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ABSTRACT: Antibiotics are essential components of current
medical practice, but their effectiveness is being eroded by the
increasing emergence of antimicrobial-resistant infections. At the
same time, the rate of antibiotic discovery has slowed, and our
future ability to treat infections is threatened. Among Christopher
T. Walsh’s many contributions to science was his early recognition
of this threat and the potential of biosynthesis�genes and
mechanisms�to contribute solutions. Here, we revisit a 2006
review by Walsh and co-workers that highlighted a major challenge
in antibiotic natural product discovery: the daunting odds for
identifying new naturally occurring antibiotics. The review
described strategies to mitigate the odds challenge. These
strategies have been used extensively by the natural product discovery community in the years since and have resulted in some
promising discoveries. Despite these advances, the rarity of novel antibiotic natural products remains a barrier to discovery. We
compare the challenge of discovering natural product antibiotics to the process of identifying new prime numbers, which are also
challenging to find and an essential, if underappreciated, element of modern life. We propose that inclusion of filters for functional
compounds early in the discovery pipeline is key to natural product antibiotic discovery, review some recent advances that enable
this, and discuss some remaining challenges that need to be addressed to make antibiotic discovery sustainable in the future.
KEYWORDS: Antibiotic discovery, Antimicrobial resistance, Natural products, Phenotypic screens, Functional compounds,
Discovery pipeline

■ EMERGENCE OF ANTIBIOTIC RESISTANCE AND
NEED FOR NEW ANTIBIOTICS

Many readers of this journal are familiar with Christopher T.
Walsh and the enormous body of creative research that forms his
scientific legacy. If you read an article he wrote or a lecture he
gave this century, you encountered the issue of antimicrobial-
resistant (AMR) infections, which are a growing threat to
human health. Antimicrobial resistance is inevitable, as
introduction of an antibiotic creates an existential challenge
for any antibiotic-sensitive bacteria, and clinical introduction
creates multiple opportunities to develop resistance.1 The time
it takes for this resistance to emerge varies�for example, it took
less than a year between the introduction of methicillin and the
identification of methicillin-resistant Staphylococcus aureus
(MRSA) but a longer time, 30−44 years, between the
introduction of vancomycin and the identification of vancomy-
cin resistance in Enterococcus faecalis (VREF).1−3 Today,
pathogens with resistance to nearly all antibiotics in our arsenal
are already circulating among the population. Of particular
concern are multi-drug-resistant pathogens, which are resistant
to more than one class of antibiotic.1

One way to combat antimicrobial resistance is to discover new
antibiotics. The larger the arsenal of antibiotics at our disposal,
the lower the chance that a patient will acquire an infection with
resistance to all known antibiotics. In addition, there is often a
fitness cost for bacteria to maintain resistance in the absence of
antibiotics,4−7 and there might be a theoretical limit to how
many antibiotics a single strain can be resistant to, especially in
cases where resistance genes or mutations have a negative
epistatic relationship.8 A larger arsenal also enables other
strategies that have been proposed to mitigate the development
of AMR, such as reserving antibiotics as antibiotics of last resort9

and using different, or fewer, antibiotics in agricultural and
human health settings.10,11 Ideally, these new antibiotics would
have mechanisms of action that are not used by the current
antibiotics. If the new antibiotics do not have novel mechanisms,
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they are more likely to be ineffective against existing pathogens
already resistant to that mechanism of action. Antibiotics have
historically been discovered by two approaches�either through
the screening of natural or synthetic compounds in phenotypic
or other screens12,13 or through structure-based drug design
against a specific target thought to be essential for bacterial
survival.14,15 Hits from phenotypic screens could have novel or
known mechanisms of action, while screens against specific
targets require a predeterminedmechanism of action. Therefore,
future antibiotic discovery efforts will largely rely on phenotypic
screens, methods to identify previously untargeted bacterial
proteins such as transposon library mutagenesis,16 or develop-
ment of antibiotics that simultaneously target multiple
targets.17,18

■ THE NUMBERS GAME OF NATURAL PRODUCT
ANTIBIOTIC DISCOVERY

During the golden age of antibiotic discovery in the 1940s and
1950s, many natural product antibiotics were discovered
through phenotypic screens for antimicrobial activity.19−21

Natural products have been modified by evolution over billions
of years to help their producers adapt to and compete in their
natural environments. One function of natural products is to
serve as defensive agents22,23 for their producer or, in the case of
symbionts, defensive agents for the producer’s host.24−27

Therefore, natural products are uniquely privileged as a source
of antibiotic compounds. Screens of natural products often have
higher hit rates than screens of synthetic molecule libraries,28

and natural products are more likely to succeed in later clinical
trial phases29 and account for a large fraction of FDA-approved
antibiotics.30 Natural products also act by various mechanisms
of action; therefore, hits in phenotypic antibiotic screens of
natural products can be used to discover new antibacterial
targets.
Following the end of the golden age of antibiotic discovery in

the 1960s, the rate of natural product antibiotic discovery and
discovery of novel natural products occupying novel regions of
chemical space slowed significantly.19,31 We have largely
depended on modifications of known antibiotics to provide
new candidates for drug development. A typical example is the
development of azithromycin from erythromycin, and while
azithromycin extended the useful lifetime of macrolide anti-
biotics, azithromycin resistance is a growing concern.32,33 While
active compounds are still discovered, only a handful have

entered clinical development, and they generally fall into
established classes that were first discovered during the golden
age. Only four new classes (lipopeptides, lipiarmycins,
oxazolidinones, and diarylquinolines) that were discovered
after 1970 have been approved by the FDA for use in humans.19

This is in contrast to the many classes of antibiotics discovered
during the golden age, which include the β-lactams, tetracy-
clines, macrolides, aminoglycosides, glycopeptides, ampheni-
cols, ansamycins, and streptogramins.19,21,34 There are multiple
reasons for this, but one is how rarely compounds with the sort
of significant activity that could lead to a clinically useful agent
are encountered. The problem of discovering new antibiotics
from natural sources is not unlike the problem of discovering
new prime numbers. Small prime numbers are relatively
common, for example, 2, 3, 5, and 7, and increasingly rare as
they get higher. Specifically, prime numbers are distributed
asymptotically according to the prime number theorem; that is,
the number of prime numbers less than or equal to N is
approximately N

Nlog( )
for sufficiently large N.35 If one counts

upward and notes all prime numbers they encounter, they will
have considerable success early on compared to their later
efforts, which mimics the way in which more strains need to be
screened to discover new natural product antibiotics after the
most common ones have already been found. One possibly
comforting aspect of this analogy is that there is an infinite
number of primes, but it takes considerable effort to find them.
The largest known prime has 24,862,048 digits when written in
base ten.36

The rarity of naturally occurring antibacterial compounds
varies widely. In their 2006 review, Walsh and co-authors
assembled existing studies that sought to estimate how common
various antibiotics were across actinomycetes and streptomy-
cetes.37 In order of increasing rarity, these estimated frequencies
were 2 × 10−1 (streptothricin), 1 × 10−2 (streptomycin), 4 ×
10−3 (tetracyclines),1.5 × 10−5 (vancomycin), 5 × 10−6

(erythromycin), and 1 × 10−7 (daptomycin).38−40 Other
antibiotics for which the order of magnitude of their frequencies
have been estimated include actinomycins, which are used
clinically for their antitumor activity but also have antibacterial
activity (between 10−2 and 10−3), and chloramphenicol
(between 10−4 and 10−5).38,39 These frequencies track roughly
with the years that the antibiotics were discovered: 1940
(actinomycins), 1943 (streptothricin and streptomycin), 1947

Figure 1. Antibiotic frequency and timeline of discovery. The estimated frequency of antibiotics among Streptomyces is plotted on the top of the
image on a base ten logarithmic scale; for actinomycin and chloramphenicol, only a range was reported, so the positions of those antibiotics within the
range are arbitrary. The lower part of the image shows the corresponding year of discovery plotted on a linear scale.
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(chloramphenicol), 1948 (tetracycline), 1952 (erythromycin),
1953 (vancomycin), and the early 1980s (daptomycin) (Figure
1).19,41 This is expected because fewer strains need to be
screened to discover more common antibiotics; therefore, these
more common antibiotics are discovered earlier. It should be
noted that the calculated frequency values could be under-
estimated because of how commonly biosynthetic gene clusters
(BGCs) are silent.42 But we anticipate that this causes only a
minor error in the estimated frequencies, because many
historical screening efforts have cultured bacteria under multiple
conditions that may activate silent BGCs42−44 and different
strains are known to regulate their BGCs differently,45 meaning
that if a BGC is common, its product is likely to be discovered
quickly, even if it is silent in some strains.46 The estimated
frequencies suggest that any antibiotics with suitable activity and
chemical properties to be used as therapeutics from actino-
mycetes that are yet to be discovered will have frequencies less
than 1 × 10−7 or that they are distributed mostly in strains that
have not yet been isolated or cultured. Therefore, discovery of
truly new antibiotics becomes exponentially more difficult as
more antibiotics are discovered before leveling off, as it is
estimated that there are many antibiotics with low fre-
quency.39,47 The 2006 Walsh review offered suggestions for
tackling the problem of increasing rarity of uncharacterized
natural antibiotics, including screening actinomycetes other
than Streptomyces, developing new culture methods to isolate
previously uncultured strains, heterologous expression of BGCs
from isolated genomes or environmental metagenomes,
combinatorial biosynthesis, and structure-based drug design of
hybrid molecules.37

In the 18 years since the 2006 Walsh review article, the field
has generally followed all the proposed strategies while also
developing some new strategies. There have been significant
technological advancements in culturing technologies, heterol-
ogous expression of BGCs identified in metagenomes or eDNA,
combinatorial biosynthesis, and hybridmolecules. Some notable
success stories resulting from the use of these techniques include
teixobactin, discovered using culturing technology,48 and hybrid
molecules such asmacrolones,17 although it remains to be seen if
these examples can be translated into therapeutics. The dramatic
reduction in costs of DNA sequencing since 2006 has enabled
genomic and metagenomic mining strategies.49 An anticipated
reduction in the cost of DNA synthesis50 may soon have a
similar impact on heterologous expression strategies.
In addition, there has been an increasing recognition that just

increasing numbers will not be a productive solution; there
needs to be a filter early in the pipeline. Ideally the filter would be
antibacterial activity�the filter used in the early and highly
productive stages of antibiotic discovery: clear zones on a Petri
dish. Paul Ehrlich, a Nobel Prize winner who worked in the field
of antimicrobial chemotherapy, famously stated that “drugs do
not act unless they are bound.”51 Translated into today’s terms,
efficient searches for antimicrobials need to contain a filter that
indicates a candidate molecule’s potential biological activity. But
functional assays and their prerequisites are hard to scale to the
number of candidates that need to be considered. Therefore,
new strategies that scale to the number of bacteria that need to
be screened to discover a new antibiotic (107) are needed.

■ THE IMPORTANCE OF FUNCTION IN THE
DISCOVERY PIPELINE

Another parallel between the search for prime numbers and
antibiotic discovery is the difficulty in verifying that something

is, in fact, a prime number or a therapeutically useful antibiotic.
For example, the time it takes for AKS algorithm to
deterministically verify that a number is prime scales propor-
tional to (log n)6 in one implementation, where n is the prime
number.52 Therefore, faster probabilistic methods that can only
determine whether a number is highly likely to be prime need to
be used to verify prime numbers.53 None of the necessary steps
in a traditional assay scale: cultivation, extraction, assays, and
purification. Fortunately, unlike prime numbers, the length of
time it takes to verify that a novel molecule is an antibiotic does
not depend on how many antibiotics have been discovered
before. The choice of more efficient methodology in screening,
akin to the use of probabilistic methods to verify likely prime
numbers, incorporating the correct screens into the antibiotic
discovery pipeline, is essential toward determining the success of
the approach.
The classical approach to activity screens, applied extensively

throughout the history of natural product discovery,54−57 is to
first screen a whole extract for activity in either a phenotypic
assay or an assay against a specific target. The choice of assay is
essential to the likely future success of any active compounds
discovered in the screen. Screening against a known target, for
which resistant pathogens already exist, is probably not an ideal
strategy for discovering antibiotics that will be effective against
extensively drug-resistant pathogens. Screening against non-
resistant strains may result in the discovery of active compounds
that work through established or novel mechanisms. To make it
more likely that hits in the screen will be effective against
resistant pathogens, strains with multi-drug resistance can be
used in phenotypic screens. Differential screening, in which
activity is compared between pairs of microbes�either
members of the same species, one with a target gene knocked
down, or two different species�can be used for dereplication of
known mechanisms or to discover narrow-spectrum anti-
biotics.46 In some cases, a narrow-spectrum antibiotic may be
more desirable than a broad-spectrum antibiotic, and to discover
these compounds, it is important to use the target pathogen in
the screen.58 It is possible that some narrow-spectrum
antibiotics are more common than the frequencies discussed
above and have been missed due to a historical bias in which
species are used during initial screens of whole extracts. Another
strategy that might be effective would be to probe the
mechanism of action in high throughput during the screening
process to avoid discovery of compounds for which a resistance
mechanism might already be widespread. High-throughput
methods for mechanism-of-action screening have been applied
more frequently in anticancer59−61 and antifungal62−65 drug
discovery efforts but have also shown promise for antibacterial
discovery.66−69

If an extract shows the desired activity, the compounds
responsible for such activity can be isolated through bioactivity-
guided fractionation, a process by which the complex mixture of
natural products undergoes rounds of separation through
chromatography or other techniques. Each fraction is tested
for activity, and active fractions can be further separated until a
single pure active compound remains.70 This process is time-
consuming. In addition, bioactivity-guided fractionation will
likely fail to identify synergistic antibiotics such as streptogramin
A and B71 because unless the synergistic pair has very similar
molecular properties, they will likely be in separate fractions. In
this case, strong activity will be observed in the crude extract and
then be lost during the fractionation process. Identifying the
separated synergistic pair in this case would be very challenging.
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In general, bioactivity-guided fractionation is a slow process that
serves as a bottleneck in the discovery process, and new
strategies are needed to make the bioactive natural product
discovery pipeline more efficient.

■ EMERGING METHODS FOR SCREENING FOR
FUNCTION

There have been multiple recent innovations in the field that
have the potential to improve the efficiency of screens for novel
antibiotic natural products. These innovations can be broken
down into bioinformatic methods that can be used to provide
predictions of structural diversity of compounds being screened,
bioinformatic methods that link biosynthetic genes to
prospective bioactivity, and analytical techniques for dereplica-
tion of structural classes and fast linkage of BGCs to their
product.
To continue our analogy with the search for prime numbers,

we note that prime numbers are the basis for modern encryption
methods. Your emails, for example, are probably encrypted by
the RSA scheme, which requires two prime numbers to encrypt
and decrypt. These numbers need to be large so that a computer
trying all primes could not intercept the message and decrypt it.
As computers get faster, numbers need to get bigger, in rough
analogy to antibiotic resistance. Finding larger primes needs
special methods that depend on the tendencies observed in the
occurrence of prime numbers. For example, numbers with the
general formula (2)n − 1 are more often prime than a randomly
selected number. These numbers are called Mersenne primes,
after the French friar who discovered them in the 17th century. A
Mersenne prime is the current champion for the largest prime
mentioned above, and it was discovered in a focused search. For
the curious, it is 282,589,933 − 1.36 As useful as Mersenne primes
have been to prime discovery, they highlight the limitations of
finding infrequently occurring objects. While there are an
infinite number of Mersenne primes, only 51 are currently
known.72

As discussed above, natural products occur at different
frequencies across microbes. For example, streptothricin is 6
orders of magnitude more common than daptomycin38,39 and
will therefore also be at least 6 orders of magnitude more
common than any antibiotics that have yet to be discovered.
This will lead to frequent rediscovery of streptothricin in natural
product discovery efforts if Streptomyces continues to be used as
the source of extracts in screening efforts. Another issue with
using only Streptomyces and other common microbes to build
extract libraries for screens is that it will reduce the structural
diversity of compounds contained in extract libraries. It is known
from screens of synthetic compounds that more diverse libraries
lead to more successful screening campaigns.73 One strategy
proposed in the 2006 Walsh review is to use more diverse
microbes and BGCs from uncultured microbes to improve the
diversity of screened compounds. Since 2006, new bioinfor-
matics methods have been developed that can enable a more
systematic approach to ensuring libraries of diverse compounds.
There are nowmultiple methods, including BiG-SCAPE,74 BiG-
SLiCE,75 clust-o-matic,76 and lsaBGC,77 that enable clustering
of BGCs by similarity. This will enable exclusion of microbes
that contain BGCs similar to those known as well as selection of
microbes in a way that optimizes BGC diversity, which in turn
should optimize natural product structural diversity, lowering
the rediscovery rate and raising the success rate of screens.
Increasing the compound diversity of extract libraries does

not solve the core challenge underlying natural product

antibiotic discovery, which is that novel antibiotics are rare.
Therefore, strategies that enrich for antibiotic compounds in
extract libraries are needed. One such strategy is to identify
BGCs with likely antibiotic resistance genes. A drawback of
potential antibiotics in natural compounds is the likelihood that
resistance genes are also present. The strategy of looking for
resistance genes turns this liability into an asset. BGCs that
produce antibiotic compounds generally have one or more
resistance genes that provide the producer with resistance to the
compound that it produces.78 There are multiple databases of
resistance genes and software for searching for these genes in
BGCs, such as Resistance Gene Identifier (RGI)79 and ARTS.80

A disadvantage of this approach is that many of these resistance
markers are specific to a given mechanism (e.g., rRNA
methyltransferases that provide resistance to ribosome-targeting
antibiotics81) or structural class (e.g., β-lactamases82). There-
fore, the use of these methods may not lead to the discovery of
antibiotics with novel mechanisms of action. One way to
circumvent this is to focus either on resistance genes that are not
related to mechanism or on structural class, such as trans-
porters.83 Another approach is to search for duplications of
essential genes that are not targeted by known antibiotics in
BGCs. Duplicated essential genes in BGCs have previously been
shown to be resistance genes, and this strategy was used to
identify natural products that target fatty acid synthase from
BGCs which contained a putative fatty acid synthase resistance
gene.84

With the increasing availability of genomic data, genome
mining for BGCs has emerged as a key technology in prioritizing
strains and BGCs that are likely to produce novel natural
products. However, most genome mining software, such as the
very popular antiSMASH,85 and artificial intelligence (AI)
methods for identifying BGCs86−88 do not address how likely a
BGC is to produce an antibacterial compound. There are also AI
methods for predicting antibacterial activity from chemical
structure,89,90 but this requires accurate prediction of the
structure of a BGC’s product to be useful for genome mining�
which still cannot be done reliably across all BGC types. To
address this gap, AI and machine learning (ML) techniques that
predict the bioactivity of a product from the sequence of the
BGC have been developed. At least four such methods have
been reported.86,91−93 Three of these methods predict activity
directly from annotations of proteins in the BGC86,91,93 and the
fourth from the predicted structure of the products, which is
predicted from annotations of proteins in the BGC.92 When
comparing across the same method, general prediction of
antibacterial activity against any bacterial target is the most
accurate prediction problem, with 80% accuracy, but prediction
of activity against Gram-negative bacteria, which account for
most of the AMR urgent threats identified by the CDC, is
significantly less accurate, at 70%.91 The lower accuracy of this
prediction task is likely due to the fact that there are relatively
few known compounds with activity against Gram-negative
bacteria, and, in general, the main limitation of these methods is
a lack of high-quality training data linking BGCs to the
bioactivity of their products.91 For example, a recent study
adapting activity predictions for fungal BGCs showed that
accuracy was lower for fungal BGCs than bacterial BGCs, likely
due to the fact that there is less data available linking fungal
BGCs to their products and the products’ activity.94 The
accuracy of these methods will likely continue to improve as
more training data becomes available and with advancements in
AI technology. Even with the limited accuracies of these
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methods, they only need to outperform random selection to be
effective at enriching extract screening libraries for compounds
with antibacterial activity. Another approach that does not rely
on AI is to search for homologs of biosynthetic genes known to
produce reactive groups, such as enediynes,95 which could serve
as warheads that react with their molecular target. This approach
has been reviewed previously.96

Even if the bioinformatic methods described above are
effective at enriching extract libraries for active compounds, it is
still challenging to identify and isolate those compounds.
Analytical methods for linking compounds to their activity or
BGC and methods for dereplication can make the isolation
process more efficient. One method for linking metabolites to
activity in complexmixtures is NPAnalyst, which combines assay
and LC-MS data from different mixtures to identify mass
features that are strongly associated with activity and are
therefore likely to be responsible for the observed activity.97

Once the compound suspected of activity is known through one
of these methods, it can be directly purified, avoiding the need
for costly bioactivity-guided fractionation. In addition to linking
mass features to likely activity, there are also methods for linking
mass features to the BGCs that are likely to produce them. This
approach is useful in combination with one of the bioinformatic
methods for identifying promising BGCs described above, as it
enables faster identification of the product of interest. These
methods include IsoAnalyst, which uses different isotopically
labeled precursors to identify the likely biosynthetic pathway for
metabolites in crude extracts,98 andmetabologenomics methods
that rely on correlations between BGC presence/absence in
genomes and metabolomic signals.99 There are also a number of
emerging AI methods for determining the structural class of a
metabolite from LC-MS/MS data which can also be used to
narrow down the possible BGCs that could produce the natural
product.100−104 Analytical methods for dereplicating com-
pounds similar to known antibiotics can also improve the
efficiency of screening and avoid the discovery of compounds for
which resistance is already widespread. These methods include
the previously mentioned structural class identification methods
as well as the molecular networking method GNPS105 and
methods for analyzing NMR spectra of complex mixtures, such
as SMART106 and MADByTE.107,108

■ REMAINING CHALLENGES
Regardless of the number of antibiotics discovered, evolution
will likely find a way to escape all of them. However, some
antibiotics are more prone to the development of resistance than
others. As described above, the amount of time it took for
resistant pathogens to first emerge against various antibiotics
varied significantly. Recently, there have also been several
reports of antibiotics for which resistance does not emerge over
the span of laboratory evolution experiments. There are a few
characteristics that make an antibiotic more likely to be
resistance-proof. These include targeting molecules that are
not directly genetically encoded (e.g., not proteins or RNAs) or
compounds that have multiple targets. One such example is the
natural product teixobactin, which was isolated from a
previously uncultured organism through use of a device called
iChip. Teixobactin was found to inhibit cell wall synthesis
through binding to the precursors, lipid II and lipid III, and binds
to the pyrophosphate-sugar moiety rather than the D-Ala-D-Ala
moiety targeted by vancomycin. No resistant mutants were
obtained after culturing Staphylococcus aureus with sub-
inhibitory concentrations over 27 days.48 But it is important

to temper enthusiasm by noting that we once thought
vancomycin thwarted resistance. Clovibactin is another natural
product that targets cell wall precursors that did not produce
resistant mutants when plating cultures with clovibactin at a
concentration of 4× MIC.109

There are also several synthetic compounds designed to avoid
resistance that were inspired by natural products. Macolacin was
designed by predicting the most likely product structure of a
BGC related to the BGC that produces colistin that showed
signs of divergence that could indicate evolutionary pressure to
escape resistance. As expected, macolacin was effective against
colistin-resistant bacteria.110 Cresomycin is a synthetic anti-
biotic that targets the ribosome and escapes common resistance
mechanisms for ribosome-targeting antibiotics. Cresomycin was
designed such that the molecule would be preorganized into the
conformation adopted by lincosamides, a class of compounds
that include the natural product lincomycin, upon binding to the
ribosome.111 Other examples of successful design strategies of
natural-product-inspired compounds that evade resistance
include rational design of compounds that avoid degradation
by β-lactamases while maintaining cell permeability112 or
linkage of two antibiotics that bind to different targets.17

As discussed above, the use of multi-drug-resistant organisms
in screening campaigns increases the likelihood that hits will
escape resistance, like the compounds discussed in this section.
It remains to be seen if the lack of resistance to these compounds
can hold over decades of use in clinical settings like it does in
laboratory evolution experiments that span much shorter time
periods. Even if pathogens cannot evolve resistance through
modification of a target, it is possible that they could evolve
transporters or enzymes that modify or degrade the antibiotic
that provide resistance or obtain such genes through horizontal
gene transfer. It should also be noted that some of the studies
discussed here demonstrated only that the compound escaped
known resistance mechanisms and did not perform laboratory
evolution experiments to determine how easily new resistance
mechanisms might arise.

■ FUTURE
The largest searchable database containing information about
what microbes are capable of making is the collection of
genomes in NCBI’s Genbank, with over 3 million prokaryotic
sequences of varying quality. More curated databases with
similar functionality include NCBI’s Refseq database (over
315,000 prokaryotic genomes)113 and the Joint Genome
Institute’s (JGI) GOLD data set (219,320 prokaryotic
genomes).114 There are also specific collections of precomputed
BGCs, such as the antiSMASH database,115 the JGI’s IMG-
ABC116 and Secondary Metabolism Collaboratory (SMC),117

and the metagenome-focused BGC-ATLAS.118 The Natural
Product Discovery Center (NPDC) is another database focused
on genomes and BGCs of Actinobacteria and is unique among
the genomic resources in that it also houses and distributes
strains.119 As described above, numerous researchers have used
these resources to identify BGCs or other encoded traits. But,
they contain no useful information about antimicrobial function.
You can find BGCs that are likely to make new molecules, or
BGCs that make variations of known antibiotics, or a resistance
gene. But you cannot search genomes for antibacterial activity.
So, the challenge for the future is to create a pathway, or even
pathways, from sequence to function, for then the task begun by
Chris Walsh and others to connect genes, enzymes, and
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biosynthesis to the antibiotic resistance crisis can begin on the
needed scale.
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