable. The origins of life did not
involve inscrutable, idiosyncratic, or one-off innovations. We
assume that the transition from chemistry to biology was
remarkable in sum but unremarkable during any localized step
or time period. We assume that the origins of life did not
require highly specific combinations of purified reagents,
stringent and improbable conditions, purifications via
chromatography, or teams of technically trained postdoctoral
researchers.
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