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Abstract
Motivation: The versatile binding properties of antibodies have made them an extremely important class of biotherapeutics. However, thera-
peutic antibody development is a complex, expensive, and time-consuming task, with the final antibody needing to not only have strong and 
specific binding but also be minimally impacted by developability issues. The success of transformer-based language models in protein se-
quence space and the availability of vast amounts of antibody sequences, has led to the development of many antibody-specific language mod-
els to help guide antibody design. Antibody diversity primarily arises from V(D)J recombination, mutations within the CDRs, and/or from a few 
nongermline mutations outside the CDRs. Consequently, a significant portion of the variable domain of all natural antibody sequences remains 
germline. This affects the pre-training of antibody-specific language models, where this facet of the sequence data introduces a prevailing bias 
toward germline residues. This poses a challenge, as mutations away from the germline are often vital for generating specific and potent bind-
ing to a target, meaning that language models need be able to suggest key mutations away from germline.
Results: In this study, we explore the implications of the germline bias, examining its impact on both general-protein and antibody-specific lan-
guage models. We develop and train a series of new antibody-specific language models optimized for predicting nongermline residues. We 
then compare our final model, AbLang-2, with current models and show how it suggests a diverse set of valid mutations with high cumulative 
probability.
Availability and implementation: AbLang-2 is trained on both unpaired and paired data, and is freely available at https://github.com/oxpig/ 
AbLang2.git.

1 Introduction
The potential of antibodies, also known as B-cell Receptors 
(BCR), to bind and neutralize any pathogen by either block-
ing their function or marking them for removal (Lu et al. 
2018, Marks and Deane 2020, Norman et al. 2020), has 
made them a valuable tool in many areas of medical and sci-
entific research. Antibodies are used routinely in diagnostic 
assays (Espejo et al. 2020) and are by far the most successful 
class of biotherapeutic, evidenced by the >170 antibody ther-
apeutics that are in regulatory review or approved for clinical 
use to date (Raybould et al. 2020, Kaplon et al. 2023). 
However, therapeutic antibody development is a complex 
task, traditionally taking years. To be a therapeutic, an anti-
body needs to not only bind strongly and exclusively to its 
target, but also be minimally impacted by undesirable proper-
ties, like aggregation (van der Kant et al. 2017), damaging 
post-translational modification sites (Vatsa 2022), and im-
munogenicity (Kelley 2020, Lu et al. 2020), collectively 
known as developability issues (Raybould et al. 2019). 
Antibodies therefore go through multiple rounds of optimiza-
tion, leading to an expensive and time-consuming develop-
ment process. As a consequence, there has been an increasing 
focus on developing computational methodologies to help 
this development (Norman et al. 2020).

Recently, transformer-based language models (LMs) have 
become indispensable for the prediction of many language 
tasks, like language translation, question answering, and 
human-like text generation (Devlin et al. 2018, Liu et al. 
2019, Radford et al. 2019, Brown et al. 2020). Given the 
shared similarities between protein sequences and natural 
language, both comprised of basic units in the form of amino 
acids and words with an inherent syntax, a lot of effort has 
been put into developing and training protein-specific LMs 
(Elnaggar et al. 2021, Rives et al. 2021, Ferruz et al. 2022, 
Lin et al. 2023, Nijkamp et al. 2023) and for antibody dis-
covery and design, antibody-specific LMs (Ruffolo et al. 
2021, Leem et al. 2022, Olsen et al. 2022b, Prihoda et al. 
2022). The key element for LMs is that they are initially pre- 
trained on vast amounts of unlabeled data in an unsupervised 
manner (Devlin et al. 2018). Pre-trained LMs can then be 
used to create information-rich representations of the input 
sequence or, as popular for BERT-like protein and antibody 
LMs, for directed evolution by suggesting mutations that lead 
to better binding and developability properties (Hie et al. 
2024). BERT-like models are inspired by the BERT architec-
ture and trained using the masked language modeling (MLM) 
approach (Devlin et al. 2018).

Most antibody-specific LMs are pre-trained on the anti-
body sequences in databases like the Observed Antibody 
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Space (OAS) (Olsen et al. 2022a). These sequences are 
obtained through high-throughput BCR repertoire sequenc-
ing (BCR-seq), which enables sequencing of millions of anti-
bodies per sample (Briney et al. 2019). However, because of 
limitations on the possible length that can be sequenced, only 
the variable domain of the heavy (VH) or light (VL) chain is 
usually sequenced, as the VH and VL contain most of the se-
quence diversity and the binding site (Kim and Park 2019). 
The complete binding site spans both the VH and VL, but 
BCR-seq methods retaining the VH-VL pairing information 
currently have a much lower throughput (Jaffe et al. 2022). 
Thus, most antibody-specific LMs have been trained purely 
on unpaired VH and VL sequences, with only a few excep-
tions (Burbach and Briney 2024).

Each VH and VL consists of a framework region (FWR) 
and three loops, called complementarity-determining regions 
(CDR)1–3. These three CDRs on each chain also constitute 
the majority of the binding site (Kitaura et al. 2017, Marks 
and Deane 2020). Antibody diversity is primarily located in 
the CDRs, with the CDR3 being especially diverse because of 
the combination of different gene segments during V(D)J re-
combination. The VL is comprised of a variable (V) segment 
and a joining (J) segment, with its CDR3 spanning both, 
while the VH also contains a diversity (D) segment fully con-
tained within the CDR3 (Kitaura et al. 2017, Marks and 
Deane 2020). During infection, nongermline (NGL) muta-
tions are introduced via somatic hypermutation (SHM), to 
develop strong target-specific binding (Kitaura et al. 2017, 
Marks and Deane 2020). However, the majority of the se-
quence of these affinity-matured antibodies are still germline 
(Kitaura et al. 2017). Moreover, BCR-seq is often performed 
on blood samples as these are less invasive to obtain com-
pared to other samples (Briney et al. 2019). Blood is charac-
terized by a low proportion of affinity-matured antibody 
producing B-cells, such as memory B-cells and plasma B-cells. 
Thus, BCR-seq often yields antibodies mostly from naive 
B-cells, which have not yet undergone SHM (Briney et al. 
2019). The data used to train antibody-specific LMs is there-
fore likely to be heavily biased toward the germline.

LMs are known to reproduce and even amplify biases in 
their training data (Sun et al. 2019). Protein LMs are simi-
larly affected, having been shown to struggle with mutations 
far from the wildtype (Shaw et al. 2023). For natural lan-
guage LMs, efforts to reduce biases have included pre- 
processing training data (Sun et al. 2019) or de-biasing with 
fine-tuning (Gira et al. 2022), while recalibration for each in-
dividual protein with respect to the background distribution 
of random mutation has been tried for protein LMs (Shaw 
et al.2023). The germline bias in antibody sequences can also 
be viewed as an imbalance problem. When predicting ran-
domly selected masked residues, it is rarely an NGL residue 
which needs to be predicted. The imbalance problem is well- 
known and many solutions have been proposed, like up or 
down-sampling (Branco et al. 2016) and focal loss (Lin et al. 
2020). Focal loss is a loss function that down-weights the loss 
of well-predicted labels. As rare labels, such as NGL residues, 
are usually poorly predicted, it results in an increased focus 
on these labels during training.

While affinity-matured antibodies usually only contain a 
few NGL mutations outside the CDR3, their existence is of-
ten important for specific and high-affinity binding (Kitaura 
et al. 2017). It is therefore necessary to understand if and 
how the germline bias affects antibody-specific LMs, 

especially their ability to suggest relevant NGL mutations. 
Correctly selecting relevant NGL residues might result in the 
design and optimization of better therapeutic antibodies than 
the current protein and antibody-specific LMs.

In this study, we first explore the germline bias in antibody 
sequences, both from BCR-seq data and a set of therapeutic 
antibodies. We then investigate how the bias affects BERT-like 
LMs’, like ESM-2 (Lin et al. 2023) and various antibody- 
specific LMs, ability to predict NGL residues. We then itera-
tively train and improve a new antibody-specific LM specifically 
for NGL prediction, and show how our final model, AbLang-2, 
is able to more accurately suggest a diverse set of valid 
mutations compared to previous models.

2 Materials and methods
2.1 Dataset preparation
The training and test sets were derived from the Observed 
Antibody Space (OAS) (Olsen et al. 2022a). Antibody 
sequences were downloaded from OAS in Nov. 2022, yield-
ing 2072M VHs, 357M VLs, and 1.57M paired antibodies. 
The sequences were then filtered by removing duplicates, 
sequences missing conserved cysteines, and heavily frag-
mented (missing >16 residues from the N-terminus or 7 resi-
dues from the C-terminus) sequences. Unpaired sequences 
were additionally filtered to remove sequences only seen 
once. Finally, any amino acids other than the standard 20 
were changed to X.

Redundancy was then reduced with clustering. Unpaired 
sequences were clustered first based on identical CDR3s and 
thereafter by 95% identity over the whole sequence using 
Linclust (Steinegger and S€oding 2018) with –cov-mode 1. 
The 95% threshold was chosen based on previous work 
showing high clustering thresholds having an improvement 
on variant prediction tasks (Meier et al. 2021). This cluster 
fragments together with a longer representative sequence. 
Paired sequences had first their VH and VL clustered individ-
ually as done for unpaired sequences. The paired sequences 
were then clustered by having the same VH and VL cluster. 
The longest sequence or sequence pair from each cluster 
was kept.

The paired antibodies were then randomly split into a train 
and test set of 1.26M and 100k, respectively. The paired test 
set was clustered together with the reduced unpaired set by 
95% identity over the whole sequence using Linclust 
(Steinegger and S€oding 2018) with –cov-mode 1. Any un-
paired sequences clustered with a VH or VL from the paired 
test set, were removed. This resulted in training sets with 
27.5M VHs, 11.1M VLs and 1.26M paired antibodies, and a 
test set of 100k paired antibodies.

The therapeutic sequences used in this study were sourced 
from Thera-SAbDab (as of Feb. 2023) (Raybould et al. 
2020). Only VH-VL paired antibodies were selected, result-
ing in 735 therapeutic test cases.

2.2 Germline and nongermline residue estimation
For OAS-derived sequences, germline and NGL residues were 
determined with IgBLAST (Ye et al. 2013). IgBLASTn uses 
the nucleotide sequences to predict each antibody’s germ-
lines, including nontemplated regions within the CDR3, 
which was then used to label each residue (see Supplementary 
Fig. S1). For the 735 therapeutic sequences, the germlines 
were predicted with ANARCI (Dunbar and Deane 2016) 
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from the protein sequence. The ANARCI predicted germline 
sequences were then used to label each residue as germline 
or NGL.

Using this approach, germline and NGL residues in the 
FWR and CDR1/2 can be estimated with reasonable accu-
racy. However, the nontemplated regions in the VH and VL 
CDR3s, and the uncertainty in estimating the D germline 
within the VH CDR3, complicate the identification of germ-
line residues within the CDR3s. For both the VH and VL 
CDR3s, we therefore only measured the NGL perplexity on 
CDR3 residues after filtering away estimated germline resi-
dues, including the estimated D germline for the VH CDR3. 
The CDR3 NGL residues are included as a challenging 
CDR3 test set, but for a clear comparison of germline and 
NGL residues, we focus on mutations outside of the CDR3.

While estimating the V and J gene using IgBLAST is rela-
tively reliable, it depends on a database of known V and J 
genes. The potential lack of certain alleles in this database, 
could result in the misclassification of some germline residues 
as NGL. Nonetheless, with the most obvious germline resi-
dues filtered out, this approach will result in a much more 
challenging dataset than random selection.

The standard, germline, and NGL residue test sets were 
generated from sequences in the test set (see Section 2.1). The 
standard test set represents how perplexity is usually mea-
sured, and is a random selection of 20 000 residues. For the 
germline test set, we sampled 20 000 estimated germline resi-
dues from outside the CDR3. For the NGL test set, we used 
all 475 000 NGL residues outside the CDR3 found in the test 
set, and a random selection of 9000 NGL residues within 
the CDR3.

2.3 Perplexity calculation
Perplexity measures a model’s uncertainty when predicting 
an amino acid at a given position and is commonly used for 
performance comparison.

For BERT-like LMs, sequence perplexity can be derived by 
first computing the negative log-likelihood loss for each 
masked residue individually. The final perplexity is then the 
exponential of the mean of these losses (Salazar et al. 2019). 
The perplexity of a test set is then the average sequence per-
plexity. This is also how pseudo-perplexity, which they refer 
to as perplexity, is calculated by Lin et al. (2023) when evalu-
ating ESM-2. In our work, instead of measuring perplexity 
based on every residue in a sequence, we only measure per-
plexity based on a subset of the residues within each se-
quence. Equation (1) shows how we define perplexity, where 
M is a set of residues within sequence x. This subset can be 
only NGL or germline residues, or all residues as done by Lin 
et al. (2023). 

PerplexityðxÞ ¼ expð−
1
M

XM

i¼1

log pðxijxj6¼iÞÞ (1) 

For consistency, the same residues are used to assess the 
perplexity for each model.

2.4 Architecture and training
A series of models (see Table 1) were iteratively improved 
and trained using the training sets (see Section 2.1). The mod-
els were implemented in PyTorch 2.0.1 (Paszke et al. 2019) 
and trained using the PyTorch-Lightning framework (Falcon 
and The PyTorch Lightning Team 2019). The initial model 

(Ab-Unpaired) was based on the architecture of a 6-layered 
ESM-2 model with SwiGLU (Shazeer 2020) as its activation 
function, and trained on single chains from the paired train-
ing set. The model was optimized with an Adam optimizer. 
For stabilizing and enhancing training, we used a linear 
warm-up for 1k steps, a peak learning rate of 0.0004, a co-
sine learning rate decay over 9k steps, and a weight decay of 
0.01. An effective batch size of 8192 was used during the 
training, together with a layer normalization with an epsilon 
of 1e− 12. Training occurred using the standard MLM train-
ing approach of randomly masking and predicting 15% of 
the input residues.

The model was then further improved over several itera-
tions, with each new model being an expansion of the previ-
ous one. Ab-Paired: The input was modified to also handle 
paired antibodies, by separating true VH-VL pairs with a sep-
arator token. The model was then trained with unpaired VH 
and VL, and paired VH-VL chains, from the paired training 
set. Ab-FL: Instead of the conventional cross-entropy loss 
function, focal loss was used (Lin et al. 2020). The purpose 
of this loss function is to better address the challenge of im-
balanced or sparse datasets. Ab-ModMask: The standard 
MLM approach was modified to include two alternative 
masking methods; short 3–5 segment masking and singular 
large segment masking, both inspired by Tay et al. (2023). 
For each batch, a masking method (the two new masking 
methods and standard MLM) is then selected uniformly. The 
proportion of masked residues was also changed to a 
dynamic value, selected uniformly between 10% and 40%. 
Ab-FT: The model was initially pre-trained exclusively on the 
unpaired sequences (see Section 2.1) for 10 000 steps. This 
was followed by fine-tuning on paired sequences for an addi-
tional 1000 steps and a peak learning rate of 0.0001. 
AbLang-2: The architecture was scaled up to 12 layers and 
an embedding size of 480. The model was then pre-trained 
on unpaired sequences for 200 000 steps and subsequently 
fine-tuned for 10 000 steps on paired sequences.

3 Results
3.1 Germline bias in antibody sequence data
To investigate germline bias, we inspected the VH-VL 
sequences of all paired antibodies within OAS (Olsen et al. 
2022a). The majority of these antibodies originate from naive 
B-cells (42%) and unsorted B-cells (39%), with only 17% 
from memory B-cells. The last 1% of antibodies are derived 
from other cells like plasma B-cells (see Fig. 1a). The paired 
data in OAS is therefore predominantly derived from B-cells 
that have not undergone SHM.

NGL residues outside the CDR3 were identified (see 
Section 2.2) and their distribution across different regions 
(see Fig. 1b) and different cell sources (see Fig. 1c) compared. 
As expected, the majority of antibodies from naive B-cells 
lack NGL residues, while those from memory B-cells contain 
a large number of NGL residues, averaging �10 and �5.3 in 
the VH and VL, respectively. For comparison, a slightly 
higher count of NGL residues was observed for antibody 
therapeutics (see Section 2.2), averaging �11.5 and �8.8 in 
the VH and VL, respectively. Supplementary Figure S2 shows 
the distribution across both chains. Here, memory B-cell-de-
rived antibodies averaged �15.3 NGL residues, while thera-
peutic antibodies showed an average of �20.3 NGL residues.
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Table 1. Comparison of the architecture, training data, and training approach for the protein language model (LM) ESM-2 (Lin et al. 2023), the antibody- 
specific LMs AntiBERTy (Ruffolo et al. 2021) and AbLang-1 (Olsen et al. 2022b), and our new selection of antibody-specific LMs.a

Architecture Training data Paired Loss function Training objective Training steps Batch size

ESM-2 ESM-2 
33Lþ 1280ES 

UR50/D 
60M sequences 

N CE MLM 500K 2M tokens

AntiBERTy BERT 
8Lþ 512ES 

558M VH/VL N CE MLM 8 epochs N/A

AbLang-1 RoBERTa 
12Lþ 768ES 

187K VL 
14.2M VH 

N CE MLM 2K 
34K 

500K tokens 
1M tokens 

Ab-Unpaired ESM-2 
6Lþ 320ES 

1.26M VL 
1.26M VH 

N CE MLM 10K 1M tokens

Ab-Paired ESM-2 
6Lþ 320ES 

1.26M paired Y CE MLM 10K 1–2M tokens

Ab-FL ESM-2 
6Lþ 320ES 

1.26M paired Y FL MLM 10K 1–2M tokens

Ab-ModMask ESM-2 
6Lþ 320ES 

1.26M paired Y FL Modified MLM 10K 1–2M tokens

Ab-FT ESM-2 
6Lþ 320ES 

35.6M VH/VL 
1.26M paired 

Y FL Modified MLM 10K þ 1K 1–2M tokens

AbLang-2 ESM-2 
12Lþ 480ES 

35.6M VH/VL 
1.26M paired 

Y FL Modified MLM 200K þ 10K 1–2M tokens

a The architecture column shows the most similar architecture and the model’s size with the number of layers (L) and embedding size (ES). While the exact 
number of training steps for AntiBERTy is unknown, it was trained for eight epochs (Ruffolo et al. 2021). AbLang-1 and the new antibody-specific LMs were 
trained on 8192 sequences (4096 for AbLang-1 Light) per batch, with each sequence comprising approximately 120 amino acids. Each batch thus contained 
about 1M tokens for unpaired sequences and 2M for paired antibody VH-VL sequences. CE, cross-entropy loss; FL, focal loss; MLM, masked 
language modeling.

Figure 1. Overview of nongermline (NGL) residues outside of the CDR3 from paired antibody VH-VL sequences in OAS. (a) Distribution of OAS derived 
antibody origins, showing naive B-cells as the predominant source (42%), followed by unsorted B-cells (39%), and memory B-cells (17%). (b) Distribution 
of NGL residues across different regions. (c) Distribution of NGL residues outside the CDR3 per sequence by source. Naive B-cell derived antibodies lack 
NGL residues, while memory B-cell derived antibodies display an average of �10 and �5.3 NGL residues in their VH and VL, respectively. Therapeutic 
antibodies exhibit averages of �11.5 and �8.8 NGL residues for the VH and VL. Supplementary Figure S2 provides an extended view of the distribution 
across both chains, with memory B-cell and therapeutic antibodies averaging �15.3 and �20.3 NGL residues, respectively.
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3.2 Germline bias in pre-trained language models
The impact of the germline bias in antibody sequences on 
pre-trained LMs was investigated for a set of LMs, both 
general-protein [ESM-2 (Lin et al. 2023)] and antibody- 
specific [Sapiens (Prihoda et al. 2022), AntiBERTy (Ruffolo 
et al. 2021) and AbLang-1 (Olsen et al. 2022b)] LMs. The 
ESM-2 models were trained on the UniRef50 (Suzek et al. 
2015) dataset, comprising approximately 60M protein 
sequences, of which a few hundreds are antibody sequences 
(Lin et al. 2023). The largest ESM-2 model has 15B parame-
ters, but due to computational limitations we only use the 
650M parameter ESM-2 model in this work. In contrast, the 
antibody-specific models are trained solely on unpaired anti-
body sequences from the OAS database. Sapiens was trained 
on 20M and 19M human VH and VL sequences, respectively 
(Prihoda et al. 2022). AntiBERTy was trained on 558M VH 
and VL sequences from various species (Ruffolo et al. 2021). 
AbLang-1 was similarly trained on 14M and 187k VH and 
VL sequences from a mix of species (Olsen et al. 2022b).

The impact was first examined by investigating how often 
the germline is predicted for masked NGL residues. For this, 
we used the previously derived NGL residues and predicted 
the masked residues with the four LMs. Figure 2 shows how 
often the germline was predicted for both the VH and VL, 
with sequences grouped along the x-axis by their number of 
NGL residues. Sapiens, AntiBERTy, and AbLang-1, predicted 
the germline with frequencies of 87.6%, 86.7%, and 84.9%, 
respectively. ESM-2, despite its limited exposure to antibody 
sequences, still predicted the germline at a rate of 49.6%. 
While it remains unclear if models less germline biased are bet-
ter at predicting NGL residues, it is clear that all the models 
tested preferentially suggest mutations toward the germline.

To investigate whether NGL residue predictions happen 
more frequently for sequences further from the germline, the 

results were grouped by the number of NGL residues per se-
quence (see Fig. 2). However, the frequency of germline pre-
dictions does not appear to be influenced by the number of 
NGL residues in a sequence. An exception is the slightly de-
creased germline prediction for sequences with only one 
NGL. This could be attributed to single nucleotide variants 
being wrongfully estimated as NGL.

To better understand what these models have learnt, we 
evaluated and compared their perplexity when predicting 
masked residues on three different sets. A set of random resi-
dues, representing the standard approach for calculating per-
plexity, a set of germline residues, and a set of NGL residues 
(see Section 2.2). We calculated the perplexity for each set for 
ESM-2, AntiBERTy, and AbLang-1 (see Fig. 2). We left out 
Sapiens, as their predictions are similar to both AntiBERTy 
and AbLang-1. The perplexity metric spans from 1, denoting 
a perfect prediction, to positive infinity, representing zero 
probability for a correct prediction. The models have differ-
ent vocabulary sizes ESM-2 (33), AntiBERTy (25), and 
AbLang-1 (24), but as they predict noncanonical amino acids 
with close to zero probability, the best estimate of a random 
prediction is between the 20 canonical amino acids and 
would give a perplexity of 20. While a perplexity of 1 is a 
perfect prediction, many positions can have multiple valid 
amino acids. An ideal protein LM should therefore give a per-
plexity somewhere between 1 and 20, accurately taking into 
account multiple valid mutations.

Perplexity is normally calculated for all residues across the 
whole sequence or a random subset. With this standard ap-
proach, all models show a good performance at predicting 
masked residues (see Table 2). However, when evaluating 
specific regions, the performance on the more variable CDRs, 
especially CDR3, is considerably worse. As the CDRs only 
make up a small proportion of the residues in a chain the 

Figure 2. Germline prediction of masked nongermline (NGL) residues for four pre-trained language models (LMs). Results for the VH and VL are 
visualized separately, with predicted residues grouped by the number of NGL residues outside the CDR3 in their sequence. The 95% confidence interval 
is shown with the same colored error bands. The antibody-specific LMs Sapiens (Prihoda et al. 2022), AntiBERTy (Ruffolo et al. 2021), and AbLang-1 
(Olsen et al. 2022b) predict the germline 87.6%, 86.7%, and 84.9% of the time, respectively. ESM-2 (Lin et al. 2023), trained with few antibody 
sequences, predicts the germline 49.6% of the time. All LMs preferentially suggest mutations to the germline.
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poor performance for this region is masked in the results for 
the whole chain.

When further splitting residues into known germline and 
NGL residues, it becomes clear that the standard perplexity is 
heavily dominated by accurately predicting the germline and 
not the NGL residues. In fact, all models perform poorly at 
predicting NGL residues, while the antibody-specific LMs al-
most perfectly predict the germline residues. The germline 
bias also affects protein LMs, as seen with ESM-2’s poor 
NGL residue prediction. For all tested LMs, the prediction of 
NGL residues is close to or worse than random. In summary, 
the standard perplexity is not only skewed by the compara-
tively short length of CDRs, which hides the more difficult 
regions to predict, but also by the germline bias. Also, while 
the exact ideal perplexity is unknown, the numerous NGL 
perplexities >20 indicate the significant potential for improv-
ing existing models.

3.3 Reducing the germline bias
In an effort to reduce germline bias and improve NGL predic-
tion, we trained several models while optimizing for NGL 
perplexity (see Section 2.4). Starting from the architecture of 
a small ESM-2 model (8M parameters), each model intro-
duced a new design choice. Table 3 shows each model and 
their incremental perplexity improvements. Our initial mod-
els Ab-Unpaired and Ab-Paired struggle with NGL predic-
tion, like ESM-2, AntiBERTy, and AbLang-1. To focus 
training on NGL residues, cross-entropy loss was switched to 
focal loss, which heavily skews the loss toward poorly pre-
dicted residues. This significantly improves NGL predictions, 
going from perplexity values 14.23–38.95 to 10.24–12.69, 
without compromising germline accuracy. Also, compared to 
previous models, which perform relatively worse on NGL 
residues in the FWR than in the CDRs, models with focal loss 
now perform similarly or better on NGL residues in the FWR 
than the CDRs.

Inspired by the idea of using a diverse set of pre-training 
objectives to train a model universally effective across down-
stream tasks (Tay et al. 2023), we modified the MLM ap-
proach to switch between random, short-span, and long-span 
masking, as well as dynamically changing the mask percent-
age. Using this modified masking technique slightly improved 
NGL perplexity in the framework and CDR1/2, but also 
mildly reduced performance in the CDR3.

Although pre-training on the large amounts of unpaired 
sequences (see Section 2.1) before fine-tuning on paired 
sequences was expected to improve performance, as a more 
diverse set of sequences was seen during training, it led to a 
small dip in perplexity. This might be caused by the relative 
small number of training steps. As a final effort to optimize 
performance, we scaled the model from 6 to 12 layers and ex-
tended its training duration. This resulted in the best- 
performing model, AbLang-2 (45M parameters). All new 
models kept their near-perfect prediction of masked germline 
residues, shown by their perplexity close to 1 (see Table 3).

3.4 Clonotype mutations
The above perplexity is calculated with the presumption of a 
single correct prediction. In reality multiple amino acids are 
often a valid prediction at each position. To better verify the 
selection of suggested mutations, we examined positions in 
clonotypes with three or more known NGL residues. The clo-
notypes were created by grouping antibodies from the test 
set, based on identical source, V/J genes, and CDR3 length 
for both chains. This yielded 101 clonotypes, containing 226 
and 60 sites with a minimum of three known NGL residues 
outside of the CDR3 in VHs and VLs, respectively. For each 
clonotype, a representative germline sequence was then gen-
erated by reverting NGL residues outside of the CDR3 back 
to the germline for the sequence with the fewest 
NGL residues.

For each site, the position was masked in the representative 
germline sequence and predicted using ESM-2, AntiBERTy, 
AbLang-1, and AbLang-2. The cumulative probability for 
known NGL residues at the site was then compared across 
the models (see Fig. 3a). For the VH, both AntiBERTy and 
AbLang-1 have an average cumulative probability below 2%, 
in contrast to ESM-2’s 20% and AbLang-2’s 15%. Similarly, 
for the VL, AntiBERTy and AbLang-1 have an average cumu-
lative probability of 3% and 8%, respectively, while ESM-2 
and AbLang-2 have 23% and 14%, respectively.

When the germline is included, see Fig. 3b, the cumulative 
probability for AntiBERTy, AbLang-1, and AbLang-2 hovers 
above 90%, underscoring how these models have a high 
probability of suggesting valid amino acids. In contrast, 
ESM-2 has a cumulative probability of 52% and 66% for the 
VH and VL, implying that ESM-2 potentially suggests invalid 
amino acids.

Table 2. Perplexity comparison between the general-protein language model (LM) ESM-2 (Lin et al. 2023), and the antibody-specific LMs AntiBERTy 
(Ruffolo et al. 2021) and AbLang-1 (Olsen et al. 2022b).a

Heavy Light

Residues Whole FWR CDR1/2 CDR3 Whole FWR CDR1/2 CDR3

ESM-2 All 2.83 2.04 4.98 10.97 3.29 2.66 6.66 10.92
AntiBERTy All 1.41 1.13 1.44 5.15 1.31 1.23 1.54 1.87
AbLang-1 All 1.33 1.11 1.40 3.68 1.21 1.14 1.41 1.79
ESM-2 Germline 1.91 4.12 2.54 6.11
AntiBERTy Germline 1.05 1.10 1.17 1.28
AbLang-1 Germline 1.03 1.08 1.07 1.16
ESM-2 Nongermline 32.03 24.36 20.85 23.20 19.37 24.29
AntiBERTy Nongermline 29.64 21.51 18.44 40.14 21.75 16.95
AbLang-1 Nongermline 25.80 17.73 14.47 52.14 25.72 16.75

a Perplexity was calculated on a set of randomly selected residues, only germline residues, and only nongermline (NGL) residues. Normally, perplexity is 
calculated for any residue across the whole sequence, however; because of the relatively short length of the difficult to predict CDRs and the germline bias, 
the true performance for NGL residues is masked. The perplexity metric spans from 1, denoting a perfect prediction, to positive infinity, representing zero 
probability for a correct prediction. A random prediction would result in a perplexity of 20. Predictions worse than random are shown in italic.
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The analysis was also done using a stricter clonotyping def-
inition that groups antibodies based on identical source, V/J 
genes, and identical CDR3 sequences for both chains (see 
Supplementary Fig. S3). To increase the number of data 

points, we used the test set before sequence identity reduc-
tion. This yielded 39 and 13 sites with two known NGL resi-
dues outside the CDR3 in VHs and VLs, respectively, and 
one site with three in a VH.

Table 3. Perplexity comparison between the protein language model (LM) ESM-2 (Lin et al. 2023), the antibody-specific LMs AntiBERTy (Ruffolo et al. 
2021) and AbLang-1 (Olsen et al. 2022b), and our new selection of antibody-specific LMs (see Section 2.4).a

Germline residues Nongermline residues

Heavy Light Heavy Light

FWR CDR1/2 FWR CDR1/2 FWR CDR1/2 CDR3 FWR CDR1/2 CDR3

ESM-2 1.91 4.12 2.54 6.11 32.03 24.36 20.85 23.20 19.37 24.29
AntiBERTy 1.05 1.10 1.17 1.28 29.64 21.51 18.44 40.14 21.75 16.95
AbLang-1 1.03 1.08 1.07 1.16 25.80 17.73 14.47 52.14 25.72 16.75
Ab-Unpaired 1.02 1.07 1.01 1.05 26.81 18.95 14.42 37.60 19.37 17.25
Ab-Paired 1.02 1.06 1.02 1.05 27.24 18.70 14.23 38.95 19.25 16.98
Ab-FL 1.10 1.17 1.09 1.16 10.33 11.18 12.69 10.82 10.24 11.04
Ab-ModMask 1.11 1.18 1.09 1.17 10.26 11.13 13.18 10.78 10.19 11.42
Ab-FT 1.11 1.18 1.10 1.18 10.88 11.91 13.67 11.25 10.63 12.29
AbLang-2 1.10 1.17 1.09 1.16 9.92 11.13 12.47 10.09 9.54 10.77

a While most of the models are near perfect at predicting masked germline residues, predictions for nongermline (NGL) residues show significantly higher 
perplexities. For ESM-2, AntiBERTy, AbLang-1, Ab-Unpaired, and Ab-Paired NGL perplexities are close to or worse than a random prediction. The largest 
improvement for NGL prediction came from switching to focal loss. Scaling up the model also improved performance, e.g. as seen by AbLang-2’s 
performances compared to Ab-FT. The best perplexity for each region is shown in bold.

Figure 3. Comparison of cumulative probabilities of valid residues for the general protein language model (LM) ESM-2 (Lin et al. 2023) and the antibody- 
specific LMs AntiBERTy (Ruffolo et al. 2021), AbLang-1 (Olsen et al. 2022b), and AbLang-2. Clonotypes were formed by grouping antibodies by source, V/J 
genes, and CDR3 length, yielding 101 clonotypes, containing 226 and 60 sites with a minimum of three known NGL residues outside of the CDR3 in VHs and 
VLs, respectively. (a) Cumulative probabilities for known NGL residues. AntiBERTy and AbLang-1 show <2% for the VH, while ESM-2 and AbLang-2 display 
20% and 15%. For the VL, values are 3% and 8% for AntiBERTy and AbLang-1, and 23% and 14% for ESM-2 and AbLang-2. (b) Cumulative probabilities for 
known NGL residues and the germline. AntiBERTy, AbLang-1, and AbLang-2 demonstrate around 90%–100% cumulative probabilities. ESM-2 presents 52% 
and 66% for the VHs and VLs, with the remaining probabilities suggesting amino acids different from the germline and at least three known NGL residues.
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4 Discussion
Antibody sequences are predominantly composed of germline 
residues. Even those antibodies that are highly matured or 
have been optimized through extensive drug design cam-
paigns, have only on average 15 and 20 NGL residues outside 
their CDR3s across both chains (see Fig. 1c). Over 93% of 
memory B-cells and 94% of therapeutics have five or more 
NGL residues across both chains. This suggests that while an 
extensive number of mutations away from the germline is 
rare, a select few are common for effective antibodies.

Unlike many protein design tasks, where a general-protein 
LM’s ability to predict evolutionarily conserved amino acids is 
ideal for retaining function, antibody design often requires iden-
tifying rare mutations that form novel binding sites, thereby a 
new function, against a new target. However, while suggesting 
these specific mutations is vital for the design of therapeutic 
antibodies, identifying them remains a significant challenge.

Pre-trained LMs like ESM-2, Sapiens, AntiBERTy, and 
AbLang are being used as a method to suggest potentially 
property-enhancing mutations (Hie et al. 2024), so under-
standing the effects of the germline bias is important, as it 
limits the LMs ability to suggest relevant mutations. Our 
results demonstrate that all current LMs predominantly sug-
gest germline residues and are poor predictors of NGL resi-
dues. The underperformance of these models in predicting 
NGL residues underscores the challenge of suggesting rele-
vant changes to the germline.

To try and design an antibody-specific LM better capable 
of suggesting relevant NGL residues, we began with a small 
sized model with the same architecture as ESM-2 and itera-
tively improved it. First, the input was expanded to handle 
both unpaired and paired sequences. Then, focal loss was 
used during training, directing the model’s attention to the 
less represented NGL residues, resulting in improved perfor-
mance of predicting NGL residues, as seen in Table 3. 
Notably, the FWR NGL perplexity is now similar to, or 
lower than, that of the CDRs compared to previous models 
trained without focal loss. This aligns with the conserved na-
ture of the FWR, where mutations should be more restricted 
and therefore easier to predict than those in the CDRs. The 
previously high FWR NGL perplexity is likely to be caused 
by the scarcity of FWR NGLs.

Drawing inspiration from the training of other LMs, we then 
modified the masking approach. To broaden the exposure to 
more diverse data, we first pre-trained the model on unpaired 
sequences before fine-tuning it on paired sequences. This 
allowed us to utilize the vast number of unpaired sequences, but 
still focus the model on handling paired data. For the final 
model, AbLang-2, we scaled up the size and training time result-
ing in our best model for predicting NGL residues.

Ideally, relevant mutations could be suggested directly 
from unmasked sequences, allowing a single forward pass in-
stead of one for each masked residue. To measure the models’ 
capability to do this, we computed the perplexity when pre-
dicting NGL residues which had been reverted to the germ-
line in the input (see Supplementary Table S1). Although 
AbLang-2 shows the best performance, its perplexity is worse 
than random, highlighting the need for further work to en-
able LMs to suggest mutations away from an unmasked 
germline residue. For comparison, when predicting unmasked 
NGL residues, all models except AbLang-1 give low perplex-
ity (see Supplementary Table S2).

A problem with how we calculate perplexity is our pre-
sumption of a single correct prediction. However, for protein 
sequences, multiple mutations can be viable. While natural 
language has the same problem, natural LMs typically select 
from tens of thousands of unique tokens (Zheng et al. 2021). 
In contrast, protein-specific LMs choose from just 20 amino 
acids, with up to half sometimes being valid predictions. To 
better assess the models’ capacity to suggest valid mutations, 
we evaluated them on a dataset of same position mutations 
within clonotypes. AntiBERTy and AbLang-1 predict a 
known valid amino acid with >90% accuracy, however; they 
almost solely predict the germline (see Fig. 3). This limits 
their use for suggesting new relevant mutations. ESM-2 
assigns higher probability to NGL residues, however; it also 
tends to predict mutations other than the known valid muta-
tions (34%–48% of the time). AbLang-2 exhibits a high cu-
mulative probability for NGL residues and simultaneously 
maintains a high probability for predicting known valid 
mutations. In other words, AbLang-2 suggests, with high 
probability, a diverse set of valid amino acids.

It is worth highlighting that we are only aware of a subset of 
the valid mutations and we do not weigh the potential impor-
tance of certain mutations over others. Moreover, as we predict 
masked residues from a representative germline, some NGL res-
idues might not be viable within this sequence. Therefore, we 
would ideally use a stricter clonotype definition, but that results 
in a limited data size, with most sites only having two known 
NGL residues. Despite this, the results were consistent with 
those obtained using the above more lenient clonotyping defini-
tion (see Supplementary Fig. S3).

In this work, we demonstrate how the germline bias found 
in the OAS dataset which stems from the low ratio of non-
germline mutations in both naturally occurring antibodies as 
well as highly optimized therapeutic antibodies, effects pre- 
trained LMs, especially how it affects their ability to suggest 
mutations away from the germline. In order to overcome 
this, we designed and pre-trained several antibody-specific 
LMs, with the final, AbLang-2, able to suggest a diverse set 
of valid mutations with high cumulative probability.

This work should facilitate the better design of therapeutic 
antibodies. For broader community engagement and research, 
we have made AbLang-2 freely and easily accessible via a py-
thon package (https://github.com/oxpig/AbLang2.git).
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