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Abstract: BackgroundBackground: A randomized trial suggested that reducing left-sided subthalamic stimulation
amplitude could improve axial dysfunction.
ObjectivesObjectives: To explore open-label tolerability and associations between trial outcomes and asymmetry data.
MethodsMethods: We collected adverse events in trial participants treated with open-label lateralized settings for
≥3 months. We explored associations between trial outcomes, location of stimulation and motor asymmetry.
ResultsResults: 14/17 participants tolerated unilateral amplitude reduction (left-sided = 10, right-sided = 4). Two
hundred eighty-four left-sided and 1113 right-sided stimulated voxels were associated with faster gait velocity,
81 left-sided and 22 right-sided stimulated voxels were associated with slower gait velocity. Amplitude
reduction contralateral to shorter step length was associated with 2.4-point reduction in axial MDS-UPDRS.
Reduction contralateral to longer step length was associated with 10-point increase in MDS-UPDRS.
ConclusionsConclusions: Left-sided amplitude reduction is potentially more tolerable than right-sided amplitude reduction.
Right-sided more than left-sided stimulation could be associated with faster gait velocity. Shortened step
length might reflect contralateral overstimulation.

In patients with Parkinson’s disease (PwPD) who develop axial
dysfunction after bilateral subthalamic deep brain stimulation
(STN-DBS), lateralized stimulation (unilateral amplitude reduc-
tion) could reduce stimulation-induced axial dysfunction while
maintaining the benefits of bilateral STN-DBS.1–7 In a random-
ized trial, we found that 50% left-sided STN-DBS amplitude

reduction was associated with a 2.5-point reduction in the axial
subscale of the Movement Disorders Society-sponsored Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS).1 Thus, we
conducted an open-label extension of the trial. Since axial dys-
function in PwPD has been associated with motor and gait
asymmetry,2,3 we conducted exploratory analyses examining
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associations between trial outcomes, location of stimulation and
motor asymmetry data.

Methods
Participant characteristics and methodology of the randomized
trial are reported separately.1 Briefly, 22 PwPD and treatment-
resistant axial dysfunction after bilateral STN-DBS were blindly
and randomly crossed over between bilateral, left-sided and
right-sided lateralized STN-DBS (unilateral 50% amplitude
reduction) for ≥21 days for each intervention. The primary out-
come was gait velocity change. Secondary outcomes were
changes in selected measures of quality of life, motor, axial motor
and cognitive function.

Open-Label Extension
The 17 of 22 participants who experienced axial benefits during
the blinded phase were offered treatment with the most benefi-
cial lateralized settings in an optional, 3-month open-label exten-
sion. Lateralized settings associated with the greatest increase in
gait velocity were considered the most beneficial. Open-label
lateralized settings were programmed or continued immediately
after conclusion of the blinded phase. Adverse events were sys-
tematically collected (Fig. 1).

Location of Stimulation
We computed bilateral volumes of tissue activated (VTAs)
corresponding to high amplitude (VTAH) and low amplitude
(VTAL) settings per participant. Brain MRI studies sufficient for
VTA computation were available for 20 of 22 participants
(1 excluded due to motion artifact, 1 due to unavailable images).
Seventeen of 20 participants underwent pre-operative 1.5 T
scans. The remaining 3 underwent pre-operative 3 T scans. Pre-
operative sequences were: three-dimensional spoiled gradient
echo (3D-SPGR) acquired with 3.0 T GE Signa HDxt scanner:
voxel size = 1 � 1 � 1 mm, TR = 9.0 ms, TE = 3.7 ms, flip
angle = 12�(n = 3) and 3D-SPGR acquired with 1.5 T GE Signa
Excite scanner: voxel size = 1 � 1 � 1 mm, TR = 12.4 ms,
TE = 5.3 ms, flip angle = 20�(n = 17). Post-operative sequences
were: 3D-SPGR acquired with 1.5 T GE Signa Excite scanner:
voxel size = 1 � 1 � 1 mm, TR = 11.9 ms, TE = 5.0 ms, flip
angle = 20�(n = 20). T1-weighted MRI acquisitions were
processed with the publicly available Lead-DBS pipeline (www.
lead-dbs.org), which was used to perform electrode localization,
native-to-standard space normalization, and VTA modeling.8 Each
VTA (binary label) was assigned a corresponding gait velocity
value based on the participant and amplitude setting (VTAH or
VTAL) from which it was drawn. Subsequently, we used a voxel-
wise linear mixed effect model to explore whether stimulation of
a voxel (denoted by VTA overlap with each voxel) was associated
with the individual change in gait velocity (R software 3.4.4, R
Core Team, R Foundation for Statistical Computing, 2017 and
RMINC, https://github.com/Mouse-Imaging-Centre/RMINC).

Given the exploratory nature of this analysis, we established an
uncorrected significance threshold of P < 0.05.

Using the Wilcoxon signed rank test (IBM SPSS, IBM Corp.,
Armonk, NY, USA), we compared selected right-sided and left-
sided intraoperative data for each participant (mean STN length,
mean firing rate, burst index, local field potential frequency
bands and power). We corrected for the order of DBS lead inser-
tion (right or left first) and the number of recording trajectories
per hemisphere.

Motor Asymmetry
We obtained asymmetry scores using the formula “100% �
[right–left sided items]/[right+left sided items]” for MDS-
UPDRS part III and lower extremity MDS-UPDRS part III.
Step length was measured by a 6-meter walkway and quantita-
tive gait analysis system (Zeno walkway and PKMAS system,
ProtoKinetics, Havertown, PA, USA). Shorter and longer step
length at baseline were defined by comparing the average right
and left step length obtained during both bilateral STN-DBS
conditions. Step length asymmetry was calculated using the for-
mula “100% � [right–left step length]/[right+left step length]”.
Asymmetric step length at baseline was defined as >2% difference
in favor of right or left step length. Step length ratio was calcu-
lated using the formula “right/left step length”. Using the same
linear effects model employed for primary and secondary out-
come analyses,1,9 we explored correlations between trial
outcomes and measures of motor and step length asymmetry at
baseline and during each trial intervention.

Results
Open-Label Extension
The 17 participants who benefited from lateralized STN-DBS
during the blinded phase opted to participate in the three-month
open-label extension. During this extension, three participants
returned to baseline settings. In the 14 participants who tolerated
lateralized STN-DBS, left-side amplitude was reduced in 10 and
right-side amplitude was reduced in 4. Medication adjustments
were not required (Fig. 1, Table S1).

Location of Stimulation
There was an overall association between stimulation location and
gait velocity (P < 0.05, uncorrected) (Fig. 2). Out of the voxels
that survived significance threshold (t = 2.02), a larger extent of
voxels associated with faster gait velocity localized to the right
STN and vicinity (n = 1113) compared to those located in the left
STN and vicinity (n = 284). Likewise, a larger extent of voxels
associated with slower gait velocity localized to the left STN and
vicinity (n = 81) compared to those located in the right STN and
vicinity (n = 22). In the right hemisphere, voxels associated with
faster gait velocity when stimulated (n = 1113) localized to the
zona incerta, anteroventral STN, and white matter lateral to STN,
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while voxels associated with slower gait velocity (n = 22) localized
near the superior border of the substantia nigra. In the left hemi-
sphere, voxels associated with faster gait velocity (n = 284) local-
ized to a circumscribed portion of the medial STN, while voxels
associated with slower gait velocity (n = 81) localized to the dor-
solateral STN and adjacent white matter.

Intraoperative data were available for 16 participants. There
were no significant differences in surgical and electrophysiological

characteristics when comparing right-sided and left-sided data
(Table S4).

Motor Asymmetry
Reducing stimulation amplitude contralateral to shorter step
length resulted in 2.4-point reduction in axial MDS-UPDRS
(P = 0.006, uncorrected) and 1.5-point reduction in UPDRS-

Figure 1. Summary of the blinded and open-label phases of the lateralized STN-DBS study.1 Dashed red line: Average values of the
bilateral-STN-DBS periods. White arrows: Medication adjustments. Black arrows: Treatment failures. Green arrows: Left-sided amplitude
reduction beneficial. Blue arrows: Right-sided amplitude reduction beneficial.
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PIGD (P = 0.037, uncorrected). Reducing stimulation amplitude
contralateral to longer step length resulted in 10-point increase in
total MDS-UPDRS (P = 0.029, uncorrected), 5-point increase in
motor MDS-UPDRS (P = 0.02, uncorrected), 4.2 � 2 cm reduc-
tion in mean step length (P = 0.038, uncorrected) and
4.1 � 1.9 cm reduction in right step length (P = 0.042,
uncorrected) (Table S2). In the 15 participants with baseline asym-
metric step length (Fig. S1), reducing stimulation contralateral to
shorter step length resulted in 2.5-point reduction in axial MDS-
UPDRS (P = 0.01, uncorrected) (Table S3).

Discussion
This study was designed as exploratory. Thus, we did not correct
for multiple comparisons and all results should be considered
hypothesis-generating.

During the open-label phase, 14 of 17 participants tolerated
lateralized STN-DBS without medication adjustments. Consis-
tent with the blinded phase,1 left-sided amplitude was reduced in
10 of those 14 participants. During both phases, 9 of the
12 lateralized STN-DBS interventions that were not tolerated
had right-sided amplitude reduction (Fig. 1). Although 3 months

is a relatively short duration to infer longer-term effects, this sug-
gests that left STN-DBS amplitude reduction is potentially more
tolerable than right STN-DBS amplitude reduction. Medication
adjustments during the blinded phase were associated with lack
of tolerability, regardless of the side of amplitude reduction
(Fig. 1, Table S1).

DBS offers the opportunity to study interhemispheric network
interactions.11,12 Our imaging and intraoperative analyses
explored right versus left-sided differences potentially contribut-
ing to lateralized STN-DBS outcomes. VTAs were generated
with the E-field norm finite element method,8 which resembles
gold standard models when estimating VTAs for monopolar set-
tings but may not be as reliable for complex DBS settings used in
PwPD and axial dysfunction.13 Since 10 of 14 participants had
left-sided amplitude reduction, a greater number of analyzed
voxels localized to the right hemisphere. Considering these limi-
tations, more stimulation regions associated with faster gait veloc-
ity localized to the right STN and neighboring regions, and
more stimulation regions associated with slower gait velocity
localized to the left STN and neighboring regions (Fig. 2). These
findings suggest that right-sided stimulation may contribute to
faster gait velocity and left-sided overstimulation may contribute
to slower gait velocity, which is consistent with prior studies
suggesting right hemispheric dominance for locomotion.14–18

In PwPD treated with bilateral STN-DBS, maintaining opti-
mized right-sided stimulation while avoiding left-sided
overstimulation could prevent stimulation-induced axial dysfunc-
tion, independent of handedness and appendicular asymme-
try.1,4–6,19,20 We did not find left vs. right differences between
averaged electrophysiological data corresponding to STN trajec-
tories (Table S4). However, we found that bilateral regions asso-
ciated with faster gait velocity localized outside of the
dorsolateral STN. Moreover, there were voxels associated with
slower gait velocity that localized to the left dorsolateral STN.
These findings could imply that dorsolateral STN stimulation,
particularly left-sided, might be detrimental for gait velocity.
Unilateral pallidal stimulation could also have axial and bilateral
effects.21 In fact, left-sided pallidal-subthalamic connectivity has
predicted the overall motor response to bilateral STN-DBS.19

Future work could analyze left and right-sided neuronal or
regional activity, including remote measurements to assess for
continuous and task-related changes while correcting for tolera-
bility and response to right versus left-sided amplitude reduction.
Future work could include PwPD treated with subthalamic and
pallidal DBS, and compare voxel laterality after standardizing for
discrepancies between lateralized VTAs but not number of par-
ticipants or side of amplitude reduction. Combining patient-
specific connectivity with directional stimulation could allow
individualized stimulation of right-sided and left-sided regions
most important for axial motor control.22,23

Amplitude reduction contralateral to longer step length was
associated with increase in total and motor MDS-UPDRS. Con-
versely, amplitude reduction contralateral to shorter step length
was associated with reduction in axial MDS-UPDRS (Tables S2
and S3, Fig. S1). Future studies could analyze changes in motor
fluctuations using the MDS-UPDRS part IV. Evaluating gait

Figure 2. Voxels associated with gait velocity changes when
stimulated (P < 0.05, uncorrected) are projected on high-
resolution T1-weighted template slices (A: axial, B: coronal).10

Warm colors: Faster gait velocity. Cool colors: Slower gait
velocity. Green outlines: STN. Pink outlines: Zona incerta.
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asymmetry in these patients is challenging due to combined dis-
ease, medication and stimulation effects. Restoring gait symmetry
could normalize gait coordination but its benefits are
unclear.3,24,25 Stimulation-induced effects could play a significant
role in gait dysfunction because continuous, bilateral STN-DBS
might not adequately modulate alternating oscillations that occur
during each contralateral step cycle.26,27

In conclusion, PwPD who develop axial dysfunction after
bilateral STN-DBS may tolerate left more than right-sided
lateralized STN-DBS. Right more than left-sided stimulation
could be associated with faster gait velocity and shortened step
length might reflect contralateral overstimulation. Further
research is necessary to study whether delivering individualized
stimulation in a lateralized or alternating fashion could benefit
PwPD and axial dysfunction.22,26,27
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