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Abstract

Purpose: Current breast DCE-MRI strategies provide high sensitivity for cancer detection but 

are known to be insufficient to fully capture rapidly changing contrast kinetics at high spatial 

resolution across both breasts. Advanced acquisition and reconstruction strategies aim to improve 

spatial and temporal resolution and increase specificity for disease characterization. In this work, 

we evaluate the spatial and temporal fidelity of a modified data-driven low-rank based (MOCCO) 

compressed sensing reconstruction compared to compressed sensing with temporal total variation 

(CS-TV) with radial acquisition for high spatial-temporal breast DCE-MRI.

Methods: Reconstruction performance was characterized using numerical simulations of a 

golden-angle stack-of-stars breast DCE-MRI acquisition at 5 second temporal resolution. 

Specifically, MOCCO was compared to CS-TV and conventional SENSE reconstructions. The 

temporal model for MOCCO was pre-learned over the source data whereas CS-TV was performed 

using a first-order temporal gradient sparsity transform.

Results: MOCCO was able to capture rapid lesion kinetics while providing high image quality 

across a range of optimal regularization values. MOCCO also recovered kinetics in small lesions 

(1.5 mm) in line-profile analysis and error images, while g-factor maps showed relatively low and 

constant values with no significant artifacts. CS-TV demonstrated either recovery of high spatial 

resolution with reduced temporal accuracy using large regularization values, or recovery of rapid 

lesion kinetics with reduced image quality using low regularization values.
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Conclusion: Simulations demonstrated that MOCCO with radial acquisition provides a robust 

imaging technique for improving temporal fidelity while maintaining high spatial resolution and 

image quality in the setting of bilateral breast DCE-MRI.
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Introduction

Dynamic contrast-enhanced (DCE) MRI plays an essential role in the diagnosis and staging 

of breast cancer1. High spatial resolution is routinely prioritized in clinical diagnostic DCE-

MRI protocols to allow detection of small lesions and assessment of lesion morphology2. 

Historically, clinical bilateral breast MRI exams typically used multi-phase fully sampled 

Cartesian encoding to achieve high spatial resolution (at or below 1 × 1 mm in-plain 

pixel size) over the large field of view (FOV) however this allowed only limit temporal 

resolution (60–120 s)3. Studies have showed that a temporal resolution of 90 s or faster was 

sufficient to allow lesion detection and assessment prior to the occurrence of lesion washout 

and maximal background parenchymal enhancement that might otherwise obscure these 

findings in the diagnostic setting1,4. The authors also found washout-like lesion kinetics to 

be present in approximately 85% of cancers. However, much higher temporal resolution may 

enable more advanced quantitative kinetic analysis including quantitative pharmacokinetic 

(PK) modeling of DCE-MRI. PK modeling has shown promise in providing additional 

non-invasive information for differentiating benign and malignant lesions5,6 and assessing 

response to therapy7,8. It relies on fitting the PK model to DCE-MRI data to extract 

physiologic parameters, but requires very high temporal resolution (< 10 s) for the entire 

acquisition series to accurately do so9,10. To achieve such high levels of temporal and spatial 

resolution, more advanced acquisition and reconstruction approaches are needed.

Within breast DCE-MRI, the term Ultrafast Imaging has come to refer to protocols with 

temporal frame update times on the order of 7–9 s. Hybrid approaches combining the use 

of Ultrafast imaging for the first minute after contrast injection followed by four 60–80 s 

temporal resolution time frames have been suggested to provide improved detection of early 

contrast enhancement associated with malignancy.11,12 However, these approaches reduce 

the achievable spatial resolution, imaging FOV, or both. Further, these acquisition strategies 

only allow for semi-quantitative analysis due to the lack of the wash-out information. 

Another approach is to use an interleaved acquisition to improve both temporal and 

spatial resolution by alternating between frames of high temporal resolution imaging and 

high spatial resolution imaging during the contrast passage.13 This approach prevents the 

sharing of temporal data between individual images to improve temporal fidelity. However, 

the sequence is sensitive to timing mismatch between contrast administration and image 

acquisition due to the relatively short pre-contrast interval. Moreover, it may not allow for a 

detailed morphologic evaluation in the early enhancement phase due to the interleaved and 

non-continuous nature of the temporal and spatial resolution.
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Undersampled Cartesian acquisitions combined with view-sharing reconstructions have 

been proposed more recently as another approach to achieve high spatial and temporal 

resolution14–18. In these methods, the undersampled high spatial frequencies are filled 

in using data from other time points in order to mitigate the loss of spatial resolution. 

However, these approaches have been shown to suffer from temporal blurring19 that may 

comprise evaluation of lesion features and temporal kinetics. Compressed sensing (CS) 

has been proposed as an alternative reconstruction strategy that exploits the availability 

of a sparse representation of MR images and relies on randomized k-space sampling 

with incoherent artifacts to produce images via nonlinear constrained reconstruction20. A 

sparse representation can be considered in the spatial20, temporal21, or other parametric 

domains, with the level of sparsity directly affecting achievable acceleration factors. Several 

CS-based techniques, such as k-t BLAST/k-t SENSE22, or k-t FOCUSS23, have exploited 

correlations in both k-space and time to reduce the scan time by factors of 6 – 1024,25. 

However, it is a challenge for Cartesian acquisitions to achieve higher acceleration factors. 

Non-Cartesian sampling schemes, such as radial or spiral, present alternative acquisition 

approaches that are readily amenable to use with CS techniques and can provide higher 

acceleration factors26.

A 3D stack-of-stars acquisition with a golden-angle radial sampling scheme can provide 

nearly uniform k-space coverage for any arbitrary number of projections27. However, 

undersampled radial acquisition results in streaking artifacts, making it a proxy for 

random sampling that is required by the CS theory20,28–30. A CS reconstruction using a 

temporal total variation (TV) sparsifying transform with undersampled golden-angle radial 

acquisition, referred to as iGRASP31, has been demonstrated for abdomen21 and breast 

DCE-MRI32. Kim et. al. demonstrated that high spatial resolution can be achieved at 5 

s temporal resolution. However, the demonstrated image quality may not be achievable 

for different breast imaging protocols because a general transform may not result in the 

necessary level of sparsity for situations with complex spatial and/or kinetic features. An 

alternative data-driven low-rank-based method, known as MOdel Consistency COndition 

(MOCCO), uses temporal models estimated from the acquired data itself and thereby has the 

ability to adapt to varying imaging protocols and to reduce modeling error21. Preliminary 

results have been presented demonstrating the feasibility of MOCCO with radial acquisition 

for high spatial resolution breast DCE-MRI with 10 s temporal resolution33.

Although advanced acquisition and reconstruction techniques, such as view sharing and 

CS-based algorithms, show promise for providing high spatial and temporal resolution, 

additional studies are needed to characterize the performance of these approaches under 

a broader range of imaging conditions such as noise level, lesion size, and contrast 

kinetics. In practice, comparison and validation studies of new techniques for advanced 

acquisition and reconstruction in breast DCE-MRI are difficult to perform in patients 

due to the lack of a known ground truth in patient physiology and low reproducibility 

due to physiologic variability between patients and exams. To minimize patient dependent 

variation, retrospective simulations, which generate undersampled data from fully-sampled 

series, have been used to validate time-resolved CS reconstructions34–37. However, such 

approaches still lack a known ground truth to evaluate temporal fidelity. To overcome these 

limitations, breast digital reference objects (DROs) present an alternative strategy since 
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they can be readily programmed to reproducibly simulate tissue features, such as lesion 

morphology, physiology, and MR tissue characteristics, without suffering from confounders 

due to MRI hardware biases or patient related factors such as positioning and motion.

In this work, we evaluate the performance of undersampled stack-of-stars radial acquisition 

and CS reconstruction using a DRO. Two different reconstruction algorithms, temporal TV 

and MOCCO, are compared for time-resolved bilateral breast DCE-MR with a goal to 

achieve high temporal resolution (~5 s) while maintaining required spatial resolution. To test 

the reconstruction performance, we carry out simulations to mimic clinical scenarios and 

evaluate the reconstruction performance in the spatial and temporal domains as compared 

with the simulated ground truth.

Theory

The MRI measurements m of an image series s acquired using an encoding matrix E can be 

modeled in the matrix form as

m = Es

[1]

In many applications, MR images or image series possess a representation in some basis that 

has only a relatively small number of non-zero coefficients, i.e., a sparse representation. The 

sparse representation can be learned and extracted from prior knowledge or assumptions 

about signal behavior. The CS theory guarantees that under certain conditions on the 

encoding matrix and sparsity level, the signal s can be recovered from the undersampled 

data m by solving the following minimization problem

ŝ = argmin
s

∥ Es − m ∥2
2 + λ ∥ Φs ∥ 1

[2]

where E is the encoding matrix comprising coil sensitivity values and Fourier encoding 

terms, Φ is an operator mapping the signal s to the selected representation space (sparsifying 

transform), and λ is a regularization parameter providing a balance between the data 

consistency and the sparsity terms. Minimizing the ℓ1 norm promotes sparsity of the image 

representation, while simultaneously allowing for outlying values.

For dynamic imaging, different image pixels often have similar temporal enhancement 

curves. Therefore, an image series can have a sparse representation in a properly chosen 

basis of temporal waveforms. The compressed sensing with temporal total variation (CS-

TV) regularization can be defined as

ŝ = argmin
s

∥ Es − m ∥2
2 + λ∥ ∇ts ∥1

[3]
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where ∇t is the first order temporal gradient.

When a low-resolution estimate of an image series is available (e.g. obtained from the fully 

sampled k-space center in radial imaging), it can be utilized to construct a tailored basis for 

representation of temporal behavior of different pixels in the image series. MOCCO uses 

such basis to construct a temporal model of the image series, which provides a sparsifying 

transform. The image series is then reconstructed as

ŝ = argmin
s

∥ Es − m ∥2
2 + λ∥ UKUK

* − It s ∥1

[4]

where UK is the matrix constructed from K elements of this basis. In this work, UK was 

learned through complex independent component analysis (ICA).38 The ICA technique 

assumes that each component is statistically independent from the source signals, which has 

been shown to be a robust method to identify key components of the perfusion series and 

remove unwanted image-to-image fluctuations.39

Methods

Simulations:

All simulations were performed using a modified breast DRO based on work by Bancroft 

et. al.40 and generated using MATLAB (Math-Works, Inc., Natick, Massachusetts, USA). 

The DRO was designed to include both static features derived from a standard T1 weighted 

breast MRI with fat saturation as well as simulated enhancing features as shown in Figure 

1. Imaging simulation parameters were chosen to replicate a conventional clinical bilateral 

breast protocol: FOV = 340 mm × 340 mm, in-plane spatial resolution = 0.75 mm × 0.75 

mm, slice thickness = 1.4 mm, flip angle (FA) = 30°, TE/TR = 2.4 ms / 4.7 ms, and matrix 

size = 448 × 448 × 142. Circles with diameters of 1.5 mm, 5 mm, 8 mm, and 10 mm were 

used to simulate lesions with circumscribed margins. The extended Tofts model41,42 was 

used to simulate lesion signal changes as a function of time similar to what is observed 

in vivo. An arterial input function curve based on the publicly available dispersion model 

described by Barboriak et. al. was used to generate the DCE-MRI data.43 To cover a range 

of different lesion types, seven lesions were simulated based on PK parameters outlined in 

the ACR BI-RADS Breast Magnetic Resonance Imaging44 including two malignant lesions 

(Ktrans>0.25 min−1 and kep>1.0 min−1), three benign lesions (Ktrans<0.25 min−1 and kep<1.0 

min−1) and two intermediate lesions (Ktrans>0.25 min−1 and kep<1.0 min−1). Simulation 

parameters for all lesions are listed in Supporting Information Table S1.The spoiled gradient 

recalled echo (SPGR) signal model was then used to generate signal time curves assuming 

a field strength of 3 T, T1 value of breast tissue (T10 =1444 ms45), and contrast agent 

relaxivity of r1 = 4.9 mM −1s −1 to simulate Gd-BOPTA (gadobenate dimeglumine, 

Multihance, Bracco, Milan, Italy)46, and imaging flip angle (FA = 30°). Images containing 

both static and dynamic features were then sampled using the non-uniform fast Fourier 

transform (NUFFT) to simulate k-space data generated from an undersampled golden-angle 

radial acquisition consisting of 1024 projections × 16 coils.
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Reconstruction:

The undersampled radial data were reconstructed at 5 s temporal resolution corresponding 

to 8 projections per time frame (undersampling factor, R = 88) using MOCCO, CS-TV, 

and iterative SENSE. For the purposes of providing reference images for comparison, fully-

sampled radial data consisting of 704 individual projections per time frame were generated 

by matching the temporal resolution of the undersampled radial images. Next, reference 

images were reconstructed using iterative SENSE reconstruction from fully sampled k-space 

data. Both MOCCO and CS-TV were implemented using iteratively re-weighted least 

squares minimization47. To reconstruct source data without noise added, iterations were 

performed until the relative norm of the k-space residual was less than a specified tolerance 

(10 −9) or until a maximal number of iterations (n=250) was reached. The regularization 

parameter (λ) for both CS-TV and MOCCO was selected from a wide range of values (from 

0.05 to 100) to minimize the normalized root-mean-square-error (nRMSE) between the 

reconstructed and reference image series. The optimized λ values for MOCCO and CS-TV 

were then used for all subsequent analysis.

Analysis:

Temporal curves from regions-of-interest (ROIs) placed in each lesion were measured across 

all image series in the time-series to evaluate the temporal fidelity of the reconstruction 

algorithm. The curves from the reconstructed data were compared to the original signal 

model. The nRMSE(%) between the reconstructed image xrecon and reference image xref was 

evaluated either within lesion ROIs or the whole image for all time points to demonstrate 

the reconstruction accuracy. nRMSE(%) values were reported as the percentage of the mean 

value of the reference images given in Equation 5,

nRMSE(%) = 100 × t = 1
m

i = 1
n xrecon i, t − xref i, t 2

t = 1
m

i = 1
n xref i, t 2

[5]

where n is equal to the number of pixels in the region of interest and m is the number of 

time points. PK modeling was also performed to evaluate the temporal fidelity by assessing 

the ability to recover the original kinetic parameters from the temporal curves. PK modeling 

was performed using the ROCKETSHIP toolbox48 by fitting the extended Tofts model to the 

time-signal curves using the Levenberg-Marquardt algorithm. The obtained PK parameters 

were then compared to the PK parameters used to generate the input time curves for the 

simulation to determine how well the acquisition and reconstruction could recover the time 

curves. The input PK parameters are listed in Supporting Information Table S1.

To evaluate the spatial fidelity for varying lesion sizes, signal intensity line profiles 

were measured across each lesion for both reference and MOCCO images. To evaluate 

the performance of the MOCCO reconstruction in the presence of noise, Monte-Carlo 

simulations were performed to measure the noise amplification factor (g-factor, gR).49 One 

hundred realizations of independent and identically distributed (i.i.d.) complex Gaussian 
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noise with zero mean and standard deviation of 10% and 30% of the mean k-space 

magnitude were added to the k-space data resulting in 200 unique datasets (100 for each 

noise level). Each dataset was then reconstructed with MOCCO and SENSE. Iterations were 

carried out until the residual error fell below 10 −9 or a maximum number of iterations 

(set to 100) was reached. Additionally, 100 reconstructions were performed using fully-

sampled data with additive i.i.d. Gaussian noise with the standard deviation matched to the 

undersampled data. The propagation of noise was estimated by calculating gR:

gR = σR

σF R

[6]

where σR and σF are noise variances for the undersampled and fully-sampled reconstructions, 

respectively, calculated across Monte-Carlo samples. The mean gR values from ROIs 

including breast tissue, axilla region, and chest wall were measured across all time frames 

for all reconstructions. The reconstruction bias was assessed by taking a pixel-wise mean 

across all Monte-Carlo samples and calculating the normalized image difference between 

the undersampled and the fully sampled images.

Results

Example signal intensity time curves are shown for several simulated lesions with varying 

enhancement patterns following iterative SENSE, CS-TV, and MOCCO reconstructions in 

Figure 2. Note that the displayed time interval ranges from 150 s to 400 s to allow better 

visualization over the points of greatest change. The complete time-curves are shown in 

Supporting Information figure S1. Both the CS-TV and MOCCO approaches generated 

temporal signal curves that were free of signal oscillations compared to iterative SENSE. 

The MOCCO technique was found to better represent the lesion temporal enhancement 

kinetics, such as rapid wash-in and wash-out in lesion 5 (Figure 2, H) as well as minor 

deviations within all simulated lesions in the difference image (Figure 3, I). The choice of 

regularization parameter in the CS-TV approach allows the user to optimize between image 

quality and temporal characteristics. A smaller regularization parameter (λ = 0.1) provides 

a relatively accurate depiction of the lesion signal intensity (Figure 2, A–D) but leads to 

larger residual error in the background breast tissue which is easily visible in the difference 

image (Figure 3, G). However the larger regularization parameter (λ = 2) displays overall 

similar image quality to the reference image (Figure 3, D) but induces temporal blurring in 

the measured signal time curves from the simulated lesions (Figure 2, A–D).

Plots of nRMSE(%) over the entire FOV for MOCCO and CS-TV with different values 

for λ are shown in Figure 4. The corresponding reconstructed images are shown in 

Supporting Information Figure S2. Although the nRMSE(%) measured over the full FOV 

is too general to provide a precise metric for both spatial and temporal quality assessment, 

the plots provide a quantitative measure for the overall errors. Both methods decreased 

the nRMSE(%) when increasing λ from 0–10 for MOCCO and λ from 0–2 for CS-TV. 

The curves of the nRMSE(%) for MOCCO show a relatively stable region between 
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λ = 5 − 10, whereas CS-TV shows a narrow range of λ over which nRMSE(%) has been 

minimized. For larger regularization parameters (λ > 20 for MOCCO and λ > 6 for 

CS-TV), the reconstruction was strongly dominated by the minimization of the temporal 

constraint, so the reconstructed images were observed to be overly smoothed and resulted in 

increased nRMSE(%). The images can be found in Supporting Information Figure S2 B, for 

λ = 100, and Figure S2 C, for λ = 20. Results for PK parameters obtained from MOCCO 

(λ = 10), CS-TV (λ = 0.1 and λ = 2), and fully-sampled reference images for 8 mm 

lesion size are shown in Supporting Information Table S2.

In order to evaluate the reconstruction accuracy of the MOCCO approach for different lesion 

sizes, temporal curves and the corresponding line profiles were created and are plotted with 

lesion sizes of 1.5 and 8 mm in Figure 5 and Figure 6. Results of all lesion sizes and 

complete time-curves are shown in Supporting Information figure S3 and S4. No significant 

error was observed in the temporal curves as a function of the decreasing lesion size. 

The corresponding line profiles are well matched to those measured in the fully-sampled 

reference images. The nRMSE(%) of all lesion time curves are summarized in Table 1 

showing that the temporal error is increased for small lesion sizes (1.5 and 5 mm) with 

nRMSE(%) around 13–20%. For lesions larger than 8 mm, the nRMSE(%) was found to 

be ≤ 13% for most lesion types with the exception of lesions 3 and 5 that simulated very 

rapid wash-in and wash-out characteristics. Results for PK parameters obtained from fully-

sampled reference images and MOCCO for varying lesion sizes are shown in Supporting 

Information Table S3 and Table S4, respectively.

Figure 7 shows the reconstructed images when different levels of noise were added to the 

projection source data for the iterative SENSE (Figure 7, A) and MOCCO reconstructions 

(Figure 7, B). For better visualization of the reconstruction error, corresponding error images 

are also shown in Figure 8 on the same scale. MOCCO reconstructed images were visually 

well matched to the reference image with only small normalized image difference (< than 

0.22) located at the lesion edges (Figure 8, C and D). In contrast, iterative SENSE was not 

able to preserve the high spatial frequency information due to the noise in the source data 

(Figure 8, A and B) (with maximum normalized image difference < 0.65). The temporal 

curves obtained from MOCCO with noise levels of 10% and 30% of the mean signal values 

(Figure 7, C–F) were found to both closely match the curves from the ground truth.

Quantitative g-factor maps for iterative SENSE and MOCCO reconstructions with 5 s 

temporal resolution are shown in Figure 9. The mean gR values of the g-factor maps for 

iterative SENSE (Figure 9, A and B) are 1.93 and 6.28 for the 10% and 30% noise levels, 

respectively. MOCCO was found to greatly reduce the mean gR value to 0.06 and 0.08 for 

the 10% and 30% noise levels and provide less reconstruction error. The overall performance 

of MOCCO was found to be consistent with increasing the noise levels from 10% to 30% 

(Figure 9, C and D).

Discussion

In this work, we present a framework to achieve high spatial and temporal resolution 

breast DCE-MRI through a combination of golden-angle stack-of-stars radial acquisition 
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with a data-driven low-rank based CS reconstruction (MOCCO). Numerical simulations are 

employed to evaluate the reconstruction accuracy under representative imaging conditions 

to mimic those found in vivo. The MOCCO approach is compared to another CS-based 

reconstruction algorithm that uses temporal total variation as a sparsity transform (CS-TV) 

as well as the more conventional iterative SENSE technique.

We have demonstrated that by applying basis functions generated using ICA to construct a 

signal-specific temporal model, reconstruction performance was improved as compared to 

the use of a generic sparsity transform in the form of the temporal TV approach. The TV 

algorithm can attain high frequency detail and ensure the same visually perceived image 

sharpness at larger λ, but at the expense of over smoothing the wash-in and wash-out time-

signal slope when rapid temporal changes occurred. On the contrary, MOCCO provided a 

relatively robust balance between image quality and temporal fidelity across a wide range 

of λ indicating that MOCCO is less sensitive to the selection of a specific value for λ. 

This can be explained by the fact that the temporal TV approach efficiently sparsifies those 

time curves that have small first derivatives. Therefore, if the actual time course does not 

meet this assumption by satisfying this model, the reconstruction result may exhibit a bias 

that manifests in the form of smoothing of the temporal behavior. In contrast, learning the 

reconstruction basis functions from the source data using ICA analysis during the MOCCO 

reconstruction allows for the accommodation of more complex temporal behavior patterns 

including rapid signal changes.

Prior work has demonstrated the potential for time-resolved breast DCE to improve 

diagnostic specificity by evaluating correlations of morphologic features and contrast 

enhancement patterns for lesions ~ 1 cm 50,51. However, conventional DCE-MRI protocols 

are challenged in the need to encode large FOVs at both high spatial and temporal 

resolutions. In this study, MOCCO achieved 5 s temporal resolution with highly 

undersampled data while still providing high image quality for bilateral axial imaging with 

less than 1 mm in-plane voxel size, which meets the minimum requirement for spatial 

resolution by the American College of Radiology for breast DCE-MRI44.

Although iterative SENSE reconstruction for radial acquisition is becoming more common, 

a critical challenge for this algorithm is the tradeoff between signal-to-noise ratio (SNR) and 

the level of artifacts in the reconstructed images52. Literature has shown that radial sampling 

combined with iterative SENSE can achieve high image quality with acceleration factors 

between 4–1253,54 but noise amplification has been observed at higher undersampling 

factors where greater numbers of iterations are typically needed55. In our simulation results, 

iterative SENSE showed significantly higher divergence from the fully-sampled reference 

images at higher noise levels with R = 88 (Figure 8, B). This is in agreement with prior 

studies looking at the convergence behavior of iterative SENSE in the presence of low 

SNR and undersampled data52. The MOCCO technique was found to be less impacted by 

noise in the source data and provided better reconstruction accuracy as demonstrated in 

the Monte-Carlo simulations. Further, the MOCCO approach showed decreased g-factors 

(gR<0.1) compared with iterative SENSE (gR=6.28) for the larger noise level indicating 

limited impact of causing spatially varying noise amplitudes49,55.
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The breast DRO used for this study was generated using in vivo T1 breast MRI images 

followed by introducing artificial tumor mimicking objects with lesion specific contrast 

kinetics based on a user defined pharmacokinetic model40. MR parameters for the 

simulation were chosen to match those from the in vivo exam to ensure that the simulated 

k-space data were reflective of typical in vivo data. Such a strategy has several advantages 

over other simulation techniques. The digital phantom provides the advantage of readily 

allowing simulations to model a variety of different lesion specific spatial and temporal 

behaviors that would be challenging to replicate using physical phantoms56. Using this 

numerical phantom approach, the performance of various reconstruction algorithms can be 

evaluated by measuring the errors in morphologic and dynamic features in reconstructed 

images including through directly comparing them with the ground truth used to generate 

the simulation. Further, PK modeling can be performed to determine how well the input PK 

parameters can be recovered following the simulated data acquisition and reconstruction. 

Examples are presented in Supporting Information Table S2 – S4. It should be noted that 

breast DCE-MRI presents a challenge in terms of validating novel imaging techniques due 

to the long clearance time of contrast agent precluding comparisons with multiple injections. 

Reproducibility is a further confounder due to time dependent physiological variability as 

well as subject motion. Digital simulations provide a critical step in the overall validation 

process by eliminating non-reproducible subject dependent physiological confounders for 

the purposes of comparisons between imaging techniques.

While the use of a realistic DRO has several advantages as a platform for initial development 

and validation work, the current simulation is still relatively simplistic in comparison to 

the complexity of the in vivo environment. Future work is needed to assess performance 

of the reconstruction algorithms in these more complex imaging environments such as 

heterogeneous lesion morphologies and enhancement patterns, non-mass enhancement, and 

the degree and distribution of background breast parenchymal enhancement. In this work 

we have assumed the data are free of motion artifacts; however, further validation is needed 

to characterize these algorithms in the presence of subject motion. Further, this work has 

aimed to better characterize the temporal fidelity of two promising CS-based approaches for 

breast imaging and further evaluation is needed to test the robustness and limitations of PK 

modeling approaches in vivo using this understanding.

Conclusions

In this paper, we compared both spatial and temporal performance of iterative SENSE, 

CS-TV, and MOCCO for breast DCE-MRI. We demonstrated the use of these advanced 

reconstructions with stack-of-stars radial acquisition for breast DCE-MRI to allow for an 

effective temporal resolution of 5 s. Achieving such a temporal resolution using modern 

MRI scanners across the large imaging volumes and slice coverage typically used in MR 

breast imaging allows for the acquisition of only 8 unique radial projections angles per 

time frame. With such high angular undersampling factors, significant streaking artifacts 

were observed in the iterative SENSE reconstruction. CS-TV provided the best suppression 

of background artifacts but showed compromised performance in terms of recovering the 

original temporal kinetics of the lesions. The MOCCO technique demonstrated improved 

temporal fidelity when matching spatial resolution and coverage from routine clinical 
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protocols as compared with CS-TV. The results from this study demonstrate that MOCCO 

is less sensitive to the selection of the regularization parameter for very high undersampling 

factors (=88).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulations using the DRO. (A) Fully-sampled reference images at 180, 240, 300, and 600 s 

post contrast injection. Simulated lesions were placed in the left central/medial breast (lesion 

1) as well as the left (lesions 2, 3, 4) and right axilla and axillary tail breast tissue (lesions 

5, 6, 7). (B) Concentration time curves for each lesion generated from the pharmacokinetic 

models.
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Figure 2. 
Simulated contrast agent uptake curves (displayed for a subset of time from 150 to 400 s). 

Mean percent signal change measured for four 8 mm lesions with varying pharmacokinetics 

(lesions 1, 2, 4 and 5 as defined in Figure 1) reconstructed using CS-TV with λ = 0.1
(A-D, blue circles), CS-TV with λ = 2 (A-D, green stars), MOCCO (E-F, red squares) and 

iterative SENSE (E-F, gray pluses). Standard deviations are shown with banded areas. The 

input time curves (“true”) used to generate the source data are plotted with dark black lines 

in all frames.

Wang et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2024 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Reference image (A), reconstructed images (B-E), and corresponding difference images 

(F-I) all shown for 5 s temporal resolution at time = 240 s. Difference images were measured 

by subtracting the reconstructed images from the reference image and normalized to the 

maximum value of the reference image. Log scale k-space plots show how well high and 

low spatial frequency data were recovered.
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Figure 4. 
Plot of nRMSE(%) from the reconstructed images using MOCCO (A) and CS-TV (B) as a 

function of the regularization parameter (λ) to indicate the reconstruction accuracy.
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Figure 5. 
Performance of spatial and temporal fidelity for lesion 1, which has general curve shape 

but highest percent signal change (PSC) compared with other lesions. Example images with 

lesion sizes of 1.5 mm and 8 mm for matched representative time frames (A). Corresponding 

percent signal time curves compared to the input time curves (B). The line profiles (C) 

through the center of the lesion (red line in (A)) plotted for MOCCO-reconstructed (solid 

line) and fully-sampled reference images (dashed line) corresponding to T = 240 s (green 

arrows in B).
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Figure 6. 
Evaluation of spatial and temporal fidelity for a lesion with sharper wash-in and wash-out 

contrast kinetics. Zoomed-in region at the right side of the axilla with lesions 5 – 7 is 

shown for MOCCO (A) at T = 240 s. Percent signal time curves evaluated for lesion 5 show 

modest temporal blurring at small lesion sizes (1.5 mm) (B). Line profiles shown in (C) were 

measured horizontally through lesion 5 as indicated by red lines in (A). The dash line profile 

is from the fully-sampled reference images. The solid gray profile is from the MOCCO 

image. Note underestimation of the signal intensity at the center of the lesion although the 

edges are well preserved.
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Figure 7. 
SENSE (A) and MOCCO (B) images with additive Gaussian noise equal to 10% and 30% of 

the mean k-space magnitude at time = 300 s. The corresponding mean percent signal change 

time curves of lesion 1, 2, 4 and 5 for MOCCO (C-F) with 10% (red circles) and 30% (blue 

stars) additive noise. Standard deviations are represented by the banded areas. The input 

time curve is plotted with dark black lines.
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Figure 8. 
Error images measured by subtracting the reference mean images from reconstructed mean 

images. The mean images were averaged over the 100 Monte-Carlo iterations at t = 180, 

240, and 600 s. Error images for SENSE with 10% (A) and 30% (B) noise level showed 

increased error with increasing noise level. Error images for MOCCO with 10% (C) and 

30% noise level (D) demonstrated reduced overall error compared to SENSE.
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Figure 9. 
Performance in the presence of noise with an undersampling factor R = 88 (5 s temporal 

resolution). SENSE reconstruction g-factor maps with 10% (A) 30% (B) noise level at t 

= 180, 240, and 600 s. MOCCO reconstruction g-factor maps with 10% (C) and 30% (D) 

noise level.
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Table 1.

nRMSE(%) for CS-TV: λ=0.1, CS-TV: λ=2 and MOCCO with varying lesion sizes ranging between 1.5 – 10 

mm with no additional noise added.

CS-TV MOCCO

Regularization parameter (λ) Lesion size (mm)

Lesion # 0.1 2 10 8 5 1.5

1 22.97 22.79 11.11 11.24 12.77 8.40

2 20.03 22.20 11.69 11.95 13.08 11.84

3 22.81 28.72 16.94 17.00 19.67 17.47

4 22.15 19.21 12.78 12.77 14.31 11.64

5 27.27 40.58 21.28 21.46 25.00 24.01

6 26.52 19.29 11.95 12.16 14.04 13.77

7 28.17 17.60 11.42 12.04 14.38 14.43
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