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Abstract

Objective

The aim of this study was to assess the seroconversion rate and percent inhibition of neu-

tralizing antibodies against the wild-type and Omicron variants of SARS-CoV-2 in patients

with solid cancer who received two COVID-19 vaccine doses by comparing chemotherapy

and nonchemotherapy groups.

Methods

This prospective cohort study enrolled 115 cancer patients from Maharaj Nakorn Chiang

Mai Hospital, Sriphat Medical Center, Faculty of Medicine, Chiang Mai University, and

Chiang Mai Klaimor Hospital, Chiang Mai, Thailand, between August 2021 and February

2022, with data from 91 patients who received two COVID-19 vaccine doses analyzed. Par-

ticipants received vaccines as part of their personal vaccination programs, including various

mRNA and non-mRNA vaccine combinations. Blood samples were collected at baseline, on

day 28, and at 6 months post-second dose to assess neutralizing antibodies. The primary

outcome was the seroconversion rate against the wild-type and Omicron variants on day

28. Secondary outcomes included seroconversion at 6 months, factors associated with

seroconversion, and safety.

Results

Among the participants, 45% were receiving chemotherapy. On day 28, seroconversion

rates were 77% and 62% for the wild-type and Omicron variants, respectively. Chemother-

apy did not significantly affect seroconversion rates (p = 0.789 for wild type, p = 0.597 for

Omicron). The vaccine type administered was positively correlated with seroconversion,

with an adjusted odds ratio (95% confidence interval) of 25.86 (1.39–478.06) for the wild
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type and 17.38 (3.65–82.66) for the Omicron variant with the primary heterologous vaccine

regimen. Grades 1 and 2 adverse events were observed in 34.0% and 19.7% of partici-

pants, respectively.

Conclusions

Despite the lower seroconversion rate against the Omicron variant, no significant difference

was observed between the chemotherapy and nonchemotherapy groups. COVID-19 vacci-

nations demonstrated good tolerability in this cohort. These findings highlight the impor-

tance of vaccine safety and immunogenicity in cancer patients and can inform tailored

vaccination strategies for this vulnerable population.

Introduction

COVID-19, an emerging infectious disease first reported in December 2019, is now a global

pandemic caused by SARS-CoV-2. SARS-CoV-2 entry into host cells triggers an immune

response, resulting in the release of inflammatory cytokines. This excessive inflammation

drives high morbidity and mortality [1, 2]. In addition to wild-type viruses, novel variants sig-

nificantly impact disease transmissibility, severity and the immune response [3]. Five major

variants of concern (VOCs), including Alpha, Beta, Delta, Gamma and Omicron variants,

have been reported [4].

Reports indicate that COVID-19 outcomes are worse in individuals with comorbidities [5],

particularly in immunocompromised individuals such as cancer patients undergoing treat-

ments, especially chemotherapy. Generally, chemotherapy not only affects quality of life but

also dampens immunity, leading to increased susceptibility to and worse outcomes of infection

[6, 7]. For COVID-19, cancer patients are more prone to severe infection outcomes, including

increased rates of intensive care unit (ICU) admission, mechanical ventilation, prolonged hos-

pital stays, and mortality [8, 9].

Studies on cancer patients have revealed decreased humoral immunity after infection and

vaccination. Anti-spike antibodies and anti-nucleocapsid antibodies were once used as surro-

gate protective markers against SARS-CoV-2 infection in earlier studies [10]. Natural infection

leads to reduced nucleocapsid immunoglobulin G (N-IgG) and spike immunoglobulin G

(S-IgG) levels, especially after recent chemotherapy [11]. However, patients receiving immu-

notherapy presented increased antibody levels [12]. Similarly, mRNA-based vaccine studies

have shown lower seroconversion rates (proportions of patients who develop detectable pro-

tective antibodies [13]) in cancer patients (90–94% after two vaccine doses) [14–16], with

decreased neutralizing antibody levels against SARS-CoV-2 variants [17, 18]. However,

humoral immunity declines over time, making a third booster dose necessary to maintain an

adequate level of immunity [19]. Owing to the poor prognosis of some cancers, which is influ-

enced by different factors, such as primary site, histological subtype, performance status, and

stage, patients may have a shorter estimated life expectancy [20, 21], particularly those with

advanced or metastatic disease [22]. Achieving a higher seroconversion rate even after two vac-

cine doses should be a concern because prompt protective immunity may be beneficial in

these vulnerable patients to decrease susceptibility to SARS-CoV-2 infection and COVID-

19-related hospitalization [23]. Data from noncancer populations revealed that heterologous

prime-boosted vaccinations generated higher neutralizing antibody levels than did homolo-

gous vaccinations [24]. Further research is needed to obtain these data from cancer patients.
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In this study, our objective was to assess the humoral-mediated immune response in terms

of the seroconversion rate and percent inhibition of neutralizing antibodies against the wild-

type and Omicron variants of SARS-CoV-2 in patients with solid cancer who received two

COVID-19 vaccine doses, comparing chemotherapy and nonchemotherapy groups. Addition-

ally, we aimed to investigate factors associated with antibody seroconversion on day 28 after

completing vaccination and adverse events following immunization.

Materials and methods

Study design and participants

This observational prospective cohort study was designed to evaluate humoral immunogenic-

ity in terms of surrogate neutralizing antibodies against the wild-type and XBB Omicron vari-

ants, as well as safety, in patients with solid cancer who received two doses of the CoronaVac

vaccine. However, the protocol was adapted and amended later to allow different vaccine com-

binations because of vaccine shortages and uncertainties regarding vaccine management by

the Thai government. Combinations of vaccines on different platforms, including mRNA vac-

cines with mRNA boosters, non-mRNA vaccines with non-mRNA boosters, and non-mRNA

vaccines with mRNA boosters, were allowed by the Ministry of Public Health of Thailand.

Notably, vaccine procurement and administration were not included in our study. This study

included adult solid cancer patients aged 20 years or above with a confirmed diagnosis of can-

cer by histology or imaging at any stage and undergoing any treatments, including patients

with complete remission of their disease within 1 year. The patients were required to have an

estimated life expectancy of more than six months. All patients were followed at the medical

oncology clinic at Maharaj Nakorn Chiang Mai Hospital, Sriphat Medical Center, Faculty of

Medicine, Chiang Mai University, and Chiang Mai Klaimor Hospital (private hospital),

Chiang Mai, Thailand. Exclusion criteria included having a previous diagnosis of SARS-CoV-

2 infection based on RT–PCR or antigen test kit (ATK) results in the past three months; having

high-risk epidemiological factors within the past 14 days, for example, having close contact

with an individual diagnosed with COVID-19 or visiting/living in an outbreak area; receiving

prior COVID-19 vaccines; receiving other live attenuated vaccines in the past four weeks or

inactivated and subunit vaccines in the past two weeks; having known allergies to any vaccine

components; having signs and symptoms of active skin infection at the injection site; having

HIV infection; receiving immunosuppressive drugs; receiving blood components within the

past three months; being pregnant; having uncontrolled medical conditions; and having hema-

tologic malignancies. The withdrawal criteria included inability to attend follow-up visits after

receiving the vaccine and not completing the vaccination program. Patients who completed

three vaccine doses and who had SARS-CoV-2 infection were also included. This study was

approved by the Ethics Committee of the Faculty of Medicine, Chiang Mai University, with

study code MED-2564-08326, approval number 348/2021. All participants received verbal and

written information about the study and provided informed consent. The recruitment period

for this study was from August 18, 2021, to February 28, 2022. This study was registered with

the Thai Clinical Trials Registry (TCTR) ID: TCTR20230510001.

Procedures and materials

Blood and data collection. A total of 157 patients with solid cancer were screened; 115

patients were enrolled in this study between August 2021 and February 2022. Data from 91

patients who had completed two vaccine doses were analyzed for neutralizing antibody levels.

Demographic data were obtained, and 6 mL of blood was drawn for baseline analysis from par-

ticipants on the day of signing the informed consent form. Each participant received a vaccine
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as part of their personal vaccination programs provided by the government or private hospi-

tals, which included homologous and heterologous vaccine regimens.

Blood was obtained at 28 days and 6 months after the second vaccine dose. Third booster

doses were allowed. Information on adverse events following immunization was collected dur-

ing follow-up at the oncology clinic. Blood samples from participants were collected, centri-

fuged and stored as plasma samples in liquid nitrogen at the Division of Clinical Immunology,

Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai Uni-

versity, Chiang Mai, Thailand, until further use for neutralizing antibody analysis and will be

kept until five years after the completion of all analyses. Neutralizing antibody analysis was

performed from March to September 2023.

Neutralizing antibody analysis. A surrogate virus neutralization assay kit (MAGLUMI,

Shenzhen New Industries Biomedical Engineering Co., Ltd.) was used for the wild-type neu-

tralizing antibody assay, and another neutralizing antibody kit (cPass™, GenScript, XBB variant

spike protein) was used for the XBB variant neutralizing antibody assay. This method mimics

the interaction between the host hACE2 receptor and the virus binding site via the recombi-

nant SARS-CoV-2 receptor binding domain (RBD). This assay has shown 100% sensitivity

and 100% specificity in clinical samples with confirmed SARS-CoV-2 virus neutralization titer

(VNT50) values� 20. Assay results included the antibody level in IU/mL units (wild type

only), the percent inhibition, and whether the antibody was detected or undetected. Detected

neutralizing antibody was defined as an antibody level greater than 121.6 IU/mL for the wild

type and a percent inhibition greater than 30% for the Omicron variant. The XBB subvariant

of the SARS-CoV-2 Omicron variant was chosen for analysis because it was the most common

variant circulating in late 2022 [25].

Outcomes. The primary outcome was the seroconversion rate of neutralizing antibodies

at 28 days after completing two vaccine doses against SARS-CoV-2 infection for both the wild-

type and XBB Omicron variants. The secondary outcomes included the percent inhibition of

neutralizing antibodies, seroconversion rates at 6 months, factors associated with seroconver-

sion on day 28, and adverse events following immunization.

Statistical analysis. The required sample size was calculated to be 91 on the basis of previ-

ous seroconversion data. The data were analyzed per the protocol with the aim of reflecting

data on vaccine efficacy. Descriptive data are reported as numbers and percentages, means and

standard deviations (SDs), and medians and interquartile ranges. Chi-square tests and Fisher’s

exact tests were used to compare the baseline characteristics between the chemotherapy and

nonchemotherapy groups. The percent inhibition and seroconversion rates of neutralizing

antibodies are reported as the means with 95% confidence intervals and were analyzed via

repeated-measures mixed models across three time points (baseline, day 28, and month 6) and

SARS-CoV-2 variants (wild-type and Omicron variants). Univariable logistic regression analy-

sis was used to identify factors potentially associated with seroconversion. Factors with P< 0.1

were further investigated via multivariable logistic regression analysis. Statistical significance

in each analysis was defined as P< 0.05. All the statistical analyses were performed via

STATA/MP software version 17 (StataCorp LLC. College Station, TX, USA).

Results

Baseline characteristics

A total of 157 patients with solid cancer who planned to receive the COVID-19 vaccine were

screened, among whom 115 were ultimately enrolled in this study. Data from 91 patients who

had completed two vaccine doses were analyzed for neutralizing antibodies. The common rea-

sons for failed enrollment were the absence of vaccination (n = 21/157, 13.3%) and death
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before completion of the vaccine course (n = 18/157, 11.4%), one of which was a COVID-

19-related death. The failed screening and participant withdrawal data are depicted in Fig 1,

which shows the study flow. chart The vaccines included homologous mRNA-based vaccines

(mRNA+mRNA), homologous non-mRNA-based vaccines (non-mRNA+non-mRNA), and

heterologous vaccines (non-mRNA+mRNA) in 41 (45%), 31 (34%), and 19 (21%) participants,

respectively. Twenty-one of these individuals (23.0%) received a third-dose booster vaccine.

All patients were then classified into chemotherapy (n = 41, 45%) and nonchemotherapy

(n = 50, 55%) groups for further exploratory analysis, which were not prespecified subgroups.

Baseline demographic and disease characteristics are presented in Table 1. According to an

observational-only study, some parameters between groups were not well balanced. In the che-

motherapy group, male patients predominated (n = 26, 63.41%), whereas female patients pre-

dominated in the nonchemotherapy group (n = 31, 62.00%). The mean age and body mass

index (BMI) were 60.76 years and 23.44 kg/m2, respectively, for all participants. The most

common primary cancers were gastrointestinal (GI) cancer (n = 21, 51.2%) in the chemother-

apy group and breast cancer (n = 20, 40.0%) in the nonchemotherapy group. The baseline

white blood cell, neutrophil, and lymphocyte counts tended to be lower, and hematologic

adverse events during follow-up were more common in the chemotherapy group.

The vaccine regimens and their combinations are reported in Tables 2 and 3, respectively.

Neutralizing antibody analysis

Seroconversion rate. The baseline seroconversion rate before vaccination was 0% in all

populations for both the wild-type and Omicron variants, confirming a seronegative status for

SARS-CoV-2 in all participants. The seroconversion rate of the surrogate neutralizing anti-

body for the wild-type SARS-CoV-2 variant at 28 days after completing vaccination in all par-

ticipants was 77% (95% CI: 67–85%). There was no significant difference in seroconversion

rate between the chemotherapy and nonchemotherapy groups (76% vs. 78%, p = 0.789). In

contrast, the seroconversion rates of the neutralizing antibody for the Omicron variant were

62% (95% CI, 51–72%), 59% (95% CI, 42–74%), and 64% (95% CI, 49–77%) in all participants

and in the chemotherapy and nonchemotherapy groups, respectively, with no difference

among the groups (p = 0.597). The seroconversion rate for the Omicron variant was lower

Fig 1. Study flow.

https://doi.org/10.1371/journal.pone.0310781.g001

PLOS ONE Neutralizing Antibody and Safety of COVID-19 Vaccine in Cancer Patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0310781 November 7, 2024 5 / 17

https://doi.org/10.1371/journal.pone.0310781.g001
https://doi.org/10.1371/journal.pone.0310781


than that for the wild type in both treatment groups (p = 0.008 for both the chemotherapy and

nonchemotherapy groups). The seroconversion rates at 6 months did not differ from those on

day 28 for either variant and are provided in Tables 4 and 5.

Table 1. Baseline demographic and disease characteristics.

Characteristics All (n = 91) Nonchemotherapy (n = 50) Chemotherapy (n = 41) p Value

Sex, n (%)

Male 45 (49.45%) 19 (38.00%) 26 (63.41%) 0.016

Female 46 (50.55%) 31 (62.00%) 15 (36.59%)

Age, years, mean ± SD 60.76 ± 11.78 59.48 ± 12.16 62.48 ± 11.62 0.234

BMI, mean ± SD 23.44 ± 4.48 23.21 ± 4.29 (n = 48) 23.50 ± 4.76 0.843

Smoking, n (%) 19 (20.88%) 7 (14.00%) 12 (29.27%) 0.075

Primary cancer, n (%)

GI 32 (35.16%) 11 (22.00%) 21 (51.22%) 0.009

HBP 15 (16.58%) 8 (16.00%) 7 (17.07%)

Breast 25 (27.47%) 20 (40.00%) 5 (12.20%)

Prostate 5 (5.49%) 2 (4.00%) 3 (7.32%)

Others 14 (15.38%) 9 (18.00%) 5 (12.20%)

Metastatic disease, n (%) 44 (48.35%) 17 (34.00%) 27 (65.85%) 0.002

Comorbid, n (%)

DM 17 (18.68%) 9 (18.00%) 8 (19.51%) 0.854

HT 34 (37.46%) 15 (30.00%) 19 (46.34%) 0.109

Other 40 (43.96%) 20 (40.00%) 20 (48.78%) 0.401

Vaccines, n (%)

mRNA+mRNA 41 (45.05%) 21 (42.00%) 20 (48.78%) 0.688

Non-mRNA+mRNA 19 (20.88%) 12 (24.00%) 7 (17.07%)

Non-mRNA+non-mRNA 31 (34.07%) 17 (34.00%) 14 (34.15%)

Third vaccine booster 21 (23.08%) 12 (24.00%) 9 (21.95%) 0.817

WBC count, cells/mm3, median (IQR) 5985 (4400–7280) 6270 (4730–7540) 5040 (4160–6350) 0.085

Neutrophil count, cells/mm3, median (IQR) 3085 (2430–4190) 3560 (2520–4190) 2840 (2300–4560) 0.231

Lymphocyte count, cells/mm3, median (IQR) 1720 (1210–2270) 1870 (1370–2570) 1490 (950–1910) 0.057

Hematologic AE during follow up

Leukopenia 15 (24.19%) 4 (12.9%) 11 (35.48%) 0.038

Neutropenia 5 (8.06%) 0 5 (16.13%) 0.020

Lymphopenia 20 (32.26%) 7 (22.58%) 13 (41.94%) 0.103

BMI = body mass index (mg/m2), GI = gastrointestinal cancer, HBP = hepatobiliary-pancreatic cancer, DM = diabetes mellitus, HT = hypertension, WBC = white blood

cell, AE = adverse event

https://doi.org/10.1371/journal.pone.0310781.t001

Table 2. Vaccine regimens.

Company Vaccine Platform

Non-mRNA vaccines

AZD1222, ChAdOx1 nCoV-19 AstraZeneca Replication-deficient chimpanzee adenoviral vector

CoronaVac, SinoVac Sinovac Biotech Whole inactivated virus

BBIBP-CorV, BIBP vaccine Sinopharm Whole inactivated virus

mRNA vaccines

BTN162b2, Comirnaty Pfizer–BioNTech nucleoside-modified mRNA

mRNA-1273, Spikevax Moderna nucleoside-modified mRNA

https://doi.org/10.1371/journal.pone.0310781.t002
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Percent inhibition. The percent inhibition was below the cutoff level for seroconversion

in all participants at baseline. At 28 days after vaccination, the mean percent inhibition for the

wild type was 62.25% (95% CI, 55.19–69.30), 61.79% (95% CI, 50.79–72.78), and 62.62% (95%

CI, 53.13–72.12) for all participants and for the chemotherapy and nonchemotherapy groups,

respectively (Table 3). There was no difference between the treatment groups (p = 0.907). For

the Omicron variant, the mean percent inhibition was 42.17 (95% CI, 36.90–47.44), 40.09

(95% CI, 32.19–47.99), and 43.87 (95% CI, 36.59–51.16) for all participants and for the chemo-

therapy and nonchemotherapy groups, respectively. Again, there was no difference between

the treatment groups (p = 0.476). However, the percent inhibition of the Omicron variant was

lower than that of the wild type (p<0.001 in both treatment groups). The percent inhibition at

6 months is provided in Tables 4 and 5.

Factors associated with seroconversion. The univariable analysis of factors associated

with the seroconversion of neutralizing antibodies for both the wild-type and Omicron vari-

ants is shown in Table 6. The results of the multivariable analysis presented in Table 7 revealed

that the type of vaccine was the sole factor positively associated with seroconversion. For the

wild-type SARS-CoV-2 variant, the adjusted odds ratios for the homologous mRNA vaccine

(mRNA+mRNA) and heterologous vaccine (non-mRNA+mRNA) were 14.42 (95% CI 1.99–

104.24, p = 0.008) and 25.86 (95% CI 1.39–478.06, p = 0.029), respectively. For the Omicron

variant, the adjusted odds ratios were 8.90 (96% CI 2.93–26.94, p< 0.001) and 17.38 (95% CI

2.65–82.66, p< 0.001) for the homologous mRNA and heterologous vaccines, respectively.

Diabetes mellitus (DM) was another potential factor associated with reduced seroconversion

for the wild-type SARS-CoV-2 variant, with an adjusted odds ratio of 0.15 (95% CI: 0.02–1.02,

p = 0.053), but the threshold for statistical significance was not met.

Safety

Grades 1 and 2 adverse events following immunization occurred in 34.0% and 19.7% of all par-

ticipants, respectively, as shown in Table 8. The most common side effect was pain at the injec-

tion site, followed by fever and fatigue. There were no serious adverse events leading to

emergency department visits or hospitalizations.

Table 3. Vaccine combinations.

All (91) Nonchemotherapy (50) Chemotherapy (41)

mRNA + mRNA 41 21 20

Pfizer+ Pfizer 21 8 13

Moderna+ Moderna 19 12 7

Others 1 1 0

Non-mRNA+ mRNA 19 12 7

AstraZeneca+Pfizer 18 11 7

Others 1 1 0

Non-mRNA + non-mRNA 31 17 14

Sinopharm + Sinopharm 17 12 5

CoronaVac + AstraZeneca 9 4 5

AstraZeneca + AstraZeneca 3 0 3

Others 2 1 1

https://doi.org/10.1371/journal.pone.0310781.t003
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Clinical correlation of seroconversion and SARS-CoV-2 infection

Four participants (n = 4/91, 4.39%) were confirmed to have SARS-CoV-2 infection after com-

pleting vaccinations; all of them tested negative for seroconversion for both the wild-type and

Omicron variants. The timing periods of infection ranged from 1 to 11 months after the sec-

ond vaccine dose. Among them, one patient suffered from severe COVID-19 pneumonia,

required mechanical ventilation, and experienced multiorgan failure, leading to death. In con-

trast, none of the seropositive participants were diagnosed with SARS-CoV-2 infection.

Table 4. Comparison between the chemotherapy and nonchemotherapy groups.

Neutralizing Antibody Group Baseline Day 28 Month 6 p Value (Month 6 vs. Day

28)

Percent Inhibition (wild type) Nonchemotherapy N 48 50 45

Mean % (95%

CI)

6.28 (4.87–7.69) 62.63 (53.13–

72.12)

69.73 (59.95–

79.51)

0.170

Chemotherapy N 41 41 35

Mean % (95%

CI)

5.24 (4.01–6.47) 61.79 (50.79–

72.78)

67.31 (56.17–

78.44)

0.254

p Value (chemo vs. nonchemo) 0.907 0.791

Total N 89 91 80

Mean % (95%

CI)

5.80 (4.86–6.74) 62.25 (55.19–

69.30)

68.67 (61.48–

75.86)

0.074

Percent Inhibition

(Omicron variant)

Nonchemotherapy N 48 50 45

Mean % (95%

CI)

10.63 (8.72–

12.54)

43.87 (36.59–

51.16)

52.29 (42.99–

61.60)

0.052

Chemotherapy N 41 41 35

Mean % (95%

CI)

7.26 (5.45–9.07) 40.09 (32.19–

47.99)

42.88 (32.99–

52.77)

0.512

p Value (chemo vs. nonchemo) 0.476 0.180

Total N 89 91 80

Mean % (95%

CI)

9.08 (7.73–10.42) 42.17 (36.90–

47.44)

48.18 (41.45–

54.90)

0.061

Seroconversion rate (wild type) Nonchemotherapy N 48 50 45

Mean % (95%

CI)

0 (0–0.07) 0.78 (0.64–0.88) 0.80 (0.65–0.90) 0.778

Chemotherapy N 41 41 35

Mean % (95%

CI)

0 (0–0.09) 0.76 (0.60–0.88) 0.83 (0.66–0.93) 0.236

p Value (chemo vs. nonchemo) 0.789 0.743

Total N 89 91 80

Mean % (95%

CI)

0 (0–0.04) 0.77 (0.67–0.85) 0.81 (0.71–0.89) 0.365

Seroconversion rate (Omicron

variant)

Nonchemotherapy N 48 50 45

Mean % (95%

CI)

0 (0–0.07) 0.64 (0.49–0.77) 0.71 (0.56–0.84) 0.316

Chemotherapy N 41 41 35

Mean % (95%

CI)

0 (0–0.09) 0.59 (0.42–0.74) 0.60 (0.42–0.76) 0.875

p Value (chemo vs. nonchemo) 0.597 0.311

Total N 89 91 80

Mean % (95%

CI)

0 (0–0.04) 0.62 (0.51–0.72) 0.66 (0.55–0.76) 0.420

https://doi.org/10.1371/journal.pone.0310781.t004
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Discussion

Our study was initially designed during the era of vaccine shortages in Thailand and world-

wide. According to government policy at that time, the procurement of COVID-19 vaccines

was disorganized, and access to vaccines relied on personal efforts. Therefore, vaccine combi-

nations with different platforms were expected to be heterogeneous unintentionally.

This study analyzed a real-world cohort of patients with solid cancer, which has a very high

mortality rate. Apart from suffering from their cancer, these patients are also vulnerable to

SARS-CoV-2 infection. Eleven percent of the participants (n = 18) died due to cancer-related

problems, including one death from COVID-19 pneumonia, and 3 percent (n = 4) were con-

firmed to be positive for SARS-CoV-2 infection before completing vaccination or blood analy-

sis. Given the grim prognosis of cancer, a higher rate of seroconversion to protective

antibodies against SARS-CoV-2 infection after two vaccine doses is still a concern, although a

third booster dose is crucial for maintaining immunity.

Compared with analysis of anti-RBD or anti-S antibodies, analysis of neutralizing antibodies

can serve as a more predictive tool for assessing protection against SARS-CoV-2 infection, as

these antibodies can bind to and neutralize the virus, aiding in viral control and clearance [26].

Anti-RBD and anti-S antibody levels are poor predictors of immunity for the wild-type and

novel variants, as increasing levels of anti-RBD do not necessarily imply the presence of neutral-

izing antibodies [27]. Data from previous reports may overestimate vaccine efficacy, highlight-

ing the importance of determining vaccine efficacy on the basis of neutralizing antibodies.

Surrogate neutralization assays offer an alternative effective method that does not require a bio-

safety level 3 laboratory and exhibits high sensitivity (95–100%) and specificity (99.93%) [28].

The test still performs acceptably after validation for the Omicron variant [29]. Our study

revealed a lower seroconversion rate of surrogate neutralizing antibodies (77% and 62% for the

wild-type and Omicron variants, respectively) than did previous reports on the seroconversion

Table 5. Comparison between wild-type and Omicron variants.

Strain Baseline Day 28 Month 6

Percent inhibition (nonchemotherapy) Wild type N 48 50 45

Mean % (95% CI) 6.28 (4.87–7.69) 62.63 (53.13–72.12) 69.73 (59.95–79.51)

Omicron variant N 48 50 45

Mean % (95% CI) 10.63 (8.72–12.54) 43.87 (36.59–51.16) 52.29 (42.99–61.60)

Wild type vs. Omicron, p Value <0.001 <0.001

Percent inhibition (chemotherapy) Wild type N 41 41 35

Mean % (95% CI) 5.24 (4.01–6.47) 61.79 (50.79–72.78) 67.31 (56.17–78.44)

Omicron variant N 41 41 35

Mean % (95% CI) 7.26 (5.45–9.07) 40.09 (32.19–47.99) 42.88 (32.99–52.77)

Wild type vs. Omicron, p Value <0.001 <0.001

Seroconversion rate (nonchemotherapy) Wild type N 48 50 45

Mean % (95% CI) 0 (0–0.07) 0.78 (0.64–0.88) 0.80 (0.65–0.90)

Omicron variant N 48 50 45

Mean % (95% CI) 0 (0–0.07) 0.64 (0.49–0.77) 0.71 (0.56–0.84)

Wild type vs. Omicron, p Value 0.008 0.103

Seroconversion rate (chemotherapy) Wild type N 41 41 35

Mean % (95% CI) 0 (0–0.09) 0.76 (0.60–0.88) 0.83 (0.66–0.93)

Omicron variant N 41 41 35

Mean % (95% CI) 0 (0–0.09) 0.59 (0.42–0.74) 0.60 (0.42–0.76)

Wild type vs. Omicron, p Value 0.008 0.005

https://doi.org/10.1371/journal.pone.0310781.t005
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of anti-RBD and anti-S antibodies in patients with solid cancers (90–94%) [14, 30] and in the

healthy population (97–99%) [31]. This result is consistent with a study on the pseudovirus neu-

tralization assay in cancer patients, where detectable neutralization antibodies for the wild-type

virus were found in 75–85% of the group receiving mRNA-based vaccines [18].

Multiple variants of SARS-CoV-2 have evolved from the wild-type virus since the beginning

of the outbreak, mostly due to different mutations under selective pressure at the S and RBD

regions; furthermore, these variants also influence disease transmissibility, severity and immu-

nity after infection and vaccination [3]. Currently, there are five VOCs, including Alpha, Beta,

Delta, Gamma and Omicron variants [4]. The XBB subvariant of Omicron was the most preva-

lent variant worldwide in 2022, the study time period [25]. The lower seroconversion of the

Omicron variant (XBB) in this study is consistent with other reports in both cancer and

healthy populations [32, 33]. Most COVID-19 vaccines were developed before the era of ongo-

ing novel VOCs, leading to challenging problems with vaccine effectiveness [34]. In the general

population, risk reductions for incidence and mortality are predominantly associated with the

Alpha variant but are diluted by the Delta and Omicron variants; these effects can be overcome

by booster doses [35]. In the capture study, seroconversion of neutralizing antibodies via live

virus microneutralization assays was found to be positive in 83, 61, 53, and 54% of patients

with cancer for the wild-type, Alpha, Beta, and Delta variants, respectively [17]. Another study

of lung cancer patients receiving mRNA vaccines revealed more than 50-fold decreased levels

of neutralizing antibodies to the Omicron variant compared with those to wild-type SARS--

CoV-2 in a live virus neutralization assay [32]. This finding is in concordance with that of our

study. Additionally, the mean percent inhibition decreased from 62.25% for the wild type to

42.17% for the Omicron variant. Thus, these findings suggest a limited efficacy of vaccines

against VOCs.

Active cancer treatments, including chemotherapy, targeted therapy, endocrine therapy,

and immunotherapy, have controversial outcomes with respect to seroconversion. Among

these agents, chemotherapy is considered an immunosuppressive agent that might cause leu-

kopenia and lead to infection. This concept has elicited interest in the potential detrimental

effects of chemotherapy on vaccine efficacy. Some studies have shown a reduced humoral

immune response in chemotherapy treatment groups [36–38]. In a large cohort study of U.S.

veterans, patients receiving chemotherapy within 3 months before vaccination had the lowest

vaccine effectiveness, which was 57% (95% CI: 23 to 90%), when compared with the endocrine

therapy and no systemic therapy groups (76%, 95% CI: 50 to 91%; and 85%, 95% CI: 29 to

100%, respectively) [39], whereas some studies have revealed no mitigatory effect of chemo-

therapy on humoral immunity in the context of COVID-19 vaccines [40, 41]. Our study

revealed a decreasing trend but no statistically significant difference in either the seroconver-

sion rate or percent inhibition in patients receiving chemotherapy three months prior to or

during the vaccination period in terms of neutralization antibodies for both the wild-type and

Omicron variants, regardless of leukopenia, neutropenia, or lymphopenia. However, the over-

all effects of systemic treatments for cancer and vaccination on SARS-CoV-2 infection out-

comes remain unclear and inconsistent [42, 43].

Differences in vaccine platforms result in unequal immunogenicity. Compared with non-

mRNA vaccines, mRNA-based vaccines generate greater amounts of RBD antibodies and neu-

tralizing antibodies in cancer patients [44, 45]. The exploratory analysis of factors associated

with seroconversion from our study suggested that only the type of vaccine combination was

related. Compared with homologous non-mRNA vaccines, the primary heterologous vaccine

combination yielded the highest seroconversion outcome, with an adjusted odds ratio (ORR)

of 25.86 (95% CI 1.39–478.06, p = 0.029), followed by homologous mRNA vaccines, with an

adjusted ORR of 14.42 (95% CI 1.99–104.24, p = 0.008), for the wild type. This result was
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similar for the Omicron variant, with adjusted odds ratios of 17.38 (95% CI 2.65–82.66,

p< 0.001) and 8.90 (96% CI 2.93–26.94, p< 0.001) for heterologous and homologous mRNA

vaccines, respectively. Undoubtedly, booster doses after completing two COVID-19 vaccine

doses generate higher and longer-lasting neutralizing antibody levels [19, 46, 47]; conse-

quently, a third booster vaccine is essential and should be regarded as the standard of care. In a

large, matched control cancer cohort study in Singapore, the clinical benefit of vaccine for pre-

venting severe disease was even greater with a four-dose mRNA-based vaccine regimen [48].

To date, the clinical guidance for COVID-19 vaccination approved by the U.S> Centers for

Table 6. Univariable analysis of explored factors for seroconversion for the wild-type and Omicron variants.

Factors Wild Type Omicron Variant

Seroconversion n (%) OR (95% CI) p Value Seroconversion n (%) OR (95% CI) p Value

Sex

male 36 (80.00) (n = 45) 1.39 (0.53–3.64) 0.670 29 (64.44%) (n = 46) 1.26 (0.54–2.92) 0.578

female 34 (73.91%) (n = 46) ref - 27 (58.70%) (n = 45) ref -

Age

<65 yrs 47 (81.03%) (n = 58) 1.70 (0.63–4.57) 0.286 36 (62.07%) (n = 58) 1.22(0.52–2.88) 0.638

�65 yrs 25 (71.43%) (n = 35) ref - 20 (57.14%) (n = 35) ref -

Smoking (yes) 16 (84.21%) (n = 19) 1.68 (0.44–6.44) 0.447 12 (63.16%) (n = 19) 1.14 (0.40–3.23) 0.801

BMI

<18.5 (underweight) 9 (100%) (n = 9) 7.94 (0.42–148.19) 0.165 8 (88.89%) (n = 9) 3.73 (0.58–23.78) 0.163

18.5–22.9 (normal) 34 (79.07%) (n = 43) 1.51 (0.56–4.10) 0.410 24 (55.81%) (n = 43) 0.82 (0.34–1.98) 0.674

�23.0 (overweight) 27 (71.05%) (n = 38) ref - 23 (60.53%) (n = 38) ref -

Primary cancer, n (%)

GI vs. non-GI 25 (78.12%) (n = 32) 1.04 (0.37–2.91) 0.938 19 (59.38%) (n = 32) 0.92 (0.38–2.20) 0.857

HBP vs. non-HBP 13 (81.25%) (n = 16) 1.30 (0.33–5.07) 0.706 10 (62.50%) (n = 16) 1.09 (0.36–3.33) 0.867

Breast vs. nonbreast 18/26, 69.23% (n = 26) 0.53 (0.19–1.48) 0.229 14 (53.85%) (n = 26) 0.67 (0.27–1.69) 0.406

Prostate vs. nonprostate 3 (60.00%) (n = 5) 0.40 (0.06–2.61) 0.344 1 (20.00%) (n = 5) 0.14 (0.01–1.37) 0.093

Others vs. nonother 13 (92.86%) (n = 14) 4.40 (0.54–35.85) 0.166 13 (92.86%) (n = 14) 10.34 (1.28–82.92) 0.028

Metastasis 36 (81.82%) (n = 44) 1.72 (0.63–4.66) 0.286 28 (63.64%) (n = 44) 1.18 (0.50–2.76) 0.691

Active cancer treatment 51 (71.83%) (n = 71) 0.13 (0.01–1.07) 0.058 41 (57.75%) (n = 71) 0.45 (0.14–1.39) 0.167

Chemo vs. nonchemo 31 (75.61%) (n = 41) 0.87 (0.32–2.43) 0.788 24 (58.54%) (n = 41) 0.79 (0.34–1.85) 0.594

Targeted vs. nontargeted 11 (57.89%) (n = 19) 0.30 (0.10–0.90) 0.032 10 (52.63%) n = 19) 0.62 (0.22–1.74) 0.372

Hormonal vs. nonhormonal 8 (57.14%) (n = 14) 0.32 (0.09–1.07) 0.064 5 (35.71%) (n = 14) 0.28 (0.08–0.93) 0.038

No active cancer treatment 19 (95.00%) (n = 20) ref - 15 (75.00%) (n = 20) ref -

Comorbidity

DM 11 (64.71%) (n = 17) 0.45 (0.14–1.43) 0.181 10 (58.82%) (n = 17) 0.90 (0.30–2.63) 0.848

HT 24 (68.57%) (n = 35) 0.46 (0.17–1.24) 0.128 18 (51.43%) (n = 35) 0.52 (0.22–1.25) 0.148

Other comorbid 30 (73.175%) (n = 41) 0.66 (0.25–1.76) 0.414 26 (63.41%) (n = 41) 1.21 (0.52–2.82) 0.654

Vaccine type

mRNA+mRNA 40 (93.02%) (n = 43) 14.76 (4.06–53.65) <0.001 32 (74.42%) (n = 43) 6.99 (2.54–19.19) <0.001

non-mRNA+mRNA 19 (100.00%) (n = 19) 49.75 (2.76–895.38) 0.008 16 (84.21%) (n = 19) 11.66 (2.94–46.24) <0.001

Non-mRNA+non-mRNA 14 (43.75%) (n = 32) Reference 9 (28.12%) (n = 32) Reference

Leucopenia 11 (73.33%) (n = 15) 0.65 (0.16–2.52) 0.535 10 (66.67%) (n = 15) 1.35 (0.40–4.60) 0.624

Neutropenia 2 (40.00%) (n = 5) 0.14 (0.02–0.96) 0.046 2 (40.00%) (n = 5) 0.38 (0.06–2.51) 0.332

Lymphopenia 14 (70.00%) (n = 20) 0.46 (0.12–1.63) 0.234 12 (60.00%) (n = 20) 0.92 (0.31–2.74) 0.886

BMI = body mass index (mg/m2), GI = gastrointestinal cancer, HBP = hepatobiliary-pancreatic cancer, DM = diabetes mellitus, HT = hypertension

https://doi.org/10.1371/journal.pone.0310781.t006
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Disease Control and Prevention (CDC) recommends three doses of mRNA vaccines for

immunocompromised individuals [49].

However, this study provides a novel report on the more robust immunogenicity of heterol-

ogous primary vaccines in patients with cancers, which is coherent with reports on healthy

populations [50] and a third heterologous prime-boost vaccine [24]. The potential mecha-

nisms include the reorientation of B-cell responses toward neutralizing sites of expressed epi-

topes encoded by mRNA vaccines [51] and the accompanying cellular and humoral responses

on different vaccine platforms [52]. Therefore, the heterologous vaccine strategy should be

encouraged as the second booster primary vaccine, particularly in populations that tend to

have lower seroconversion rates.

Diabetes Mellitus (DM) was another potential factor contributing to a weaker immune

response in patients with wild-type SARS-CoV-2 infection, with an adjusted odds ratio of

0.153 (95% CI: 0.023–1.022, p = 0.053); however, the threshold for statistical significance was

not met. DM is well known for its immunosuppressive state. Some systematic reviews in the

general population reported the inferiority of the immune response to the COVID-19 vaccine

in patients with DM, particularly those with poor glycemic control [53, 54]. DM and glycemic

control in patients with cancer should be evaluated further regarding adverse correlations with

neutralizing antibodies.

Table 7. Multivariate analysis of factors in the wild-type subgroup and Omicron variant subgroup.

Factors Adjusted OR (95% CI) p Value

Wild-type subgroup

Neutropenia 0.23 (0.02–2.12) 0.199

Diabetes mellitus 0.15 (0.02–1.02) 0.053

Vaccine type

Non-mRNA + non-mRNA Ref

mRNA+mRNA 14.42 (1.99–104.24) 0.008

Non-mRNA + mRNA 25.86 (1.39–478.06) 0.029

Omicron variant subgroup

Cancer type

Prostate 0.11 (0.01–1.34) 0.085

Other cancer 8.26 (0.81–84.08) 0.074

Vaccine type

Non-mRNA + non-mRNA Ref

mRNA+mRNA 8.90 (2.93–26.94) <0.001

Non-mRNA + mRNA 17.38 (3.65–82.66) <0.001

https://doi.org/10.1371/journal.pone.0310781.t007

Table 8. Adverse events.

Adverse events
All Participants (n = 91) Nonchemotherapy (n = 50) Chemotherapy (n = 41)

Grade 1 n (%) Grade 2 n (%) Grade 1 n (%) Grade 2 n (%) Grade 1 n (%) Grade 2 n (%)

Any 31 (34.0%) 18 (19.7%) 22 (44.0%) 8 (16.0%) 9 (21.9%) 10 (24.3%)

Pain at injection

site

14 (15.3%) 10 (10.9%) 11 (22.0%) 3 (6.0%) 3 (7.3%) 7 (17.0%)

Fever 8 (8.7%) 5 (5.4%) 5 (10.0%) 2 (4.0%) 3 (7.3%) 3 (7.3%)

Fatigue 4 (4.3%) 3 (3.2%) 4 (8.0%) 3 (6.0%) 0 0

Malaise 3 (3.2%) 0 1 (2.0%) 0 2 (4.8%) 0

Diarrhea 1 (1.0%) 1 (1.0%) 1 (2.0%) 0 1 (2.4%) 1 (2.4%)

https://doi.org/10.1371/journal.pone.0310781.t008
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Regarding safety concerns, vaccinations were well tolerated in both the chemotherapy and

nonchemotherapy groups. All the participants experienced minor reactions, such as pain at

the injection site, fever, and fatigue, which were self-limiting or alleviated by over-the-counter

drugs. None of the participants needed to seek medical attention or required hospitalization.

The strength of our study lies in providing data on COVID-19 vaccine safety and immuno-

genicity, specifically in terms of the seroconversion of surrogate neutralizing antibodies, in

solid cancer patients with and without active cancer treatments, especially chemotherapy for

advanced or metastatic disease. However, our study has several limitations. The population

size was small due to the high mortality rate of cancer patients, incomplete vaccination, and

lack of blood samples from some participants. Second, missing information on third, booster

vaccines during the follow-up period resulted in an inaccurate analysis of neutralizing antibod-

ies at 6 months. Hence, the longevity of the neutralizing antibodies could not be determined in

our study. In addition, this study did not include an analysis of the cellular immunity and

memory function of the adaptive immune response.

Conclusions

Our study revealed that in solid cancer patients, COVID-19 vaccination leads to substantial

immune responses, with seroconversion rates of 77% for the wild type and 62% for the Omi-

cron variant. Heterologous vaccines were more effective, and chemotherapy did not signifi-

cantly affect the seroconversion of neutralizing antibodies. The adverse events were mostly

mild, confirming the safety of the vaccines. Further studies on cell-mediated immunity, cur-

rent circulating variants and clinical benefits of COVID-19 vaccines beyond increasing neu-

tralizing antibody levels in cancer patients will provide additional valuable information.
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