TABLE 2.
Performance metrics of the assessed Machine Learning algorithms.
Model | MSE train | MSE test | MSE validation | RMSE train | RMSE test | RMSE validation | R2 train | R2 test | R2 validation |
---|---|---|---|---|---|---|---|---|---|
Lasso- | 0.805 | 0.953 | 0.808 | 0.648 | 0.908 | 0.653 | 0.463 | 0.355 | 0.453 |
Lasso+ | 0.624 | 0.657 | 0.597 | 0.389 | 0.432 | 0.356 | 0.702 | 0.679 | 0.723 |
GR- | 0.243 | 0.388 | 0.329 | 0.059 | 0.150 | 0.108 | 0.951 | 0.894 | 0.910 |
GR+ | 0.231 | 0.426 | 0.325 | 0.054 | 0.181 | 0.105 | 0.959 | 0.865 | 0.918 |
XGB- | 0.186 | 0.308 | 0.254 | 0.035 | 0.095 | 0.065 | 0.971 | 0.933 | 0.946 |
XGB+ | 0.179 | 0.367 | 0.288 | 0.032 | 0.135 | 0.083 | 0.992 | 0.917 | 0.914 |
RF- | 0.134 | 0.310 | 0.291 | 0.018 | 0.096 | 0.084 | 0.985 | 0.933 | 0.927 |
RF+ | 0.137 | 0.394 | 0.324 | 0.019 | 0.155 | 0.105 | 0.986 | 0.884 | 0.918 |
SVR- | 0.273 | 0.378 | 0.251 | 0.074 | 0.143 | 0.063 | 0.937 | 0.905 | 0.953 |
SVR+ | 0.233 | 0.400 | 0.290 | 0.054 | 0.160 | 0.084 | 0.958 | 0.881 | 0.934 |
ANN- | 0.271 | 0.381 | 0.260 | 0.074 | 0.145 | 0.067 | 0.939 | 0.897 | 0.944 |
ANN+ | 0.210 | 0.534 | 0.309 | 0.044 | 0.285 | 0.095 | 0.966 | 0.788 | 0.926 |
Abbreviations: +, including IDAC, as variable; -, excluding IDAC, as variable; GR, gaussian regression; XGB, XG, boost; RF, random forest; SVR, support vector regressor; ANN, artificial neural network.