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In this study a Machine Learning model was employed to predict the lipid profile
from supercritical fluid extraction (SFE) of microalgae Galdieria sp. USBA-GBX-
832 under different temperature (40, 50, 60°C), pressure (150, 250 bar), and
ethanol flow (0.6, 0.9 mL min-1) conditions. Six machine learning regression
models were trained using 33 independent variables: 29 from RD-Kit molecular
descriptors, three from the extraction conditions, and the infinite dilution activity
coefficient (IDAC). The lipidomic characterization analysis identified 139 features,
annotating 89 lipids used as the entries of the model, primarily
glycerophospholipids and glycerolipids. It was proposed a methodology for
selecting the representative lipids from the lipidomic analysis using an
unsupervised learning method, these results were compared with Tanimoto
scores and IDAC calculations using COSMO-SAC-HB2 model. The models
based on decision trees, particularly XGBoost, outperformed others (RMSE:
0.035, 0.095, 0.065 and coefficient of determination (R2): 0.971, 0.933, 0.946
for train, test and experimental validation, respectively), accurately predicting lipid
profiles for unseen conditions. Machine Learning methods provide a cost-
effective way to optimize SFE conditions and are applicable to other biological
samples.
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1 Introduction

1.1 Lipids extraction techniques

Lipids are a diverse group of biomolecules, generally classified into eight categories
(fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids,
saccharolipids and polyketides), based on their hydrophobic or amphipathic properties and
chemically functional backbones (Fahy et al., 2005; Liebisch et al., 2020). Traditionally,
oleaginous plants and seeds have been the primary sources of lipids for biofuels production.
In recent years, microalgae have gained attention for their potential to provide a diverse
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range of bioactive molecules. In particular, extremophilic microalgae
have the ability to grow under extreme conditions such as acidic or
alkaline pH, high temperatures, light and heavy metal
concentrations. Some microalgae lipids, such as polyketides and
prenol lipids, are reported to possess antioxidant, anti-
inflammatory, cytotoxic, and even anticancer properties (De Luca
et al., 2021; Khan et al., 2018; Castro et al., 2023). Furthermore,
glycerophospholipids, known for their amphiphilicity, are effective
emulsifying agents, stabilizing oil-water emulsions in delivery
systems for cosmetic and pharmaceutical industries (Li et al.,
2019). This shift towards microalgae is due to their rapid growth
rates, high lipid content, and adaptability to various environments
(De Luca et al., 2021; Khan et al., 2018; Castro et al., 2023).

Obtaining lipids involves different standard methodologies that
include mechanical cell disruption and solvent extraction. Currently
there are different techniques that use solvents, one of the most used
is Bligh and Dyer (B&D) method for lipid quantitation at analytical
level (Bligh and Dyer, 1959; Azmin et al., 2016). However, the
reliance of B&D method on methanol and chloroform presents
environmental and health risks unsuitable for industrial applications
(Santoro et al., 2019). Other organic solvents like ethanol,
dichloromethane, dimethyl ether, and hexane have been studied
but often yield lower results compared to the B&D method, and
some of these solvents may be toxic and hazardous pollutants,
unsuitable for cosmetic, pharmaceutical and food industries (de
Jesus et al., 2019; Cauchie et al., 2021; Xiao et al., 2012).

Soxhlet extraction offers improved extraction yields, however,
large volumes of solvents required can be expensive to remove, and
thermal degradation may also occur caused by the extraction
performed at the boiling point of the solvent for extended
periods of time (Akyil et al., 2018). Alternative methods such as
microwave-assisted extraction, ultrasound-assisted extraction, and
supercritical fluid extraction (SFE) are efficient, fast and sustainable.
However, their application has been limited due to the higher capital
investment for complex equipment (Bligh and Dyer, 1959; Chang
et al., 2017; Desgrouas et al., 2014; Zeković et al., 2017; Orio
et al., 2012).

1.2 Extraction of lipids employing
supercritical fluid extraction (SFE)

Supercritical fluid extraction (SFE) is green technology that is
growing for obtaining bioactive compounds because it is capable of
solubilizing lipophilic substances in shorter process time, and the
solvent can be easily removed from the final extract: this ensures
minimal alteration of the bioactive metabolites and preserves their
biological functional properties. It achieves high selectivity by tuning
pressure and temperature conditions. Its main disadvantage is the
high cost of equipment compared to other extraction techniques
(Crampon et al., 2013).

Over 90% of SFE processes use supercritical carbon dioxide
(scCO2) due to its low critical temperature (31°C) and pressure
(74 bar), non-flammability, non-toxicity and low cost (Capuzzo
et al., 2013; Reid et al., 1988). Besides, CO2 is a gas in atmospheric
conditions, achieving almost complete CO2 removal in extracts and
resulting in solvent-free extract (Molino et al., 2020). scCO2 exhibits
high diffusivity and low viscosity, similar to gasses, which allows the

solvent phase to penetrate into the biological matrix, while its high
density, like liquids, provides good solvating power. Together these
properties enhance the penetration in the biological matrix and the
solubilization of the intracellular compounds. However, CO2’s non-
polarity limits its solvent effectiveness, showing affinity only to non-
polar compounds (de Melo et al., 2014). Cosolvents such as ethanol
or isopropanol are used to modify the solvent polarity (Yousefi
et al., 2019).

Extraction temperature and pressure significantly affect the
compounds solubility in the solvent phase, depending on the
chemical properties of the target compounds. In SFE, efficiency
increases with both pressure and temperature. However, higher
temperature and pressure can increase solubility of all
compounds, even unwanted by-products, such as waxes or
chlorophylls. This reduces extraction specificity and necessitates
additional purification steps. Morcelli et al. reported reduced target
compound yields due to increased chlorophyll concentrations when
extracting carotenoids from Chlorella sorokiniana at higher pressure
and temperature (Morcelli et al., 2021).

Additionally, higher temperatures may cause thermal
degradation of compounds, while higher pressure can increase
fluid density and obstruct diffusivity into the biomass, decreasing
extraction yields (Molino et al., 2020; de Melo et al., 2014; Yousefi
et al., 2019). This thermal degradation and reduced yield at higher
pressures were reported by Sanzo et al. when extracting astaxanthin
and lutein from Haematococcus pluvialis (Sanzo et al., 2018). Thus,
many researchers aim to find optimal extraction conditions to
maximize the yield and bioactivity of extracts (Sanzo et al., 2018;
Macías-Sánchez et al., 2010; Nobre et al., 2006; Macias Sanchez et al.,
2009; Machmudah et al., 2006; Santoyo et al., 2006).

1.3 Thermodynamics-based methods for
modeling supercritical fluid extraction

Developing an experimental design to identify optimal
extraction conditions considering all variables involves significant
time and resource investment. Researchers have formulated accurate
and reliable models considering thermodynamics and kinetic
constraints, equilibrium relationships, and mass transfer
mechanisms across a spectrum of temperatures, pressures, and
phase compositions (Izadifar and Abdolahi, 2006). These models
are classified into three categories: empirical equations, analogical
models drawing parallels between heat and mass transfer, and
models derived from integrated differential mass balances
(Sodeifian et al., 2016).

Empirical equation-based models fit for specific and limited cases,
while heat and mass transfer models aim to describe extraction
process robustly but are constrained by highly idealized
assumptions, such as isothermal processes or homogeneous
mixtures. These assumptions often overlook factors like particle
size effects or cell wall rupture dynamics (Rai et al., 2014).

Thermodynamics-based models, such as those using the activity
coefficient, describe non-ideal mixtures (Atkins, 2006). The activity
coefficient indicates solvent-solute affinity and extraction efficiency.
Models like UNIFAC use group-contribution methods to estimate
interaction parameters by breaking molecules into functional
groups, facilitating broader generalization and reducing
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experimental workload (Fredenslund et al., 1977). However, these
models have some inherent disadvantages: require extensive
experimental data for accurate fragmentation, struggle with

nonadditive molecular effects, and offer limited insight into
solute-solvent interactions, which hinders their practical utility
(Klamt, 1995).

FIGURE 1
Step calculationwith a COSMO-basedmodel. (A) 3Dmolecular structure of themolecules in themixture: carbon dioxide, ethanol and lipid lucidenic
acid L. (B) molecular surface charge distribution calculation. In red a high electronic density, in blue a low electronic density. This is the most time-
consuming step due to quantum mechanical calculations. (C) Bidimensional projection of the surface charge distributions into sigma-profiles. (D)
Determining the thermodynamic property, infinite dilution activity coefficient (IDAC) of the lipid calculated at 50°C, varying ethanol mole fraction.
Figures A, B, and C were obtained using JCOSMO-2.9.12.
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An alternative to group-contribution models is the conductor-
like screening model (COSMO), which relies on computational
quantum mechanics. Unlike UNIFAC-Modified (2002), which
uses 612 fitting parameters related to size, shape, and functional
group interactions, COSMO models require only four universal
parameters. These models predict thermo-physical properties
without experimental data and calculate the chemical potential of
any molecule in any mixture (Gerber and Soares, 2010; Lin and
Sandler, 2001). Figure 1 presents the step-by-step calculation with a
COSMO-based model, starting with the 3D molecular structures,
and finishing with the calculation of thermodynamic properties
under temperatures and compositions in the extraction system.
COSMO-based models have been used successfully for predicting
the optimal temperature and ethanol composition for SFE to obtain
carotenoids. However, those calculations are based on individual
lipids against CO2-ethanol mixtures and cannot account for solute
competition or positive synergies that may enhance the extraction
yields (Morcelli et al., 2021). To address these limitations, a
comprehensive model is needed, incorporating not only COSMO
calculations but also other chemoinformatics tools to accurately
describe these effects.

1.4 Molecular descriptors

For decades, researchers have sought to translate the encoded
information in chemical structures into numerical representations
that computers can understand and manipulate (Wang et al., 2021).
This effort led to the development of Quantitative Structure-Activity
Relationship (QSAR) approaches, a powerful in silico method.
QSAR establishes quantitative relationships between a molecule’s
structure (represented by molecular descriptors) and its properties,
including biological activities, reaction mechanisms, and
physicochemical properties, such as solubility (Willighagen, 2010).

Over 5,000 molecular descriptors have been proposed, capturing
various aspects of a molecule’s structure (Consonni and Todeschini,
2010). These descriptors range from basic features like the number
and types of atoms to more detailed information such as
connectivity, geometry, charge distribution, and hydrogen
bonding potential (Grisoni et al., 2018).

1.5 Machine learning in SFE

The proliferation of Artificial Intelligence (AI) in recent years
has been remarkable, permeating various sectors and becoming an
integral part of daily activities (Prezhdo, 2020). AI applications are
now used as personal assistants, customer preference predictors, and
creators of images and natural language (Mistry et al., 2021). The
success of machine learning in the technology sector is anticipated to
be similar in science. The exponential increase in computational
power over the past 2 decades has enabled in silico investigations
previously deemed unfeasible due to limited time and
experimental resources.

Physics-driven tools have emerged, facilitating high-throughput
computational screening for drug discovery, predicting molecular
properties based on Quantitative Structure-Property Relationships
(QSPRs), and calculating activity coefficients for thermodynamic

systems using quantum mechanics models (Winter et al., 2023). In
contrast, machine learning operates without relying on an
understanding of underlying physics, leveraging vast datasets to
make predictions. This paradigm shifts from physics-driven to data-
driven modeling has seen various machine learning algorithms
implemented across diverse scientific disciplines, including
chemistry, biology, fluid dynamics, and material science (Butler
et al., 2018).

Research in supercritical fluids has also embraced machine
learning, from molecular simulation to estimation of solubilities
in supercritical conditions (Roach et al., 2023). In the domain of SFE,
there is significant interest in optimizing processes. Much of the
analysis has focused on predicting extraction yield under various
conditions, employing complex algorithms such as artificial neural
networks (ANN), adaptive neuro fuzzy inference system (ANFIS) or
cascade-forward back-propagation network (CFBPN) to address an
optimization problem (Ghoreishi and Heidari, 2013; Heidari and
Ghoreishi, 2013; Lashkarbolooki et al., 2013; Ghoreishi et al., 2016;
Idris et al., 2022; Valim et al., 2018). Studies have also investigated
the solubility of different organic compounds in scCO2, but these
have often focused on individual molecules or a limited set of
compounds (Kamali and Mousavi, 2008; Nguyen et al., 2022;
Huwaimel and Alobaida, 2022; Kostyrin et al., 2022; Aminian
and ZareNezhad, 2020). There is a noticeable absence of studies
aiming to generalize the solubility of hundreds of organic
compounds in a solvent or to elucidate changes in lipid profile
composition based on SFE variables (Roach et al., 2023).

Consequently, in the present study, six Machine Learning
models were tested to predict the microalgae lipid profile
obtained by SFE at different pressure, temperature and ethanol
flow conditions. The lipid profile of the extracts was elucidated using
RP-LC-ESI(+/−)-QTOF-MS platform, and K-Medoids, an
unsupervised learning method, was used for systematic
lipid selection.

2 Materials and methods

2.1 Dataset compilation

The data flow for building the models is presented in Figure 2. A
single dataset consolidated all the information for training and
testing the models. The defined extraction conditions, the cleaned
molecular descriptors and the results from IDAC calculations served
as independent variables, while the lipid recovery, measured in the
lipidomic characterization analysis, was the dependent variable.
Some experiments were performed to collect all this information,
and some intermediate steps were necessary for preprocessing the
collected data. The data, files and codes used along the methodology
have been made available in a GitHub repository (https://github.
com/Grupo-de-Diseno-de-Productos-y-Procesos/Lipids-SFE).

2.1.1 Conditions for supercritical fluid extraction
(SFE) of microalgae Galdieria sp. USBA-gbx-832

The algal strain Galdieria sp. USBA-GBX-832 in lyophilized
pellets was obtained from culture cultivation at Pontificia
Universidad Javeriana, Colombia (CMPUJ U832). This biomass
was cultured in mixotrophic conditions in MG911 during 8 days
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maintaining at 43±2°C, consistent agitation speed of 170 rpm, light
intensity of 20 umol. m⁻2s⁻1, and aeration rate of 0.2 vvm (López et al.,
2019; Rivera, 2024). The biomass ofGaldieria sp. USBA-GBX-832 was

frozen for 24 h at −80°C and freeze-dried (Alpha 1-2 LDPlus, Martin
Christ, Germany) at a pressure of 4 × 10−4 and temperature of −40°C
for 48 h. To ensure uniformity, biomass underwent homogenization

FIGURE 2
Data Flow Diagram of Lipid Extraction and Lipidomic Characterization from Galdieria sp. and Machine Learning Regression Models Training for
Recovery Prediction.
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before the extraction process. SFE experiments employed carbon
dioxide (99.99% purity, Messer, Colombia) and ethanol (99.8%,
ITW Reagents, Germany) as solvents.

SFE extractions were performed using the MV-10 ASFE System
(Waters, United States) following the manufacturer’s
recommendations. Freeze-dried biomass was powdered with
mortar with pestle and sieved, selecting particle size between
180 and 500 μm, and dried at 45°C for 12 h to eliminate moisture.
Samples of 1.0 g of microalgae biomass were wrapped with filter paper
(7–10 µm pore size) and placed in the extraction vessels. Extraction
conditions (pressure, temperature, CO2 flow, cosolvent flow, and
extraction time) were controlled via the panel, with a CO2 flow rate of
5 mL/min for 75 min. Pressure (150 and 250 bar ±1 bar), temperature
(40, 50, and 60°C ± 0.5°C), and cosolvent flow (0.6 and 0.9 mL/min of
ethanol ±0.1 mL/min) were varied, based on literature reports (de
Melo et al., 2014). Extracts were collected in amber flasks to prevent
daylight degradation, concentrated in a vacuum concentrator
(Vacufuge® Plus, Eppendorf) at 40°C for 3 h, and freeze-dried
(Alpha one to two LDPlus, Martin Christ) at −20°C, 1 mbar for
26 h. Lipidomic analysis was conducted on 10 µg samples of each
extraction (see Table 1 for experimental design).

2.1.2 Lipidomic characterization analysis and
representative lipid selection

Lipidomic characterization was conducted using RP-LC-ESI
(+/−)-QTOF-MS. Supercritical extracts were dissolved in MeOH:
MTBE (1:1) until obtaining a solution at 200 ppm. Samples were
vortexed and centrifuged at 13,000 rpm for 10 min to 4°C.
Chromatographic elution was achieved by injecting 2 µL of sample
into InfinityLab Poroshell C18 column (3.0 × 100 mm 2.7 µm) at flow
rate of 0.6 mLmin-1, with a column temperature of 60°C. Mobile phases
consisted of 10 mM ammonium formate, ACN:H2O (60:40) and 0.1%
of formic acid for phase A and 10 mM in ammonium formate, IPA:
ACN (90:10) and 0.1% of formic acid for phase B and gradient elution:
0–2min, 15%–30%B; 2–2.5min 30%–48%B; 2.5–11min, 48%–82%B;
11–11.5min, 82%–99%B; 11.5–12min, 99%B; 12–12.1min, 99%–15%
By 12.1–18min, 15%B. Themass spectrometer was operated in positive
mode (ESI +/−) with a range of 65–1700 m/z. Capillary voltage was set
to 3,000, the drying gas flow rate was 12 L min-1 at 250°C, gas nebulizer
3.59 bar (52 psi), fragmentor voltage 175 V, skimmer 65 V and octopole
radio frequency voltage (OCT RF vpp) 750 V. Data were collected in
centroidmode at a scan rate of 1.02 spectra per second. For electrospray
ionization in positive mode, two reference masses were used: m/z
121.0509 [C5H4N4+H]+ and m/z 922.0098 [C18H18O6N3P3F24 +
H]+. For electrospray ionization negative mode were used: m/z
112.9856 [C2O2F3 (NH4)], m/z 1,033.9881 (C18H18O6N3P3F24).

The Lipidomic characterization process is limited in identifying
all lipids at the highest level of detail and several lipids share the
same shorthand notation. Full structural information is required for

further calculations, needing a detailed description of the identified
lipids. To address this, a methodology was developed for selecting a
representative lipid from the available reported lipids. First,
candidate names and structural information in isomeric SMILES
format were obtained from Lipid MAPS (Lipid Maps, 2024). Next,
molecular descriptors were calculated using the RDKit
2023.9.4 library, from the 210 descriptors available in RDKit,
29 were selected following the methodology explained in section
2.2. The K-Medoids clustering algorithm, an unsupervised learning
method, grouped the candidate lipids, and for each group, a centroid
was calculated using the cleaned molecular descriptors data. The
lipid closest to this centroid was selected as the representative lipid.

The results of this methodology were compared and analyzed
against those obtained through Tanimoto similarity scores and
IDAC calculations. Tanimoto scores were computed for each pair
of candidates, and the mean score for each candidate relative to the
others in the group was calculated. The highest-scoring candidate
(closest to 1.0) was considered the most structurally similar lipid
within the group. The IDAC calculation methodology (further
details in the next section) involved evaluating each candidate’s
activity coefficients under the SFE conditions. The candidate
exhibiting the lowest squared error against the mean results of
the group was identified as possessing the representative physical
and thermodynamic behavior under SFE conditions.

2.1.3 Infinite dilution activity coefficient (IDAC)
evaluation

The calculation of IDAC requires information about the
electronic charge distribution of the molecules involved in the
CO2-ethanol-lipid thermodynamic system (see Figure 1). The
electronic charge distribution of lipids was determined using
GAMESS software (Mark Gordon’s Quantum Theory Group, de
Iowa State University, United States) (Barca et al., 2020), with
support from COSPRT patch routine developed by The Virtual
Laboratory for Properties Prediction (LVPP, UFRGS, Brazil) (Soares
et al., 2020). For these calculations, 3D-structural information in
MOL file format is necessary. The resulting files, in GOUT format,
were integrated into the compounds’ library of JCOSMO 2.9.12
(LVPP, UFRGS, Brazil) (Ferrarini et al., 2018). This software was
used to calculate IDAC, at the same SFE conditions, temperature
and ethanol mole fraction. The lipids were set at a mole fraction of
1 × 10−5 to ensure infinite dilution conditions.

2.2 RDKit molecular descriptors selection

A set of 210 molecular descriptors was calculated using the
RDKit 2023.9.4 library. Data preprocessing involved a Python
3.10 script that removed descriptors with significant missing or

TABLE 1 Experimental conditions defined for supercritical fluid extraction.

Temperature ethanol flow
pressure (bar)

40°C 50°C 60°C

0.6 mLmin-1 0.9 mLmin-1 0.6 mLmin-1 0.9 mLmin-1 0.6 mLmin-1 0.9 mLmin-1

150 SC1 SC2 SC3 SC4 SC5 SC6

250 SC7 SC8 SC9 SC10 SC11 SC12
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unique values. Pearson correlation analysis was then performed with
a threshold of 0.75 to reduce redundancy. A final set of
29 descriptors was selected for training the regression models.
The descriptors selected by this methodology are specified in
Supplementary Data 1.

2.3 Machine learning models description

Six Machine Learning regression models were trained and
tested: Lasso (Tibshirani, 1996), Gaussian Regression (GR)
(Rasmussen and Williams, 2006), Support Vector Machines
(SVR) (Smola and Schölkopf, 2004), Random Forest (RFR),
Gradient-Boosted Trees (XGBoost) (Freund and Schapire,
1997), and Artificial Neural Network (ANN) (Atienza, 2018).
These algorithms were implemented using Python 3.10.12,
Keras library was used for ANN, and Scikit-Learn library for
the other methods.

2.4 Data splitting

The dataset with three extraction conditions, 29 molecular
descriptors, IDAC results, and the recovery of the lipids, in
logarithmic scale, were split randomly into training and testing
sets with an 80:20 ratio. Data from the extraction conditions
SC5 were set aside from the beginning and excluded from the
training and testing data sets. This information was used to
validate the models’ capacity to predict the lipid profile under
new, unseen extraction conditions.

2.5 Hyperparameter tuning and evaluation
of the models

The models were trained and evaluated both including and
excluding the IDAC calculations to assess the influence of this
variable in the performance of the regression models. A
hyperparameter tuning was performed for every model using
Grid Search with 5-fold Cross-Validation (See Supplementary
Data 2). After training, the following metrics were calculated:
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
and coefficient of determination (R2) (Scikit Learn, 2024).
Hyperparameter tuning process, training and tests calculations
were performed using the Python library Scikit-Learn (Pedregosa
et al., 2012).

3 Results and discussion

3.1 Lipid profile of the supercritical extracts

A total of 139 features were identified from the supercritical
extracts, 89 could be annotated while 50 remain unknown.
Supplementary Data 3 provides a comprehensive list of all the
identified lipids along with their recovery under the 12 extraction
conditions. The lipidomic characterization revealed the primary
components extracted from microalgae Galdieria sp. USBA-GBX-

832 were lipids with glycerol backbone: glycerophospholipids and
glycerolipids; followed by sphingolipids, prenols and fatty acyls
(Figure 3). Although triglycerides had previously been identified
in the microalgae under the cultivation conditions from which the
biomass was obtained, none were detected in the supercritical
extracts (Rivera, 2024).

Most of the lipids were identified in all the extracts; however, it is
observed that, depending on the condition employed, their
abundances were different. Figure 3 shows the differences in lipid
class profile for each extract. For instance, at lower pressure
(150 bar), more fatty acyls are extracted when the ethanol flow is
lower (0.6 mLmin-1) compared to higher flow (0.9 mLmin-1). This
suggests that fatty acyls are less attracted to the solvent when the
polarity increases. Interestingly, this difference is less noticeable at
higher pressure (250 bar), indicating that pressure helps dissolve
fatty acyls, making the CO2-ethanol mixture a more effective
solvent. In contrast, the abundance of glycerophospholipids
increase as all three variables increase. The lowest abundance is
observed at SC1, while the highest abundance is at SC12. At low
pressure, the cosolvent has a stronger effect for glycerolipids than the
observed with fatty acyls.

3.2 Representative lipid selection using an
unsupervised method

Supplementary Data 4 shows all the lipids identified in the
lipidomic characterization.

analysis, with their corresponding lipid annotated. In cases
where more than one lipid was reported with the same
shorthand notation, the selection was performed using the
unsupervised algorithm K-Medoids as was explained above.

The representative lipid selection results were compared with
Tanimoto scores and IDAC calculations. In Figure 4 can be observed
the results of Tanimoto score calculations. High similarity scores
(>0.80, and in some cases >0.95) were observed when comparing the
candidates. This high similarity can be attributed to the minimal
structural differences between the candidates, primarily involving
the location of double bonds. Furthermore, candidates were ranked
based on their average score, revealing that no candidate stood out
significantly as all had nearly identical values.

Additionally, all candidates for each lipid exhibit the same
trend and order of magnitude when calculating IDAC (See
Figure 5). These findings, combined with the Tanimoto Score
results, suggest that while the representative lipid selection
through the unsupervised learning method may introduce
uncertainty, the physical and thermodynamic behavior of any
candidate would correspond to the behavior observed
experimentally in the context of extraction (Complementary
results in Supplementary Data 5). K-Medoids and Tanimoto
Score give a quick result, while IDAC calculation is highly
time-consuming, calculating a single molecule’s surface-charge
distribution can take several days of computer processing. It is
important to mention that the only way to validate the selected
lipid is experimentally, either through standard solutions or by
enhancing the detection capacity of the instruments. However,
both options are unfeasible for this work, and generally for most
research endeavors.
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3.3 Model performance and prediction over
the experimental dataset

The lipidomic characterization produced a dataset of
1,056 entries. Additionally, 210 molecular descriptors were
calculated. The cleaning data and dimension reduction process
was performed by removing variables with missing or unique
values, and high correlations. This step aimed to reduce the
computational cost and noise, prevent overfitting and improve
generalization. The final set of 29 molecular descriptors,
combined with the extraction conditions (pressure, temperature,
and ethanol flow rate), serve as input for training the selected
Machine Learning algorithms for predicting lipid concentration

under the given extraction conditions. Table 2 shows the
regression metrics for all the assessed models.

Testing the predictiveness of these models on unseen data
revealed some limitations. The Lasso displayed the worst
performance due to its reliance on linear regression. For instance,
while Gaussian Regression exhibited excellent performance on the
training set (R2 ≈ 0.998), it showed a notable drop when tested on
unseen data (R2 < 0.85). This overfitting was reduced with manual
hyperparameter tuning, raising the test performance to around R2 ≈
0.90 (see Supplementary Data 2). Models based on decision tree
architectures, such as Random Forest and XG Boost, consistently
demonstrated better performance and generalization. While
XGBoost showed promising results with low MSE and RMSE

FIGURE 3
Relative abundance of different lipid classes in the twelve supercritical extracts.

FIGURE 4
Tanimoto Score for pairs of PC 16:0_18:1 (A) and DG 36:2 (B) candidates.
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values on training, test, and experimental validation data, it is
essential to note that some models, including ANN and SVR,
struggled to achieve R2 > 0.90 and RMSE <0.1 on the test data.

Comparing the performances of the models with and without
IDAC, notably, the Lasso model achieved consistently coefficient of
determination around 0.7 for training, test and validation data. This
suggests a strong correlation between solubility and activity coefficient,
but it is still insufficient for training an accurate model based on linear
regression. For the other models, overfitting is observed. While training
performance improved when including IDAC, this did not translate to
test and validation data. This drop was especially significant for
Random Forest and ANN. These results indicate that although
IDAC is related to solubility, it is not essential for building a robust
model that predicts the lipid profile of the extracts.

Further analysis of the variables identified two molecular
descriptors, Quantitative Estimation of Drug-likeness (qed) and

Minimum Electrotopological State Index (MinEStateIndex) were
highly correlated with IDAC (Pearson correlation coefficients of
0.76 and 0.78, respectively). This redundancy between features
might be causing the overfitting. The qed measure reflects the
underlying distribution of molecular properties including
molecular weight, logP, topological polar surface area, meanwhile
the MinEStateIndex calculates the minimum electro-topological
state value across all atoms in a molecule. This value can help
assess the overall electron-withdrawing character of the molecule.
Both descriptors are related to the activity coefficient calculation.

One limitation in calculating IDAC using COSMO-SAC-HB2 is
that it does not account for pressure as a variable. The newer
COSMO-SAC-Phi model addresses this by incorporating pressure
into the IDAC calculations [72]. However, to do so, saturation data is
required to compute the parameters involved in the activity coefficient
under varying pressures. Unfortunately, this saturation data is

FIGURE 5
IDAC calculations for PC 16:0_18:1 (A), DG 36:2 (B) candidates at 50°C as a function of the mole fraction of ethanol.
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currently unavailable for the identified lipids, as these complex
molecules lack sufficient experimental data in existing databases.

Figure 6 presents the regression results using the best-
performing model, XGBoost, applied to the training, test, and
experimental validation data. The low MSE and RMSE values,
along with the high coefficient of determination score for the
validation data indicate that the model can accurately predict a
complete lipid profile for unseen extraction conditions. Moreover,
the model-maintained accuracy when predicting for intermediate
experimental conditions. Graphical results for the other models are
available in Supplementary Data 6.

All models exhibited high uncertainty when predicting no lipid
recovery under specific extraction conditions, particularly for lipids
recovered only in SC1. To retain valuable information, lipids with no
recovery (relative abundance of 0.00 in Supplementary Data 3) were
assigned an arbitrary Log [x] value of −7 during the logarithmic
transformation. This value, chosen to be lower than the smallest

detected abundance, represented a lipid quantity too low for
detection by the instruments. XGBoost outperformed the other
models in handling these low-recovery lipids, although predicted
values still remained very low (Log [x] < −6).

The relatively small dataset of 1,056 entries, coupled with the
specific experimental conditions under which it was generated, may
limit the model’s ability to generalize beyond its current scope. Despite
this, the model demonstrated strong predictive performance by
accurately forecasting the complete lipid profile concentration under
a combination of conditions unseen by the model during training. This
experimental validation suggests the model’s reliability within the
dataset’s context, even though the validation data originated from
the same experimental design that fed the training process.

Although the proposed methodology could be extended to
different biological samples, including other microalgae species
beyond Galdieria sp. USBA-GBX-832, the current model is
specifically trained on data unique to this species. As a result, its

TABLE 2 Performance metrics of the assessed Machine Learning algorithms.

Model MSE
train

MSE
test

MSE
validation

RMSE
train

RMSE
test

RMSE
validation

R2 train R2 test R2 validation

Lasso- 0.805 0.953 0.808 0.648 0.908 0.653 0.463 0.355 0.453

Lasso+ 0.624 0.657 0.597 0.389 0.432 0.356 0.702 0.679 0.723

GR- 0.243 0.388 0.329 0.059 0.150 0.108 0.951 0.894 0.910

GR+ 0.231 0.426 0.325 0.054 0.181 0.105 0.959 0.865 0.918

XGB- 0.186 0.308 0.254 0.035 0.095 0.065 0.971 0.933 0.946

XGB+ 0.179 0.367 0.288 0.032 0.135 0.083 0.992 0.917 0.914

RF- 0.134 0.310 0.291 0.018 0.096 0.084 0.985 0.933 0.927

RF+ 0.137 0.394 0.324 0.019 0.155 0.105 0.986 0.884 0.918

SVR- 0.273 0.378 0.251 0.074 0.143 0.063 0.937 0.905 0.953

SVR+ 0.233 0.400 0.290 0.054 0.160 0.084 0.958 0.881 0.934

ANN- 0.271 0.381 0.260 0.074 0.145 0.067 0.939 0.897 0.944

ANN+ 0.210 0.534 0.309 0.044 0.285 0.095 0.966 0.788 0.926

Abbreviations: +, including IDAC, as variable; -, excluding IDAC, as variable; GR, gaussian regression; XGB, XG, boost; RF, random forest; SVR, support vector regressor; ANN, artificial neural

network.

FIGURE 6
Regression results for XG Boost model using (A) Training data, (B) Test data, and (C) Validation data from SC5.
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ability to generalize to other microalgae remains uncertain, with
predicted lipid profiles closely tied to the biological and cultivation
characteristics ofGaldieria sp. To enhance generalization, additional
data reflecting their distinct biological properties and environmental
conditions of other microalgae species would be required. Future
research should prioritize testing the model on a broader range of
species to assess its adaptability and refine it for improved cross-
species prediction.

4 Conclusion

In this work, a Machine Learning approach was used to build the
first model capable of accurately predicting the complete lipid profile
during supercritical fluid extraction across a range of temperatures
and cosolvent flow conditions. Additionally, a systematic approach
for representative lipid selection was developed, demonstrating that,
in an extraction context, the chosen lipids will exhibit physical and
thermodynamic behavior observed experimentally.

The Lasso model with IDAC demonstrated the strong
correlation between solubility and the activity coefficient,
although the other models that include IDAC suffered overfitting.
The best performing model for predicting the lipid profile of the
extract was XG Boost without IDAC. IDAC results were limited to
the thermodynamic model used, COSMO-SAC-HB2, which does
not consider pressure effects. A COSMO-based model that does
consider pressure, COSMO-SAC-Phi, was not used because the
necessary saturation information was unavailable.

Although the build model is restricted for predicting the lipid
profile of the microalgae, this methodology allows researchers to
reduce the cost and time needed to identify the desired extraction
conditions, whether to achieve the highest extraction yield or to
optimize the recovery of specific lipids or lipid groups. For instance,
the model can help pinpoint conditions that maximize the
extraction of valuable lipids like phosphoglycerolipids or reduce
the presence of undesired compounds like chlorophylls.
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