Skip to main content
. 2024 Oct 25;12:1480887. doi: 10.3389/fchem.2024.1480887

TABLE 2.

Performance metrics of the assessed Machine Learning algorithms.

Model MSE train MSE test MSE validation RMSE train RMSE test RMSE validation R2 train R2 test R2 validation
Lasso- 0.805 0.953 0.808 0.648 0.908 0.653 0.463 0.355 0.453
Lasso+ 0.624 0.657 0.597 0.389 0.432 0.356 0.702 0.679 0.723
GR- 0.243 0.388 0.329 0.059 0.150 0.108 0.951 0.894 0.910
GR+ 0.231 0.426 0.325 0.054 0.181 0.105 0.959 0.865 0.918
XGB- 0.186 0.308 0.254 0.035 0.095 0.065 0.971 0.933 0.946
XGB+ 0.179 0.367 0.288 0.032 0.135 0.083 0.992 0.917 0.914
RF- 0.134 0.310 0.291 0.018 0.096 0.084 0.985 0.933 0.927
RF+ 0.137 0.394 0.324 0.019 0.155 0.105 0.986 0.884 0.918
SVR- 0.273 0.378 0.251 0.074 0.143 0.063 0.937 0.905 0.953
SVR+ 0.233 0.400 0.290 0.054 0.160 0.084 0.958 0.881 0.934
ANN- 0.271 0.381 0.260 0.074 0.145 0.067 0.939 0.897 0.944
ANN+ 0.210 0.534 0.309 0.044 0.285 0.095 0.966 0.788 0.926

Abbreviations: +, including IDAC, as variable; -, excluding IDAC, as variable; GR, gaussian regression; XGB, XG, boost; RF, random forest; SVR, support vector regressor; ANN, artificial neural network.