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Abstract

Head movements play a crucial role in social interactions. The quantification of communicative 

movements such as nodding, shaking, orienting, and backchanneling is significant in behavioral 

and mental health research. However, automated localization of such head movements within 

videos remains challenging in computer vision due to their arbitrary start and end times, 

durations, and frequencies. In this work, we introduce a novel and efficient coding system for 

head movements, grounded in Birdwhistell’s kinesics theory, to automatically identify basic head 

motion units such as nodding and shaking. Our approach first defines the smallest unit of head 

movement, termed kine, based on the anatomical constraints of the neck and head. We then 

quantify the location, magnitude, and duration of kines within each angular component of head 

movement. Through defining possible combinations of identified kines, we define a higher-level 

construct, kineme, which corresponds to basic head motion units such as nodding and shaking. 

We validate the proposed framework by predicting autism spectrum disorder (ASD) diagnosis 

from video recordings of interacting partners. We show that the multi-scale property of the 

proposed framework provides a significant advantage, as collapsing behavior across temporal 

scales reduces performance consistently. Finally, we incorporate another fundamental behavioral 

modality, namely speech, and show that distinguishing between speaking- and listening-time head 

movementsments significantly improves ASD classification performance.
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1 INTRODUCTION

Head movements are an integral element of social communication, and an increasing body 

of research highlights their importance for characterizing social behavior in behavioral 

sciences and mental health. In autism, a neurodevelopment condition characterized in 

part by difficulties in social communications, alterations in head movements have been 

documented repeatedly [6, 8], motivating researchers to use computational approaches for 

studying them in various contexts (Section 2).

Analyzing head motion presents several challenges. The duration, speed, and other 

kinematic properties of head movements can vary greatly based on many factors including 

individual differences, social contexts, and changing communicative intent. A promising 

approach is breaking down movement signals into basic building blocks, similar to 

phonemes in language [22], action units in facial expressions (AUs) [4], or hand muscle 

action units in gestures [9]. Such coding systems can distinguish between the form, duration, 

and magnitude of basic movements. However, to our knowledge, there is no commonly 

agreed coding system for head movements.

In this work, we introduce a novel framework that operationalizes the kinesics theory 

pioneered by Birdwhistell [2] to create and implement a computerized coding system 

for analyzing head movements, allowing researchers to automatically detect the form, 

duration, and intensity of movements. Unlike previous computational works on kinesics, 

our approach, for the first time implements the theoretical framework by Birdwhistell 

with knowledge- rather than data-driven approach (Section 2), therefore the proposed 

features do not change from study to study and can serve as a common coding system. 

We first propose a method to automatically detect the location, magnitude, and scale of 

kines, the smallest unit of head movement, within angular time series of head movements, 

based on the anatomical constraints of the neck and head. Next, a higher-level construct, 

kineme, is defined by combining kines in all possible permutations at multiple scales. 

The kinemes defined in this way correspond to basic head motion units such as nodding 

and shaking. We validate our framework by showing that it can capture meaningful head 

movement differences in autism spectrum disorder (ASD), and investigate the benefits of 

integrating another modality, namely speech, to separately analyze speaking- and listening-

time behavior.

The contributions of this study are threefold. First, we propose the first knowledge-driven 

implementation of the kinesics framework that can detect basic movement patterns at 

different magnitudes, intensities, and time scales. Second, we show that using speech 

modality by distinguishing between speaking- and listening-time behavior leads to increased 

ASD classification performance. Finally, we show that our multi-scale approach leads to 

consistent performance improvement compared to a scale-agnostic approach.
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2 RELATED WORK

Previous works used computer vision to study alterations in head movements [10] during 

different behavioral tasks such as watching videos [14], response to name [3, 16], or 

face-to-face interactions [15, 18, 24]. The features used in these studies are either ad-hoc 

[24], or based on classical signal processing techniques such as k-means clustering and 

bag-of-words [15], or cross-correlation [18], which are useful for classification but can 

be limited in terms of explainability [5]. Kinesics is a conceptual framework [2] that 

offers an alternative approach by breaking movements down into simpler patterns, which 

facilitates the investigation of the movement patterns that are most informative. As such, 

computer scientists were motivated to operationalize this conceptual framework. Xiao et 

al. [23] identified head motion patterns through a series of steps including computing the 

optical flow, segmenting motion patterns, representing these segments via Line Spectral 

Frequencies, and clustering them. Upon adopting a similar approach, we encountered 

limitations in achieving homogenous movement patterns. Consequently, our focus shifted 

towards extracting more robust and smaller elementary units capable of handling various 

magnitudes and duration of head motion patterns. Gahalawat et al. [5] defined kinemes 
as learned features, and showed that they can achieve state-of-the-art performance in 

depression classification. However, since learned features are study-dependent, they pose 

limitations in defining a common coding system. Thus, we propose a framework based 

on the first principles imposed by the anatomical restrictions (Section 3.1). Further, we 

propose the first multi-scale kinesics framework, and experiments show that this is a critical 

advantage as opposed to a scale-agnostic approach (Section 5).

3 HEAD MOVEMENT ANALYSIS VIA KINESICS

Kinesics represents a systematic study of visually perceptible aspects of nonverbal 

communication [1, 2]. Kinesics proposes a hierarchical structure for the body motion similar 

to the structure of language (e.g., phones, phonemes), yielding terms like kine and kineme. 

A kine represents the isolable fundamental unit, while kineme, akin to phonemes in spoken 

language, is the most elementary and meaningful unit of motion, such as a full head 

nodding.

3.1 Identifying Kines

Given time series data corresponding to pitch, yaw, and roll angles of head motion, 

estimated using computer vision algorithms [19], the smallest structural elements within 

these time series can be identified by exploiting an anatomical constraint. When the head 

moves in any direction through the contraction of specific neck muscles, it tends to return 

to the resting position. This movement generates angles that increase (or decrease) in 

magnitude to a maximum value and then decrease (or increase) to return to the initial value 

within a certain duration, manifesting as a peak or a valley. Thus, by detecting peaks and 

valleys across different time scales, kines can be detected automatically. Various multi-scale 

methods, including Scale Invariant Feature Transform (SIFT) [11, 12], wavelets [13, 20] and 

Convolutional Neural Networks (CNN) [20], can be employed. In this study, we utilized a 

1D SIFT to determine the local maxima and minima in the Laplacian of Gaussian (LoG) 
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pyramid of the time series in both time and scale spaces, yielding a list of kines (peak or 

valley) with parameters including position, magnitude, and scale (duration), as illustrated in 

Figure 1a.

3.2 Identifying Kinemes

For each time series of head motion (pitch, yaw, or roll), there are three possible symbols, 

namely peak (P), valley (V), or null (N) at a given time frame. Thus, 33 = 27 possible 

combinations exist for the three time series (e.g., PPP, PVP, PNV, NNN). Kinemes are 

defined by assigning a letter for each combination, except the null combination (NNN), 

spanning all 26 letters of the English alphabet (e.g., PPP: a, PPV: b, PPN: c, PVP: 

d). Among these 26 letters, six are called “singletons”, including a non-null value only 

in one of the time series (i.e., PNN, NPN, NNP, VNN, NVN, NNV). For example, 

kineme “i” (PNN) corresponds to the head moving up and down once, while kineme “r” 

(VNN) corresponds to the down and up movement.(Code is available at: https:/github.com/

gokmenm/hma_kinesics.)

To determine the kineme code from real-valued kines, we utilize the kineme cube, where 

each kineme is positioned at a corner or midpoint on the face of a unit cube. Each kineme is 

represented as a unit vector from the origin (0, 0, 0) to one of these corners and midpoints, 

resulting in 26 unit vectors. The real-valued kine vector of the actual data is constructed as 

the vector, x = [mpitcℎ, myaw, mroll]T , where mpitcℎ, myaw, and mroll are LoG responses (normalized to 

have a unit vector) for pitch, roll, and pitch components respectively. We then compute the 

cosine distance between the vector x and 26 kineme vectors, and assign the kineme with the 

lowest distance. When repeated for all the frames of a given video recording, this procedure 

yields a sequence of letters, such as "—–x—–ix—-uuif—ci-r–lr-pc-rfx–xr-cru-irl-fxior-", 

where “-” is the null character.

3.3 A Head Motion Production Model

Similar to the speech production model, we can reconstruct the original head motion signal 

using the detected kines. For clarity, we define the reconstruction model for a single angle 

here. The same procedure can be applied to the other two angles. Let k = (t, m, σ) defines a 

kine with position, t, magnitude, m, and scale, σ. As a head motion generated at time t is 

smoothed out by the muscle controlling the movement, a kine can be modeled as an impulse 

at time t, smoothed by a low-pass filter as follows:

k = (σ ∕ 2π)m (δ(t) ∗ G(t, σ)) + N(0, σn),

(1)

where m is the magnitude (m > 0 for a peak and m < 0 for a valley), δ(t) is the Dirac delta 

function representing the impulse at t, G(t, σ) is Gaussian filter with a standard deviation σ, 

and N(0, σn) is a zero mean noise with standard deviation σn, and * denotes the convolution 

operation. Figure 1b shows an example reconstruction of the original pitch angle from 

detected kines.
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4 ASD CLASSIFICATION USING KINESICS

We derive kineme histograms to perform ASD classification (Section 4.1) and use 

automated speech detection to distinguish between listening- and speaking-time behavior 

(Section 4.2).

4.1 Kineme histograms as head motion features

The distribution of kinemes over a selected time interval provides a summary of 

dyadic communication. We quantify kineme distributions through histograms of counts or 

magnitudes of kinemes, extracted at the four scales (levels 1,4,7 and 10 of SIFT). The videos 

are split into non-overlapping time segments, then separate histograms are extracted per 

segment, and then they are concatenated. We tested the contribution of different types of 

kinemes by generating histograms including only singleton letters, or including all letters. 

We aggregate kinemes from different scales in different histograms, and then concatenate 

all histograms. For comparison, we also aggregate kinemes from all scales in a single 

histogram.

4.2 Separating speaker and listener behavior

Since the head movements of a speaker and listener typically convey different meanings, 

we used automated speech detection to investigate the effect of distinguishing between 

speaking- and listening-time behavior. We compared an audio-visual speech detection 

algorithm [21] with a CNN-based visual voice activity detector that we trained using public 

data [7], and used the latter as it is simpler yet did not provide worse results in our 

preliminary experiments.

5 EXPERIMENTS

We conducted experiments on two datasets of different age ranges. We validated 

performance in terms of ASD vs. neurotypical (NT) classification; performed an ablation 

study to investigate the effect of the fundamental design choices in the kineme histograms; 

and showed how the proposed method can be used for investigating specific research 

questions (Section 5.1).

Datasets.

Data was collected at the Children’s Hospital of Philadelphia, and the research was approved 

by its institutional review board. This study included two samples, namely adolescents (ages 

12-17 years) and young adults (ages 19-49). The young adult sample included 16 ASD and 

27 NT participants, and the adolescent sample included 26 NT and 38 ASD participants 

(Table 1).

The experimental procedure in both datasets consisted of a semi-structured assessment of 

conversational ability designed to mimic real-life first-time encounters [17]. Participants 

engaged in a 3-5 minute face-to-face conversation (Table 1) with a research confederate 

while frontal face videos of both the participant and confederate were captured [15]. Head 

pose data was extracted using 3DI[19]. The output consisted of time-dependent signals for 
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the three head movement angles: pitch (head nodding axis), yaw (head shaking axis), and 

roll (tilting axis). In this study, time series of the participant alone were used for the analysis. 

It must be noted that some characteristics of this sample (e.g., American, English-speaking) 

may impact the frequency of specific head movements.

Experimental setup and baselines.

We compare the proposed kineme histograms with two standard alternative features for 

head movements, namely K-means (bag-of-words) [15] and intra-person windowed cross-

correlation (WCC) [18]. Results for our method and WCC are obtained via nested cross-

validation across the two datasets (i.e., adolescents and young adults). Specifically, we 

obtain the 10 best-performing hyperparameter combinations for each feature on one dataset 

and then apply them through nested leave-one-out cross validation on the other (i.e., one 

of the ten hyperparameter combinations is selected at each outer fold). Such a cross-dataset 

approach guarantees the generalizability of our findings. The hyperparameters tested for 

WCC are time window size (1s, 2s, 4s, 6s), allowed lag (0.5s, 1s, 2s) and step size (1s, 

2s); and for our kineme approach are histogram type (count or magnitude), treatment of 

scales (separated or collapsed), and histogram length (6s, 10s, 20s). The result for the 

K-means approach is taken from [15], where the young adults dataset was used. When 

comparing with other methods, for a fair comparison, our results were computed without 

speech detection. The classifier used for all features is linear SVM.

5.1 Results

Table 2 shows results with the three different feature types. Kineme results are reported for 

two cases: (i) when all letters are used, and (ii) when only singletons are used. WCC features 

perform well on the young adult dataset but not on the adolescent dataset. On the other hand, 

kinemes from all letters perform well on the adolescents dataset but not on the young adult 

dataset. Kineme histograms from singletons yield the best result on both datasets, indicating 

that singletons are likely more informative than the remaining letters.

Ablation study: Effect of design choices.—Table 3 provides classification results 

with different design choices on a combined dataset that includes both the young adult 

sample and the adolescent sample. Results indicate a number of clear trends. First, 

separating scales into different histograms is always better than collapsing them into a single 

histogram. Second, listening behavior alone yields consistently lower classification accuracy 

than speaking behavior. The best results are obtained by generating different histograms 

for speaking and listening states and using them both. This approach can capture possible 

differences in ASD related to the integration of different behavioral modalities (i.e., speech 

and head movements). Finally, consistently with results in Table 2, the usage of singletons 

yields better results than using all the letters.

Investigating specific head movements.—An advantage of the kinesics approach 

is that one can conduct scientific analyses that investigate the effect of specific head 

movements by restricting the study to the corresponding letters. We demonstrate such a 

use case by analyzing the ability of two fundamental head movements, namely nodding 

and shaking, to predict ASD. Figure 2 shows classification results using only the nod- or 
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the shake-related kinemes by visualizing the distance to SVM hyperplane and classification 

accuracy. First, results further highlight the advantage of the multiscale kinesics approach, 

as identifying letters across all scales and treating those scales independently (top row) 

leads to significantly better results than collapsing across scales (bottom row). Further, the 

classifier based on nodding alone achieves significantly higher accuracy than the one based 

on shaking, indicating that the former movement likely carries richer information.

6 CONCLUSION

We provided a novel, theoretical framework for implementing the kinesics approach of 

Birdwhistell [2]. Our framework detects basic head movements in forms of kinemes, 

and quantifies their temporal scale as well as magnitude. Experiments show that the 

proposed kinemes can successfully distinguish the head movements of individuals with 

autism from those of neurotypical individuals. In particular, the multi-scale property of our 

framework leads to significant improvement in classification accuracy. Encoding speaking- 

and listening-time behavior separately increases accuracy further.
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CCS CONCEPTS

• Applied computing → Psychology;•Computing methodologies → Computer vision.
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Figure 1: 
(a) Detected kines as peaks and valleys of the pitch angle of head rotation, where red 

points represents detected kines, while the size of red ellipse represents their scales. (b) 

Reconstructed (orange) signal and the original (blue) signal.
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Figure 2: 
Classification results on the young adult when only nodding or shaking kinemes are used. 

Results are reported separately for classifiers that are based on separated scales (top row) 

and classifiers that collapse kinemes across scales (bottom row). All classifiers use speech 

activity detection to distinguish between speaking- and listening-time behavior. Values 

within parentheses indicate classification accuracy.
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Table 1:

The (mean) age, IQ and conversation duration; and number of female and male participants in the two study 

samples. p values indicate possible group differences.

Adolescents Young adults

ASD TDC p val. ASD TDC p val.

Age 14.8 14.2 0.124 28.3 28.1 0.919

IQ 97.3 109 0.006 100 112 0.040

Duration (secs) 212 238 0.076 185 190 0.181

F/M participants 8/30 13/13 0.031 2/14 4/23 1.000
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Table 2:

ASD vs. NT classification accuracy (%) on two datasets. Numbers in parentheses are balanced accuracy. Bold, 

italic and underlined texts respectively denote the first, second, and third best result.

Young adults Adolescents

Kinemes (Singletons) 76.7 (75.1) 79.7 (79.9)

Kinemes (All letters) 62.8 (61.0) 74.6 (74.0)

WCC 74.4 (74.0) 60.7 (59.0)

K-means 66.7 N/A

Proc ACM Int Conf Multimodal Interact. Author manuscript; available in PMC 2024 December 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gokmen et al. Page 15

Ta
b

le
 3

:

C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

 (
%

) 
on

 th
e 

co
m

bi
ne

d 
da

ta
se

t (
i.e

., 
ad

ol
es

ce
nt

s 
an

d 
yo

un
g 

ad
ul

ts
) 

w
ith

 k
in

em
e 

hi
st

og
ra

m
s.

 T
he

 e
ff

ec
t o

f 
fo

ur
 f

ac
to

rs
 is

 s
ho

w
n:

 

H
is

to
gr

am
 ty

pe
 (

co
un

t v
s.

 m
ag

ni
tu

de
),

 tr
ea

tm
en

t o
f 

sc
al

es
 (

se
pa

ra
te

d 
or

 c
ol

la
ps

ed
),

 le
tte

rs
 u

se
d 

(s
in

gl
et

on
s 

vs
. a

ll 
le

tte
rs

) 
an

d 
us

ag
e 

of
 s

pe
ec

h 
de

te
ct

io
n 

(s
pe

ec
h-

 a
nd

 li
st

en
in

g-
tim

e 
ki

ne
m

es
 in

 d
if

fe
re

nt
 h

is
to

gr
am

s 
co

m
bi

ne
d,

 s
pe

ec
h-

tim
e 

ki
ne

m
es

 o
nl

y,
 li

st
en

in
g-

tim
e 

ki
ne

m
es

 o
nl

y,
 a

nd
 n

o 
us

ag
e 

of
 s

pe
ec

h 

se
pa

ra
tio

n)
. B

ol
d,

 it
al

ic
 a

nd
 u

nd
er

lin
ed

 te
xt

s 
re

sp
ec

tiv
el

y 
de

no
te

 th
e 

fi
rs

t, 
se

co
nd

, a
nd

 th
ir

d 
be

st
 r

es
ul

t. 
† S

pe
: S

pe
ak

in
g,

 L
is

: L
is

te
ni

ng
, N

on
-s

ep
: N

on
-

se
pa

ra
te

d 
sp

ee
ch

.

C
ou

nt
 H

is
to

gr
am

s
M

ag
ni

tu
de

 H
is

to
gr

am
s

Sp
e 

&
 L

is
Sp

e
L

is
N

on
-s

ep
.

Sp
e 

&
 L

is
Sp

e
L

is
N

on
-s

ep
.

Se
pa

ra
te

d 
sc

al
es

Si
ng

le
to

ns
75

.5
71

.6
66

.7
75

.5
80

.4
71

.6
53

.9
63

.7

A
ll 

le
tte

rs
72

.5
67

.6
61

.8
68

.6
70

.6
64

.7
59

.8
66

.7

C
ol

la
ps

ed
 s

ca
le

s
Si

ng
le

to
ns

61
.8

68
.6

60
.8

57
.8

64
.7

56
.9

48
.0

52
.9

A
ll 

le
tte

rs
59

.8
64

.7
53

.9
62

.7
57

.8
57

.8
48

.0
52

.9

Proc ACM Int Conf Multimodal Interact. Author manuscript; available in PMC 2024 December 04.


	Abstract
	INTRODUCTION
	RELATED WORK
	HEAD MOVEMENT ANALYSIS VIA KINESICS
	Identifying Kines
	Identifying Kinemes
	A Head Motion Production Model

	ASD CLASSIFICATION USING KINESICS
	Kineme histograms as head motion features
	Separating speaker and listener behavior

	EXPERIMENTS
	Datasets.
	Experimental setup and baselines.
	Results
	Ablation study: Effect of design choices.
	Investigating specific head movements.


	CONCLUSION
	References
	Figure 1:
	Figure 2:
	Table 1:
	Table 2:
	Table 3:

